首页 > 最新文献

Neuroinformatics最新文献

英文 中文
Bayesian Tensor Modeling for Image-based Classification of Alzheimer's Disease. 基于图像的阿尔茨海默病分类贝叶斯张量模型
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-01 Epub Date: 2024-06-07 DOI: 10.1007/s12021-024-09669-3
Rongke Lyu, Marina Vannucci, Suprateek Kundu

Tensor-based representations are being increasingly used to represent complex data types such as imaging data, due to their appealing properties such as dimension reduction and the preservation of spatial information. Recently, there is a growing literature on using Bayesian scalar-on-tensor regression techniques that use tensor-based representations for high-dimensional and spatially distributed covariates to predict continuous outcomes. However surprisingly, there is limited development on corresponding Bayesian classification methods relying on tensor-valued covariates. Standard approaches that vectorize the image are not desirable due to the loss of spatial structure, and alternate methods that use extracted features from the image in the predictive model may suffer from information loss. We propose a novel data augmentation-based Bayesian classification approach relying on tensor-valued covariates, with a focus on imaging predictors. We propose two data augmentation schemes, one resulting in a support vector machine (SVM) type of classifier, and another yielding a logistic regression classifier. While both types of classifiers have been proposed independently in literature, our contribution is to extend such existing methodology to accommodate high-dimensional tensor valued predictors that involve low rank decompositions of the coefficient matrix while preserving the spatial information in the image. An efficient Markov chain Monte Carlo (MCMC) algorithm is developed for implementing these methods. Simulation studies show significant improvements in classification accuracy and parameter estimation compared to routinely used classification methods. We further illustrate our method in a neuroimaging application using cortical thickness MRI data from Alzheimer's Disease Neuroimaging Initiative, with results displaying better classification accuracy throughout several classification tasks, including classification on pairs of the three diagnostic groups: normal control, AD patients, and MCI patients; gender classification (males vs females); and cognitive performance based on high and low levels of MMSE scores.

基于张量的表示法因其降维和保留空间信息等吸引人的特性,正越来越多地被用于表示成像数据等复杂数据类型。最近,关于使用贝叶斯标量-张量回归技术的文献越来越多,这些技术使用基于张量的表示来表示高维和空间分布的协变量,从而预测连续结果。然而,令人惊讶的是,依赖于张量值协变量的相应贝叶斯分类方法的发展却很有限。将图像矢量化的标准方法由于会损失空间结构而不可取,而在预测模型中使用从图像中提取的特征的替代方法可能会造成信息损失。我们提出了一种新颖的基于数据增强的贝叶斯分类方法,该方法依赖于张量值协变量,重点关注成像预测因子。我们提出了两种数据增强方案,一种是支持向量机(SVM)类型的分类器,另一种是逻辑回归分类器。虽然这两种分类器都已在文献中独立提出,但我们的贡献在于扩展了现有的方法,以适应涉及系数矩阵低秩分解的高维张量值预测器,同时保留图像中的空间信息。为实现这些方法,开发了一种高效的马尔科夫链蒙特卡罗(MCMC)算法。模拟研究表明,与常规分类方法相比,我们的分类准确率和参数估计都有了显著提高。我们还利用阿尔茨海默病神经成像计划(Alzheimer's Disease Neuroimaging Initiative)提供的皮层厚度 MRI 数据,在神经成像应用中进一步说明了我们的方法,结果显示我们在多个分类任务中的分类准确性都有所提高,包括正常对照组、AD 患者和 MCI 患者三个诊断组的分类;性别分类(男性 vs 女性);以及基于 MMSE 分数高低的认知表现。
{"title":"Bayesian Tensor Modeling for Image-based Classification of Alzheimer's Disease.","authors":"Rongke Lyu, Marina Vannucci, Suprateek Kundu","doi":"10.1007/s12021-024-09669-3","DOIUrl":"10.1007/s12021-024-09669-3","url":null,"abstract":"<p><p>Tensor-based representations are being increasingly used to represent complex data types such as imaging data, due to their appealing properties such as dimension reduction and the preservation of spatial information. Recently, there is a growing literature on using Bayesian scalar-on-tensor regression techniques that use tensor-based representations for high-dimensional and spatially distributed covariates to predict continuous outcomes. However surprisingly, there is limited development on corresponding Bayesian classification methods relying on tensor-valued covariates. Standard approaches that vectorize the image are not desirable due to the loss of spatial structure, and alternate methods that use extracted features from the image in the predictive model may suffer from information loss. We propose a novel data augmentation-based Bayesian classification approach relying on tensor-valued covariates, with a focus on imaging predictors. We propose two data augmentation schemes, one resulting in a support vector machine (SVM) type of classifier, and another yielding a logistic regression classifier. While both types of classifiers have been proposed independently in literature, our contribution is to extend such existing methodology to accommodate high-dimensional tensor valued predictors that involve low rank decompositions of the coefficient matrix while preserving the spatial information in the image. An efficient Markov chain Monte Carlo (MCMC) algorithm is developed for implementing these methods. Simulation studies show significant improvements in classification accuracy and parameter estimation compared to routinely used classification methods. We further illustrate our method in a neuroimaging application using cortical thickness MRI data from Alzheimer's Disease Neuroimaging Initiative, with results displaying better classification accuracy throughout several classification tasks, including classification on pairs of the three diagnostic groups: normal control, AD patients, and MCI patients; gender classification (males vs females); and cognitive performance based on high and low levels of MMSE scores.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":" ","pages":"437-455"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing fMRI to Guide TMS Targets: the Reliability and Sensitivity of fMRI Metrics at 3 T and 1.5 T. 利用 fMRI 引导 TMS 目标:3 T 和 1.5 T fMRI 指标的可靠性和灵敏度。
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-01 Epub Date: 2024-05-23 DOI: 10.1007/s12021-024-09667-5
Qiu Ge, Matthew Lock, Xue Yang, Yuejiao Ding, Juan Yue, Na Zhao, Yun-Song Hu, Yong Zhang, Minliang Yao, Yu-Feng Zang

