Pub Date : 2023-12-13DOI: 10.1007/s00211-023-01388-2
Aekta Aggarwal, Helge Holden, Ganesh Vaidya
In this article, we discuss the error analysis for a certain class of monotone finite volume schemes approximating nonlocal scalar conservation laws, modeling traffic flow and crowd dynamics, without any additional assumptions on monotonicity or linearity of the kernel (mu ) or the flux f. We first prove a novel Kuznetsov-type lemma for this class of PDEs and thereby show that the finite volume approximations converge to the entropy solution at the rate of (sqrt{Delta t}) in (L^1(mathbb {R})). To the best of our knowledge, this is the first proof of any type of convergence rate for this class of conservation laws. We also present numerical experiments to illustrate this result.
{"title":"On the accuracy of the finite volume approximations to nonlocal conservation laws","authors":"Aekta Aggarwal, Helge Holden, Ganesh Vaidya","doi":"10.1007/s00211-023-01388-2","DOIUrl":"https://doi.org/10.1007/s00211-023-01388-2","url":null,"abstract":"<p>In this article, we discuss the error analysis for a certain class of monotone finite volume schemes approximating nonlocal scalar conservation laws, modeling traffic flow and crowd dynamics, without any additional assumptions on monotonicity or linearity of the kernel <span>(mu )</span> or the flux <i>f</i>. We first prove a novel Kuznetsov-type lemma for this class of PDEs and thereby show that the finite volume approximations converge to the entropy solution at the rate of <span>(sqrt{Delta t})</span> in <span>(L^1(mathbb {R}))</span>. To the best of our knowledge, this is the first proof of any type of convergence rate for this class of conservation laws. We also present numerical experiments to illustrate this result.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"145 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138683261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-11DOI: 10.1007/s00211-023-01376-6
Moulay Abdellah Chkifa
Given a positive integer d and ({{varvec{a}}}_{1},dots ,{{varvec{a}}}_{r}) a family of vectors in ({{mathbb {R}}}^d), ({k_1{{varvec{a}}}_{1}+dots +k_r{{varvec{a}}}_{r}: k_1,dots ,k_r in {{mathbb {Z}}}}subset {{mathbb {R}}}^d) is the so-called lattice generated by the family. In high dimensional integration, prescribed lattices are used for constructing reliable quadrature schemes. The quadrature points are the lattice points lying on the integration domain, typically the unit hypercube ([0,1)^d) or a rescaled shifted hypercube. It is crucial to have a cost-effective method for enumerating lattice points within such domains. Undeniably, the lack of such fast enumeration procedures hinders the applicability of lattice rules. Existing enumeration procedures exploit intrinsic properties of the lattice at hand, such as periodicity, orthogonality, recurrences, etc. In this paper, we unveil a general-purpose fast lattice enumeration algorithm based on linear programming (named FLE-LP).
给定一个正整数 d 和 ({{varvec{a}}}_{1},dots ,{{{varvec{a}}}_{r}) 中的一个向量族, ({k_1{{varvec{a}}}_{1}+dots +k_r{{varvec{a}}}_{r}:k_1,dots ,k_r in {{mathbb {Z}}} 子集 {{mathbb {R}}}^d) 是由族产生的所谓晶格。在高维积分中,规定网格用于构建可靠的正交方案。正交点是位于积分域上的网格点,通常是单位超立方体(([0,1)^d)或重比例移位超立方体。拥有一种经济有效的方法来枚举这些域内的网格点至关重要。不可否认,缺乏这种快速枚举程序阻碍了网格规则的应用。现有的枚举程序利用的是网格的内在属性,如周期性、正交性、递归性等。本文揭示了一种基于线性规划的通用快速网格枚举算法(命名为 FLE-LP)。
{"title":"Lattice enumeration via linear programming","authors":"Moulay Abdellah Chkifa","doi":"10.1007/s00211-023-01376-6","DOIUrl":"https://doi.org/10.1007/s00211-023-01376-6","url":null,"abstract":"<p>Given a positive integer <i>d</i> and <span>({{varvec{a}}}_{1},dots ,{{varvec{a}}}_{r})</span> a family of vectors in <span>({{mathbb {R}}}^d)</span>, <span>({k_1{{varvec{a}}}_{1}+dots +k_r{{varvec{a}}}_{r}: k_1,dots ,k_r in {{mathbb {Z}}}}subset {{mathbb {R}}}^d)</span> is the so-called lattice generated by the family. In high dimensional integration, prescribed lattices are used for constructing reliable quadrature schemes. The quadrature points are the lattice points lying on the integration domain, typically the unit hypercube <span>([0,1)^d)</span> or a rescaled shifted hypercube. It is crucial to have a cost-effective method for enumerating lattice points within such domains. Undeniably, the lack of such fast enumeration procedures hinders the applicability of lattice rules. Existing enumeration procedures exploit intrinsic properties of the lattice at hand, such as periodicity, orthogonality, recurrences, etc. In this paper, we unveil a general-purpose fast lattice enumeration algorithm based on linear programming (named <b>FLE-LP</b>).</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"2 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138572065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-07DOI: 10.1007/s00211-023-01385-5