US Food and Drug Administration (FDA) cleared a Transcranial Magnetic Stimulation (TMS) system with functional Magnetic Resonance Imaging-guided (fMRI) individualized treatment protocol for major depressive disorder, which employs resting state-fMRI (RS-fMRI) functional connectivity (FC) to pinpoint the target individually to increase the accuracy and effeteness of the stimulation. Furthermore, task activation-guided TMS, as well as the use of RS-fMRI local metrics for targeted the specific abnormal brain regions, are considered a precise scheme for TMS targeting. Since 1.5 T MRI is more available in hospitals, systematic evaluation of the test-retest reliability and sensitivity of fMRI metrics on 1.5 T and 3 T MRI may provide reference for the application of fMRI-guided individualized-precise TMS stimulation. Twenty participants underwent three RS-fMRI scans and one scan of finger-tapping task fMRI with self-initiated (SI) and visual-guided (VG) conditions at both 3 T and 1.5 T. Then the location reliability derived by FC (with three seed regions) and peak activation were assessed by intra-individual distance. The test-retest reliability and sensitivity of five RS-fMRI local metrics were evaluated using intra-class correlation and effect size, separately. The intra-individual distance of peak activation location between 1.5 T and 3 T was 15.8 mm and 19 mm for two conditions, respectively. The intra-individual distance for the FC derived targets at 1.5 T was 9.6-31.2 mm, compared to that of 3 T (7.6-31.1 mm). The test-retest reliability and sensitivity of RS-fMRI local metrics showed similar trends on 1.5 T and 3 T. These findings hasten the application of fMRI-guided individualized TMS treatment in clinical practice.

美国食品和药物管理局(FDA)批准了一项经颅磁刺激(TMS)系统与功能磁共振成像(fMRI)引导的重度抑郁障碍个体化治疗方案,该方案采用静息状态-fMRI(RS-fMRI)功能连接(FC)来单独定位目标,以提高刺激的准确性和有效性。此外,任务激活引导的 TMS 以及使用 RS-fMRI 局部指标来锁定特定的异常脑区,被认为是 TMS 靶向的精确方案。由于 1.5 T 核磁共振成像在医院较为普及,因此系统评估 1.5 T 和 3 T 核磁共振成像上的 fMRI 指标的测试-重复可靠性和灵敏度,可为应用 fMRI 引导的个体化精确 TMS 刺激提供参考。20名参与者在3 T和1.5 T条件下接受了3次RS-fMRI扫描和1次自发(SI)和视觉引导(VG)条件下的手指敲击任务fMRI扫描。利用类内相关性和效应大小分别评估了五个 RS-fMRI 局部指标的测试-重复可靠性和敏感性。在两种情况下,1.5 T 和 3 T 之间峰值激活位置的个体内距离分别为 15.8 毫米和 19 毫米。在 1.5 T 条件下,FC 导出目标的个体内距离为 9.6-31.2 mm,而在 3 T 条件下为 7.6-31.1 mm。在 1.5 T 和 3 T 条件下,RS-fMRI 局部指标的测试-重复可靠性和灵敏度显示出相似的趋势。
{"title":"Utilizing fMRI to Guide TMS Targets: the Reliability and Sensitivity of fMRI Metrics at 3 T and 1.5 T.","authors":"Qiu Ge, Matthew Lock, Xue Yang, Yuejiao Ding, Juan Yue, Na Zhao, Yun-Song Hu, Yong Zhang, Minliang Yao, Yu-Feng Zang","doi":"10.1007/s12021-024-09667-5","DOIUrl":"10.1007/s12021-024-09667-5","url":null,"abstract":"<p><p>US Food and Drug Administration (FDA) cleared a Transcranial Magnetic Stimulation (TMS) system with functional Magnetic Resonance Imaging-guided (fMRI) individualized treatment protocol for major depressive disorder, which employs resting state-fMRI (RS-fMRI) functional connectivity (FC) to pinpoint the target individually to increase the accuracy and effeteness of the stimulation. Furthermore, task activation-guided TMS, as well as the use of RS-fMRI local metrics for targeted the specific abnormal brain regions, are considered a precise scheme for TMS targeting. Since 1.5 T MRI is more available in hospitals, systematic evaluation of the test-retest reliability and sensitivity of fMRI metrics on 1.5 T and 3 T MRI may provide reference for the application of fMRI-guided individualized-precise TMS stimulation. Twenty participants underwent three RS-fMRI scans and one scan of finger-tapping task fMRI with self-initiated (SI) and visual-guided (VG) conditions at both 3 T and 1.5 T. Then the location reliability derived by FC (with three seed regions) and peak activation were assessed by intra-individual distance. The test-retest reliability and sensitivity of five RS-fMRI local metrics were evaluated using intra-class correlation and effect size, separately. The intra-individual distance of peak activation location between 1.5 T and 3 T was 15.8 mm and 19 mm for two conditions, respectively. The intra-individual distance for the FC derived targets at 1.5 T was 9.6-31.2 mm, compared to that of 3 T (7.6-31.1 mm). The test-retest reliability and sensitivity of RS-fMRI local metrics showed similar trends on 1.5 T and 3 T. These findings hasten the application of fMRI-guided individualized TMS treatment in clinical practice.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":" ","pages":"421-435"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141080796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved ADHD Diagnosis Using EEG Connectivity and Deep Learning through Combining Pearson Correlation Coefficient and Phase-Locking Value. 通过结合皮尔逊相关系数和锁相值,利用脑电图连接性和深度学习改进多动症诊断。
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-01 Epub Date: 2024-10-18 DOI: 10.1007/s12021-024-09685-3
Elham Ahmadi Moghadam, Farhad Abedinzadeh Torghabeh, Seyyed Abed Hosseini, Mohammad Hossein Moattar

Attention Deficit Hyperactivity Disorder (ADHD) is a widespread neurobehavioral disorder affecting children and adolescents, requiring early detection for effective treatment. EEG connectivity measures can reveal the interdependencies between EEG recordings, highlighting brain network patterns and functional behavior that improve diagnostic accuracy. This study introduces a novel ADHD diagnostic method by combining linear and nonlinear brain connectivity maps with an attention-based convolutional neural network (Att-CNN). Pearson Correlation Coefficient (PCC) and Phase-Locking Value (PLV) are used to create fused connectivity maps (FCMs) from various EEG frequency subbands, which are then inputted into the Att-CNN. The attention module is strategically placed after the latest convolutional layer in the CNN. The performance of different optimizers (Adam and SGD) and learning rates are assessed. The suggested model obtained 98.88%, 98.41%, 98.19%, and 98.30% for accuracy, precision, recall, and F1 Score, respectively, using the SGD optimizer in the FCM of the theta band with a learning rate of 1e-1. With the use of FCM, Att-CNN, and advanced optimizers, the proposed technique has the potential to produce trustworthy instruments for the early diagnosis of ADHD, greatly enhancing both patient outcomes and diagnostic accuracy.

注意力缺陷多动障碍(ADHD)是一种广泛影响儿童和青少年的神经行为障碍,需要及早发现才能有效治疗。脑电连接测量可以揭示脑电记录之间的相互依存关系,突出大脑网络模式和功能行为,从而提高诊断的准确性。本研究通过将线性和非线性脑连接图与基于注意力的卷积神经网络(Att-CNN)相结合,介绍了一种新型多动症诊断方法。利用皮尔逊相关系数(PCC)和锁相值(PLV)从不同的脑电图频率子带创建融合连接图(FCM),然后将其输入 Att-CNN。注意力模块被战略性地置于 CNN 最新卷积层之后。对不同优化器(Adam 和 SGD)的性能和学习率进行了评估。在θ波段的 FCM 中使用 SGD 优化器,学习率为 1e-1,建议模型的准确率、精确率、召回率和 F1 分数分别达到 98.88%、98.41%、98.19% 和 98.30%。通过使用 FCM、Att-CNN 和高级优化器,所提出的技术有望为多动症的早期诊断提供值得信赖的工具,从而大大提高患者的治疗效果和诊断准确性。
{"title":"Improved ADHD Diagnosis Using EEG Connectivity and Deep Learning through Combining Pearson Correlation Coefficient and Phase-Locking Value.","authors":"Elham Ahmadi Moghadam, Farhad Abedinzadeh Torghabeh, Seyyed Abed Hosseini, Mohammad Hossein Moattar","doi":"10.1007/s12021-024-09685-3","DOIUrl":"10.1007/s12021-024-09685-3","url":null,"abstract":"<p><p>Attention Deficit Hyperactivity Disorder (ADHD) is a widespread neurobehavioral disorder affecting children and adolescents, requiring early detection for effective treatment. EEG connectivity measures can reveal the interdependencies between EEG recordings, highlighting brain network patterns and functional behavior that improve diagnostic accuracy. This study introduces a novel ADHD diagnostic method by combining linear and nonlinear brain connectivity maps with an attention-based convolutional neural network (Att-CNN). Pearson Correlation Coefficient (PCC) and Phase-Locking Value (PLV) are used to create fused connectivity maps (FCMs) from various EEG frequency subbands, which are then inputted into the Att-CNN. The attention module is strategically placed after the latest convolutional layer in the CNN. The performance of different optimizers (Adam and SGD) and learning rates are assessed. The suggested model obtained 98.88%, 98.41%, 98.19%, and 98.30% for accuracy, precision, recall, and F1 Score, respectively, using the SGD optimizer in the FCM of the theta band with a learning rate of 1e-1. With the use of FCM, Att-CNN, and advanced optimizers, the proposed technique has the potential to produce trustworthy instruments for the early diagnosis of ADHD, greatly enhancing both patient outcomes and diagnostic accuracy.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":" ","pages":"521-537"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of Sports Concussion in Female Athletes: A Role for Neuroinformatics? 评估女运动员的运动性脑震荡:神经信息学的作用?
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-01 Epub Date: 2024-07-30 DOI: 10.1007/s12021-024-09680-8
Rachel Edelstein, Sterling Gutterman, Benjamin Newman, John Darrell Van Horn

Over the past decade, the intricacies of sports-related concussions among female athletes have become readily apparent. Traditional clinical methods for diagnosing concussions suffer limitations when applied to female athletes, often failing to capture subtle changes in brain structure and function. Advanced neuroinformatics techniques and machine learning models have become invaluable assets in this endeavor. While these technologies have been extensively employed in understanding concussion in male athletes, there remains a significant gap in our comprehension of their effectiveness for female athletes. With its remarkable data analysis capacity, machine learning offers a promising avenue to bridge this deficit. By harnessing the power of machine learning, researchers can link observed phenotypic neuroimaging data to sex-specific biological mechanisms, unraveling the mysteries of concussions in female athletes. Furthermore, embedding methods within machine learning enable examining brain architecture and its alterations beyond the conventional anatomical reference frame. In turn, allows researchers to gain deeper insights into the dynamics of concussions, treatment responses, and recovery processes. This paper endeavors to address the crucial issue of sex differences in multimodal neuroimaging experimental design and machine learning approaches within female athlete populations, ultimately ensuring that they receive the tailored care they require when facing the challenges of concussions. Through better data integration, feature identification, knowledge representation, validation, etc., neuroinformaticists, are ideally suited to bring clarity, context, and explainabilty to the study of sports-related head injuries in males and in females, and helping to define recovery.