Dietmar Gallistl, Ngoc Tien Tran
This paper analyzes a regularization scheme of the Monge–Ampère equation by uniformly elliptic Hamilton–Jacobi–Bellman equations. The main tools are stability estimates in the (L^infty ) norm from the theory of viscosity solutions which are independent of the regularization parameter (varepsilon ). They allow for the uniform convergence of the solution (u_varepsilon ) to the regularized problem towards the Alexandrov solution u to the Monge–Ampère equation for any nonnegative (L^n) right-hand side and continuous Dirichlet data. The main application are guaranteed a posteriori error bounds in the (L^infty ) norm for continuously differentiable finite element approximations of u or (u_varepsilon ).
{"title":"Stability and guaranteed error control of approximations to the Monge–Ampère equation","authors":"Dietmar Gallistl, Ngoc Tien Tran","doi":"10.1007/s00211-023-01385-5","DOIUrl":"https://doi.org/10.1007/s00211-023-01385-5","url":null,"abstract":"<p>This paper analyzes a regularization scheme of the Monge–Ampère equation by uniformly elliptic Hamilton–Jacobi–Bellman equations. The main tools are stability estimates in the <span>(L^infty )</span> norm from the theory of viscosity solutions which are independent of the regularization parameter <span>(varepsilon )</span>. They allow for the uniform convergence of the solution <span>(u_varepsilon )</span> to the regularized problem towards the Alexandrov solution <i>u</i> to the Monge–Ampère equation for any nonnegative <span>(L^n)</span> right-hand side and continuous Dirichlet data. The main application are guaranteed a posteriori error bounds in the <span>(L^infty )</span> norm for continuously differentiable finite element approximations of <i>u</i> or <span>(u_varepsilon )</span>.\u0000</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"163 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138546841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-30DOI: 10.1007/s00211-023-01381-9
Snorre H. Christiansen, Jay Gopalakrishnan, Johnny Guzmán, Kaibo Hu
We construct conforming finite element elasticity complexes on the Alfeld splits of tetrahedra. The complex consists of vector fields and symmetric tensor fields, interlinked via the linearized deformation operator, the linearized curvature operator, and the divergence operator, respectively. The construction is based on an algebraic machinery that derives the elasticity complex from de Rham complexes, and smoother finite element differential forms.
{"title":"A discrete elasticity complex on three-dimensional Alfeld splits","authors":"Snorre H. Christiansen, Jay Gopalakrishnan, Johnny Guzmán, Kaibo Hu","doi":"10.1007/s00211-023-01381-9","DOIUrl":"https://doi.org/10.1007/s00211-023-01381-9","url":null,"abstract":"<p>We construct conforming finite element elasticity complexes on the Alfeld splits of tetrahedra. The complex consists of vector fields and symmetric tensor fields, interlinked via the linearized deformation operator, the linearized curvature operator, and the divergence operator, respectively. The construction is based on an algebraic machinery that derives the elasticity complex from de Rham complexes, and smoother finite element differential forms.\u0000</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"1 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-23DOI: 10.1007/s00211-023-01384-6
Yuanyuan Li, Shuai Lu, Peter Mathé, Sergei V. Pereverzev
We investigate the use of two-layer networks with the rectified power unit, which is called the (text {ReLU}^k) activation function, for function and derivative approximation. By extending and calibrating the corresponding Barron space, we show that two-layer networks with the (text {ReLU}^k) activation function are well-designed to simultaneously approximate an unknown function and its derivatives. When the measurement is noisy, we propose a Tikhonov type regularization method, and provide error bounds when the regularization parameter is chosen appropriately. Several numerical examples support the efficiency of the proposed approach.