在过去的十年中,女性运动员中与运动相关的脑震荡的复杂性已变得显而易见。传统的脑震荡临床诊断方法在应用于女运动员时存在局限性,往往无法捕捉到大脑结构和功能的细微变化。先进的神经信息学技术和机器学习模型已成为这方面的宝贵财富。虽然这些技术已被广泛应用于了解男性运动员的脑震荡情况,但我们对其对女性运动员的有效性的理解仍有很大差距。凭借出色的数据分析能力,机器学习为弥补这一不足提供了一条大有可为的途径。通过利用机器学习的强大功能,研究人员可以将观察到的表型神经影像数据与性别特异性生物机制联系起来,从而揭开女运动员脑震荡的神秘面纱。此外,在机器学习中嵌入方法,可以超越传统的解剖参考框架,检查大脑结构及其变化。反过来,研究人员也能更深入地了解脑震荡的动态变化、治疗反应和恢复过程。本文致力于解决多模态神经成像实验设计和机器学习方法在女性运动员群体中的性别差异这一关键问题,最终确保她们在面对脑震荡挑战时获得所需的定制护理。通过更好的数据整合、特征识别、知识表示、验证等,神经信息学家非常适合为男性和女性运动相关头部损伤的研究带来清晰度、背景和可解释性,并帮助确定康复。
{"title":"Assessment of Sports Concussion in Female Athletes: A Role for Neuroinformatics?","authors":"Rachel Edelstein, Sterling Gutterman, Benjamin Newman, John Darrell Van Horn","doi":"10.1007/s12021-024-09680-8","DOIUrl":"10.1007/s12021-024-09680-8","url":null,"abstract":"<p><p>Over the past decade, the intricacies of sports-related concussions among female athletes have become readily apparent. Traditional clinical methods for diagnosing concussions suffer limitations when applied to female athletes, often failing to capture subtle changes in brain structure and function. Advanced neuroinformatics techniques and machine learning models have become invaluable assets in this endeavor. While these technologies have been extensively employed in understanding concussion in male athletes, there remains a significant gap in our comprehension of their effectiveness for female athletes. With its remarkable data analysis capacity, machine learning offers a promising avenue to bridge this deficit. By harnessing the power of machine learning, researchers can link observed phenotypic neuroimaging data to sex-specific biological mechanisms, unraveling the mysteries of concussions in female athletes. Furthermore, embedding methods within machine learning enable examining brain architecture and its alterations beyond the conventional anatomical reference frame. In turn, allows researchers to gain deeper insights into the dynamics of concussions, treatment responses, and recovery processes. This paper endeavors to address the crucial issue of sex differences in multimodal neuroimaging experimental design and machine learning approaches within female athlete populations, ultimately ensuring that they receive the tailored care they require when facing the challenges of concussions. Through better data integration, feature identification, knowledge representation, validation, etc., neuroinformaticists, are ideally suited to bring clarity, context, and explainabilty to the study of sports-related head injuries in males and in females, and helping to define recovery.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":" ","pages":"607-618"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AnNoBrainer, An Automated Annotation of Mouse Brain Images using Deep Learning. AnNoBrainer,利用深度学习自动标注小鼠大脑图像。
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-01 Epub Date: 2024-08-07 DOI: 10.1007/s12021-024-09679-1
Roman Peter, Petr Hrobar, Josef Navratil, Martin Vagenknecht, Jindrich Soukup, Keiko Tsuji, Nestor X Barrezueta, Anna C Stoll, Renee C Gentzel, Jonathan A Sugam, Jacob Marcus, Danny A Bitton

Annotation of multiple regions of interest across the whole mouse brain is an indispensable process for quantitative evaluation of a multitude of study endpoints in neuroscience digital pathology. Prior experience and domain expert knowledge are the key aspects for image annotation quality and consistency. At present, image annotation is often achieved manually by certified pathologists or trained technicians, limiting the total throughput of studies performed at neuroscience digital pathology labs. It may also mean that simpler and quicker methods of examining tissue samples are used by non-pathologists, especially in the early stages of research and preclinical studies. To address these limitations and to meet the growing demand for image analysis in a pharmaceutical setting, we developed AnNoBrainer, an open-source software tool that leverages deep learning, image registration, and standard cortical brain templates to automatically annotate individual brain regions on 2D pathology slides. Application of AnNoBrainer to a published set of pathology slides from transgenic mice models of synucleinopathy revealed comparable accuracy, increased reproducibility, and a significant reduction (~ 50%) in time spent on brain annotation, quality control and labelling compared to trained scientists in pathology. Taken together, AnNoBrainer offers a rapid, accurate, and reproducible automated annotation of mouse brain images that largely meets the experts' histopathological assessment standards (> 85% of cases) and enables high-throughput image analysis workflows in digital pathology labs.

对整个小鼠大脑的多个感兴趣区域进行标注是对神经科学数字病理学中的多种研究终点进行定量评估的一个不可或缺的过程。事先经验和领域专家知识是保证图像标注质量和一致性的关键因素。目前,图像注释通常由经过认证的病理学家或训练有素的技术人员手工完成,这限制了神经科学数字病理实验室的研究总吞吐量。这也可能意味着非病理学家会使用更简单快捷的方法来检查组织样本,尤其是在研究和临床前研究的早期阶段。为了解决这些局限性并满足制药领域对图像分析日益增长的需求,我们开发了 AnNoBrainer,这是一款开源软件工具,它利用深度学习、图像注册和标准皮层脑模板自动注释二维病理切片上的单个脑区。将 AnNoBrainer 应用于一组已发表的突触核蛋白病转基因小鼠模型病理切片后发现,与经过培训的病理学科学家相比,AnNoBrainer 的准确性相当高,可重复性也有所提高,而且在大脑注释、质量控制和标记方面所花费的时间显著减少(约 50%)。总之,AnNoBrainer 提供了一种快速、准确、可重复的小鼠大脑图像自动标注方法,在很大程度上达到了专家的组织病理学评估标准(> 85% 的病例),并实现了数字病理实验室的高通量图像分析工作流程。
{"title":"AnNoBrainer, An Automated Annotation of Mouse Brain Images using Deep Learning.","authors":"Roman Peter, Petr Hrobar, Josef Navratil, Martin Vagenknecht, Jindrich Soukup, Keiko Tsuji, Nestor X Barrezueta, Anna C Stoll, Renee C Gentzel, Jonathan A Sugam, Jacob Marcus, Danny A Bitton","doi":"10.1007/s12021-024-09679-1","DOIUrl":"10.1007/s12021-024-09679-1","url":null,"abstract":"<p><p>Annotation of multiple regions of interest across the whole mouse brain is an indispensable process for quantitative evaluation of a multitude of study endpoints in neuroscience digital pathology. Prior experience and domain expert knowledge are the key aspects for image annotation quality and consistency. At present, image annotation is often achieved manually by certified pathologists or trained technicians, limiting the total throughput of studies performed at neuroscience digital pathology labs. It may also mean that simpler and quicker methods of examining tissue samples are used by non-pathologists, especially in the early stages of research and preclinical studies. To address these limitations and to meet the growing demand for image analysis in a pharmaceutical setting, we developed AnNoBrainer, an open-source software tool that leverages deep learning, image registration, and standard cortical brain templates to automatically annotate individual brain regions on 2D pathology slides. Application of AnNoBrainer to a published set of pathology slides from transgenic mice models of synucleinopathy revealed comparable accuracy, increased reproducibility, and a significant reduction (~ 50%) in time spent on brain annotation, quality control and labelling compared to trained scientists in pathology. Taken together, AnNoBrainer offers a rapid, accurate, and reproducible automated annotation of mouse brain images that largely meets the experts' histopathological assessment standards (> 85% of cases) and enables high-throughput image analysis workflows in digital pathology labs.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":" ","pages":"719-730"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroinformatics Applications of Data Science and Artificial Intelligence. 数据科学和人工智能的神经信息学应用。
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-01 DOI: 10.1007/s12021-024-09692-4
Ivo D Dinov

Leveraging vast neuroimaging and electrophysiological datasets, AI algorithms are uncovering patterns that offer unprecedented insights into brain structure and function. Neuroinformatics, the fusion of neuroscience and AI, is advancing technologies like brain-computer interfaces, AI-driven cognitive enhancement, and personalized neuromodulation for treating neurological disorders. These developments hold potential to improve cognitive functions, restore motor abilities, and create human-machine collaborative systems. Looking ahead, the convergence of neuroscience and AI is set to transform cognitive modeling, decision-making, and mental health interventions. This fusion mirrors the quest for nuclear fusion energy, both driven by the need to unlock profound sources of understanding. As STEM disciplines continue to drive core developments of foundational models of the brain, neuroinformatics promises to lead innovations in augmented intelligence, personalized healthcare, and effective decision-making systems.

利用庞大的神经成像和电生理学数据集,人工智能算法正在揭示各种模式,为了解大脑结构和功能提供前所未有的洞察力。神经信息学是神经科学与人工智能的融合,正在推动脑机接口、人工智能驱动的认知增强以及用于治疗神经系统疾病的个性化神经调控等技术的发展。这些发展为改善认知功能、恢复运动能力和创建人机协作系统带来了潜力。展望未来,神经科学与人工智能的融合必将改变认知建模、决策和心理健康干预。这种融合与对核聚变能源的追求如出一辙,都是出于开启深刻理解源泉的需要。随着 STEM 学科继续推动大脑基础模型的核心发展,神经信息学有望引领增强智能、个性化医疗保健和有效决策系统方面的创新。
{"title":"Neuroinformatics Applications of Data Science and Artificial Intelligence.","authors":"Ivo D Dinov","doi":"10.1007/s12021-024-09692-4","DOIUrl":"10.1007/s12021-024-09692-4","url":null,"abstract":"<p><p>Leveraging vast neuroimaging and electrophysiological datasets, AI algorithms are uncovering patterns that offer unprecedented insights into brain structure and function. Neuroinformatics, the fusion of neuroscience and AI, is advancing technologies like brain-computer interfaces, AI-driven cognitive enhancement, and personalized neuromodulation for treating neurological disorders. These developments hold potential to improve cognitive functions, restore motor abilities, and create human-machine collaborative systems. Looking ahead, the convergence of neuroscience and AI is set to transform cognitive modeling, decision-making, and mental health interventions. This fusion mirrors the quest for nuclear fusion energy, both driven by the need to unlock profound sources of understanding. As STEM disciplines continue to drive core developments of foundational models of the brain, neuroinformatics promises to lead innovations in augmented intelligence, personalized healthcare, and effective decision-making systems.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":" ","pages":"403-405"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stitcher: A Surface Reconstruction Tool for Highly Gyrified Brains. Stitcher:高度回旋大脑的表面重建工具
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-01 Epub Date: 2024-10-10 DOI: 10.1007/s12021-024-09678-2
Heitor Mynssen, Kamilla Avelino-de-Souza, Khallil Chaim, Vanessa Lanes Ribeiro, Nina Patzke, Bruno Mota