{"title":"Two-layer networks with the $$text {ReLU}^k$$ activation function: Barron spaces and derivative approximation","authors":"Yuanyuan Li, Shuai Lu, Peter Mathé, Sergei V. Pereverzev","doi":"10.1007/s00211-023-01384-6","DOIUrl":"https://doi.org/10.1007/s00211-023-01384-6","url":null,"abstract":"<p>We investigate the use of two-layer networks with the rectified power unit, which is called the <span>(text {ReLU}^k)</span> activation function, for function and derivative approximation. By extending and calibrating the corresponding Barron space, we show that two-layer networks with the <span>(text {ReLU}^k)</span> activation function are well-designed to simultaneously approximate an unknown function and its derivatives. When the measurement is noisy, we propose a Tikhonov type regularization method, and provide error bounds when the regularization parameter is chosen appropriately. Several numerical examples support the efficiency of the proposed approach.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"18 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.1007/s00211-023-01380-w
Peter Benner, Serkan Gugercin, Steffen W. R. Werner
{"title":"A unifying framework for tangential interpolation of structured bilinear control systems","authors":"Peter Benner, Serkan Gugercin, Steffen W. R. Werner","doi":"10.1007/s00211-023-01380-w","DOIUrl":"https://doi.org/10.1007/s00211-023-01380-w","url":null,"abstract":"","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135870870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-26DOI: 10.1007/s00211-023-01378-4
Yoann Le Henaff
We study a grid-free particle method based on following the evolution of the characteristics of the Vlasov–Poisson system, and we show that it converges for smooth enough initial data. This method is built as a combination of well-studied building blocks—mainly time integration and integral quadratures—and allows to obtain arbitrarily high orders. By making use of the Non-Uniform Fast Fourier Transform, the overall computational complexity is $$ {mathcal {O}}(P log P + K^d log K^d) $$ , where $$ P $$ is the total number of particles and where we only keep the Fourier modes $$ k in ({mathbb {Z}}^d)^* $$ such that $$ k_1^2 + dots + k_d^2 le K^2 $$ . Some numerical results are given for the Vlasov–Poisson system in the one-dimensional case.
我们研究了一种基于跟踪Vlasov-Poisson系统特征演变的无网格粒子方法,并证明了它在足够光滑的初始数据下是收敛的。这种方法是建立在一个充分研究的构建模块的组合-主要是时间积分和积分正交-并允许获得任意高阶。通过使用非均匀快速傅里叶变换,总的计算复杂度是$$ {mathcal {O}}(P log P + K^d log K^d) $$,其中$$ P $$是粒子的总数我们只保留傅里叶模式$$ k in ({mathbb {Z}}^d)^* $$这样$$ k_1^2 + dots + k_d^2 le K^2 $$。给出了一维情况下Vlasov-Poisson系统的一些数值结果。
{"title":"Grid-free weighted particle method applied to the Vlasov–Poisson equation","authors":"Yoann Le Henaff","doi":"10.1007/s00211-023-01378-4","DOIUrl":"https://doi.org/10.1007/s00211-023-01378-4","url":null,"abstract":"We study a grid-free particle method based on following the evolution of the characteristics of the Vlasov–Poisson system, and we show that it converges for smooth enough initial data. This method is built as a combination of well-studied building blocks—mainly time integration and integral quadratures—and allows to obtain arbitrarily high orders. By making use of the Non-Uniform Fast Fourier Transform, the overall computational complexity is $$ {mathcal {O}}(P log P + K^d log K^d) $$ , where $$ P $$ is the total number of particles and where we only keep the Fourier modes $$ k in ({mathbb {Z}}^d)^* $$ such that $$ k_1^2 + dots + k_d^2 le K^2 $$ . Some numerical results are given for the Vlasov–Poisson system in the one-dimensional case.","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"60 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136377031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-12DOI: 10.1007/s00211-023-01375-7
Tim W. Reid, Ilse C. F. Ipsen, Jon Cockayne, Chris J. Oates
{"title":"Statistical properties of BayesCG under the Krylov prior","authors":"Tim W. Reid, Ilse C. F. Ipsen, Jon Cockayne, Chris J. Oates","doi":"10.1007/s00211-023-01375-7","DOIUrl":"https://doi.org/10.1007/s00211-023-01375-7","url":null,"abstract":"","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"169 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135969090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}