Brain reconstruction, specially of the cerebral cortex, is a challenging task and even more so when it comes to highly gyrified brained animals. Here, we present Stitcher, a novel tool capable of generating such surfaces utilizing MRI data and manual segmentation. Stitcher makes a triangulation between consecutive brain slice segmentations by recursively adding edges that minimize the total length and simultaneously avoid self-intersection. We applied this new method to build the cortical surfaces of two dolphins: Guiana dolphin (Sotalia guianensis), Franciscana dolphin (Pontoporia blainvillei); and one pinniped: Steller sea lion (Eumetopias jubatus). Specifically in the case of P. blainvillei, two reconstructions at two different resolutions were made. Additionally, we also performed reconstructions for sub and non-cortical structures of Guiana dolphin. All our cortical mesh results show remarkable resemblance with the real anatomy of the brains, except P. blainvillei with low-resolution data. Sub and non-cortical meshes were also properly reconstructed and the spatial positioning of structures was preserved with respect to S. guianensis cerebral cortex. In a comparative perspective between methods, Stitcher presents compatible results for volumetric measurements when contrasted with other anatomical standard tools. In this way, Stitcher seems to be a viable pipeline for new neuroanatomical analysis, enhancing visualization and descriptions of non-primates species, and broadening the scope of compared neuroanatomy.

大脑重建,尤其是大脑皮层的重建,是一项极具挑战性的任务,而对于高度回旋的大脑动物来说更是如此。在这里,我们展示了 Stitcher,一种能够利用核磁共振成像数据和手动分割生成此类曲面的新型工具。Stitcher 通过递归添加边缘,使总长度最小化,同时避免自交,从而在连续的大脑切片分割之间形成三角剖面。我们应用这种新方法构建了两种海豚的皮层表面:Guiana dolphin (Sotalia guianensis) 和 Franciscana dolphin (Pontoporia blainvillei):斯特勒海狮(Eumetopias jubatus)。特别是对于 P. blainvillei,我们以两种不同的分辨率进行了两次重建。此外,我们还对圭亚那海豚的皮层下和非皮层结构进行了重建。除了低分辨率数据的 P. blainvillei 外,我们所有的皮层网格结果都与大脑的真实解剖结构非常相似。皮质下和非皮质网状结构也得到了正确的重建,而且与圭亚那豚大脑皮质相比,结构的空间定位得到了保留。从各种方法的比较角度来看,Stitcher 与其他解剖标准工具相比,在体积测量方面取得了一致的结果。因此,Stitcher 似乎是进行新的神经解剖分析的可行管道,它增强了非原生物种的可视化和描述,并拓宽了比较神经解剖学的范围。
{"title":"Stitcher: A Surface Reconstruction Tool for Highly Gyrified Brains.","authors":"Heitor Mynssen, Kamilla Avelino-de-Souza, Khallil Chaim, Vanessa Lanes Ribeiro, Nina Patzke, Bruno Mota","doi":"10.1007/s12021-024-09678-2","DOIUrl":"10.1007/s12021-024-09678-2","url":null,"abstract":"<p><p>Brain reconstruction, specially of the cerebral cortex, is a challenging task and even more so when it comes to highly gyrified brained animals. Here, we present Stitcher, a novel tool capable of generating such surfaces utilizing MRI data and manual segmentation. Stitcher makes a triangulation between consecutive brain slice segmentations by recursively adding edges that minimize the total length and simultaneously avoid self-intersection. We applied this new method to build the cortical surfaces of two dolphins: Guiana dolphin (Sotalia guianensis), Franciscana dolphin (Pontoporia blainvillei); and one pinniped: Steller sea lion (Eumetopias jubatus). Specifically in the case of P. blainvillei, two reconstructions at two different resolutions were made. Additionally, we also performed reconstructions for sub and non-cortical structures of Guiana dolphin. All our cortical mesh results show remarkable resemblance with the real anatomy of the brains, except P. blainvillei with low-resolution data. Sub and non-cortical meshes were also properly reconstructed and the spatial positioning of structures was preserved with respect to S. guianensis cerebral cortex. In a comparative perspective between methods, Stitcher presents compatible results for volumetric measurements when contrasted with other anatomical standard tools. In this way, Stitcher seems to be a viable pipeline for new neuroanatomical analysis, enhancing visualization and descriptions of non-primates species, and broadening the scope of compared neuroanatomy.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":" ","pages":"539-554"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Deep Learning-based Pipeline for Segmenting the Cerebral Cortex Laminar Structure in Histology Images. 基于深度学习的管道,用于分割组织学图像中的大脑皮层层状结构。
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-01 Epub Date: 2024-10-17 DOI: 10.1007/s12021-024-09688-0
Jiaxuan Wang, Rui Gong, Shahrokh Heidari, Mitchell Rogers, Toshiki Tani, Hiroshi Abe, Noritaka Ichinohe, Alexander Woodward, Patrice J Delmas

Characterizing the anatomical structure and connectivity between cortical regions is a critical step towards understanding the information processing properties of the brain and will help provide insight into the nature of neurological disorders. A key feature of the mammalian cerebral cortex is its laminar structure. Identifying these layers in neuroimaging data is important for understanding their global structure and to help understand the connectivity patterns of neurons in the brain. We studied Nissl-stained and myelin-stained slice images of the brain of the common marmoset (Callithrix jacchus), which is a new world monkey that is becoming increasingly popular in the neuroscience community as an object of study. We present a novel computational framework that first acquired the cortical labels using AI-based tools followed by a trained deep learning model to segment cerebral cortical layers. We obtained a Euclidean distance of 1274.750 ± 156.400 μ m for the cortical labels acquisition, which was in the acceptable range by computing the half Euclidean distance of the average cortex thickness ( 1800.630 μ m ). We compared our cortical layer segmentation pipeline with the pipeline proposed by Wagstyl et al. (PLoS biology, 18(4), e3000678 2020) adapted to 2D data. We obtained a better mean 95 th percentile Hausdorff distance (95HD) of  92.150 μ m . Whereas a mean 95HD of  94.170 μ m was obtained from Wagstyl et al. We also compared our pipeline's performance against theirs using their dataset (the BigBrain dataset). The results also showed better segmentation quality, 85.318 % Jaccard Index acquired from our pipeline, while 83.000 % was stated in their paper.

描述大脑皮层区域之间的解剖结构和连通性是了解大脑信息处理特性的关键一步,有助于深入了解神经系统疾病的本质。哺乳动物大脑皮层的一个主要特征是层状结构。从神经影像数据中识别这些层对于了解其整体结构和帮助理解大脑神经元的连接模式非常重要。我们研究了普通狨猴(Callithrix jacchus)大脑的尼氏染色和髓鞘染色切片图像。我们提出了一个新颖的计算框架,首先使用基于人工智能的工具获取皮层标签,然后使用训练有素的深度学习模型分割大脑皮层。通过计算平均皮层厚度的一半欧氏距离(1800.630 μ m),我们得出皮层标签获取的欧氏距离为 1274.750 ± 156.400 μ m,在可接受范围内。我们将皮质层分割管道与 Wagstyl 等人提出的适用于二维数据的管道(PLoS biology, 18(4), e3000678 2020)进行了比较。我们获得了更好的平均 95th 百分位数豪斯多夫距离(95HD),为 92.150 μ m。我们还使用 Wagstyl 等人的数据集(BigBrain 数据集)与他们的数据集进行了比较。结果也显示了更好的分割质量,我们的管道获得了 85.318 % 的 Jaccard 指数,而他们的论文中提到的是 83.000 %。
{"title":"A Deep Learning-based Pipeline for Segmenting the Cerebral Cortex Laminar Structure in Histology Images.","authors":"Jiaxuan Wang, Rui Gong, Shahrokh Heidari, Mitchell Rogers, Toshiki Tani, Hiroshi Abe, Noritaka Ichinohe, Alexander Woodward, Patrice J Delmas","doi":"10.1007/s12021-024-09688-0","DOIUrl":"10.1007/s12021-024-09688-0","url":null,"abstract":"<p><p>Characterizing the anatomical structure and connectivity between cortical regions is a critical step towards understanding the information processing properties of the brain and will help provide insight into the nature of neurological disorders. A key feature of the mammalian cerebral cortex is its laminar structure. Identifying these layers in neuroimaging data is important for understanding their global structure and to help understand the connectivity patterns of neurons in the brain. We studied Nissl-stained and myelin-stained slice images of the brain of the common marmoset (Callithrix jacchus), which is a new world monkey that is becoming increasingly popular in the neuroscience community as an object of study. We present a novel computational framework that first acquired the cortical labels using AI-based tools followed by a trained deep learning model to segment cerebral cortical layers. We obtained a Euclidean distance of <math><mrow><mn>1274.750</mn> <mo>±</mo> <mn>156.400</mn></mrow> </math> <math><mrow><mi>μ</mi> <mi>m</mi></mrow> </math> for the cortical labels acquisition, which was in the acceptable range by computing the half Euclidean distance of the average cortex thickness ( <math><mrow><mn>1800.630</mn> <mspace></mspace> <mi>μ</mi> <mi>m</mi></mrow> </math> ). We compared our cortical layer segmentation pipeline with the pipeline proposed by Wagstyl et al. (PLoS biology, 18(4), e3000678 2020) adapted to 2D data. We obtained a better mean <math> <mrow><msup><mn>95</mn> <mrow><mi>th</mi></mrow> </msup> </mrow> </math> percentile Hausdorff distance (95HD) of  <math><mrow><mn>92.150</mn> <mspace></mspace> <mi>μ</mi> <mi>m</mi></mrow> </math> . Whereas a mean 95HD of  <math><mrow><mn>94.170</mn> <mspace></mspace> <mi>μ</mi> <mi>m</mi></mrow> </math> was obtained from Wagstyl et al. We also compared our pipeline's performance against theirs using their dataset (the BigBrain dataset). The results also showed better segmentation quality, <math><mrow><mn>85.318</mn> <mo>%</mo></mrow> </math> Jaccard Index acquired from our pipeline, while <math><mrow><mn>83.000</mn> <mo>%</mo></mrow> </math> was stated in their paper.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":" ","pages":"745-761"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroinformatics and Analysis of Traumatic Brain Injury and Related Conditions. 创伤性脑损伤及相关疾病的神经信息学与分析。
IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-01 DOI: 10.1007/s12021-024-09691-5
Andrei Irimia
{"title":"Neuroinformatics and Analysis of Traumatic Brain Injury and Related Conditions.","authors":"Andrei Irimia","doi":"10.1007/s12021-024-09691-5","DOIUrl":"10.1007/s12021-024-09691-5","url":null,"abstract":"","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":" ","pages":"569-572"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of Schizophrenia from EEG Signals using Selected Statistical Moments of MFC Coefficients and Ensemble Learning 利用 MFC 系数的选定统计矩和集合学习从脑电图信号中检测精神分裂症
IF 3 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-19 DOI: 10.1007/s12021-024-09684-4
Ashima Tyagi, Vibhav Prakash Singh, Manoj Madhava Gore

Schizophrenia is a mental disorder characterized by neurophysiological dysfunctions that result in disturbances in thinking, perception, and behavior. Early identification of schizophrenia can help prevent potential complications and facilitate effective treatment and management of the condition. This paper proposes a computer aided diagnosis system for the early detection of schizophrenia using 19-channel Electroencephalography (EEG) signals from 28 subjects, leveraging statistical moments of Mel-frequency Cepstral Coefficients (MFCC) and ensemble learning. Initially, the EEG signals are passed through a high-pass filter to mitigate noise and remove extraneous data. The feature extraction technique is then employed to extract MFC coefficients from the filtered EEG signals. The dimensionality of these coefficients is reduced by computing their statistical moments, which include the mean, standard deviation, skewness, kurtosis, and energy. Subsequently, the Support Vector Machine based Recursive Feature Elimination (SVM-RFE) is applied to identify pertinent features from the statistical moments of the MFC coefficients. These SVM-RFE-based selected features serve as input for three base classifiers: Support Vector Machine, k-Nearest Neighbors, and Logistic Regression. Additionally, an ensemble learning approach, which combines the predictions of the three classifiers through majority voting, is introduced to enhance schizophrenia detection performance and generalize the results of the proposed approach. The study’s findings demonstrate that the ensemble model, combined with SVM-RFE-based selected statistical moments of MFCC, achieves encouraging detection performance, highlighting the potential of machine learning techniques in advancing the diagnostic process of schizophrenia.

精神分裂症是一种精神障碍,其特征是神经生理功能失调,导致思维、感知和行为紊乱。早期发现精神分裂症有助于预防潜在的并发症,并促进有效的治疗和管理。本文提出了一种计算机辅助诊断系统,利用 Mel-frequency Cepstral Coefficients (MFCC) 的统计矩和集合学习,通过 28 名受试者的 19 个通道的脑电图(EEG)信号,对精神分裂症进行早期检测。首先,脑电信号经过高通滤波器,以减少噪音和去除无关数据。然后采用特征提取技术从滤波后的脑电信号中提取 MFC 系数。通过计算这些系数的统计矩(包括平均值、标准偏差、偏斜度、峰度和能量)来降低其维度。随后,应用基于支持向量机的递归特征消除(SVM-RFE)从 MFC 系数的统计矩中识别相关特征。这些基于 SVM-RFE 的选定特征可作为三个基础分类器的输入:支持向量机、k-近邻和逻辑回归。此外,还引入了一种集合学习方法,通过多数投票将三个分类器的预测结果结合起来,以提高精神分裂症的检测性能,并推广所提议方法的结果。研究结果表明,集合模型结合基于 SVM-RFE 的 MFCC 选定统计矩,取得了令人鼓舞的检测性能,凸显了机器学习技术在推进精神分裂症诊断过程中的潜力。
{"title":"Detection of Schizophrenia from EEG Signals using Selected Statistical Moments of MFC Coefficients and Ensemble Learning","authors":"Ashima Tyagi, Vibhav Prakash Singh, Manoj Madhava Gore","doi":"10.1007/s12021-024-09684-4","DOIUrl":"https://doi.org/10.1007/s12021-024-09684-4","url":null,"abstract":"<p>Schizophrenia is a mental disorder characterized by neurophysiological dysfunctions that result in disturbances in thinking, perception, and behavior. Early identification of schizophrenia can help prevent potential complications and facilitate effective treatment and management of the condition. This paper proposes a computer aided diagnosis system for the early detection of schizophrenia using 19-channel <i>Electroencephalography (EEG)</i> signals from 28 subjects, leveraging statistical moments of <i>Mel-frequency Cepstral Coefficients (MFCC)</i> and ensemble learning. Initially, the EEG signals are passed through a high-pass filter to mitigate noise and remove extraneous data. The feature extraction technique is then employed to extract MFC coefficients from the filtered EEG signals. The dimensionality of these coefficients is reduced by computing their statistical moments, which include the mean, standard deviation, skewness, kurtosis, and energy. Subsequently, the <i>Support Vector Machine</i> based <i>Recursive Feature Elimination (SVM-RFE)</i> is applied to identify pertinent features from the statistical moments of the MFC coefficients. These SVM-RFE-based selected features serve as input for three base classifiers: Support Vector Machine, k-Nearest Neighbors, and Logistic Regression. Additionally, an ensemble learning approach, which combines the predictions of the three classifiers through majority voting, is introduced to enhance schizophrenia detection performance and generalize the results of the proposed approach. The study’s findings demonstrate that the ensemble model, combined with SVM-RFE-based selected statistical moments of MFCC, achieves encouraging detection performance, highlighting the potential of machine learning techniques in advancing the diagnostic process of schizophrenia.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"51 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Neuroinformatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1