首页 > 最新文献

Mathematics and Mechanics of Solids最新文献

英文 中文
Virtual element method for solving a viscoelastic contact problem with long memory 解决长记忆粘弹性接触问题的虚拟元素法
IF 2.6 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-14 DOI: 10.1177/10812865241263039
Wenqiang Xiao, Min Ling
In this paper, we use the virtual element method to solve a history-dependent hemivariational inequality arising in contact problems. The contact problem concerns the deformation of a viscoelastic body with long memory, subjected to a contact condition with non-monotone normal compliance and unilateral constraints. A fully discrete scheme based on the trapezoidal rule for the discretization of the time integration and the virtual element method for the spatial discretization are analyzed. We provide a unified priori error analysis for both internal and external approximations. For the linear virtual element method, we obtain the optimal order error estimate. Finally, three numerical examples are reported, providing numerical evidence of the theoretically predicted optimal convergence orders.
在本文中,我们使用虚拟元素法解决了接触问题中出现的与历史相关的半变量不等式。接触问题涉及具有长记忆的粘弹性体在非单调法向顺应性和单边约束的接触条件下的变形。我们分析了基于梯形法则的时间积分离散化完全离散方案和用于空间离散化的虚拟元素法。我们为内部和外部近似提供了统一的先验误差分析。对于线性虚拟元素法,我们获得了最优阶误差估计。最后,报告了三个数值示例,为理论预测的最佳收敛阶数提供了数值证据。
{"title":"Virtual element method for solving a viscoelastic contact problem with long memory","authors":"Wenqiang Xiao, Min Ling","doi":"10.1177/10812865241263039","DOIUrl":"https://doi.org/10.1177/10812865241263039","url":null,"abstract":"In this paper, we use the virtual element method to solve a history-dependent hemivariational inequality arising in contact problems. The contact problem concerns the deformation of a viscoelastic body with long memory, subjected to a contact condition with non-monotone normal compliance and unilateral constraints. A fully discrete scheme based on the trapezoidal rule for the discretization of the time integration and the virtual element method for the spatial discretization are analyzed. We provide a unified priori error analysis for both internal and external approximations. For the linear virtual element method, we obtain the optimal order error estimate. Finally, three numerical examples are reported, providing numerical evidence of the theoretically predicted optimal convergence orders.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"14 4 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the existence of Rayleigh waves with full impedance boundary condition 论具有全阻抗边界条件的瑞利波的存在性
IF 2.6 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-14 DOI: 10.1177/10812865241266809
Pham Thi Ha Giang, Pham Chi Vinh
The existence of Rayleigh waves (propagating in isotropic elastic half-spaces) with the tangential and normal impedance boundary conditions was investigated. It has been shown that for the tangential impedance boundary condition (TIBC), there always exists a unique Rayleigh wave, while for the normal impedance boundary condition (NIBC), there exists a domain (of impedance and material parameters) in which exactly one Rayleigh wave is possible and outside this domain a Rayleigh wave is impossible. In this paper, we consider the existence of Rayleigh waves with the full impedance boundary condition (FIBC) that contains both TIBC and NIBC. It is shown that the existence picture of Rayleigh waves for this general case is more complicated. It contains domain for which exactly one Rayleigh wave exists, domain where a Rayleigh wave is impossible, and domain for which all three possibilities may occur: two Rayleigh waves exist, one Rayleigh wave exists, and no Rayleigh wave exists at all. The obtained existence results recover the existence results established previously for the cases of TIBC and NIBC. The formulas for the Rayleigh wave velocity are derived. As these formulas are totally explicit, they are very useful in various practical applications, especially in the non-destructive evaluation of the mechanical properties of structures. In order to establish the existence results and derive formulas for the Rayleigh wave velocity, the complex function method, which is based on the Cauchy-type integrals, is employed.
研究了在切向和法向阻抗边界条件下存在雷利波(在各向同性弹性半空间中传播)的问题。研究表明,对于切向阻抗边界条件 (TIBC),总是存在唯一的瑞利波,而对于法向阻抗边界条件 (NIBC),存在一个(阻抗和材料参数)域,在该域内恰好可能存在一个瑞利波,而在该域外则不可能存在瑞利波。在本文中,我们考虑了全阻抗边界条件(FIBC)下的瑞利波存在问题,该边界条件同时包含 TIBC 和 NIBC。结果表明,在这种一般情况下,瑞利波的存在情况更为复杂。它包含恰好存在一个瑞利波的域、不可能存在瑞利波的域,以及三种可能性都可能发生的域:存在两个瑞利波、存在一个瑞利波,以及根本不存在瑞利波。所获得的存在性结果恢复了之前针对 TIBC 和 NIBC 情况建立的存在性结果。推导出了瑞利波速度公式。由于这些公式是完全显式的,因此在各种实际应用中都非常有用,特别是在对结构的机械性能进行无损评估时。为了确定雷利波速度的存在结果并推导出雷利波速度公式,采用了基于 Cauchy 型积分的复变函数法。
{"title":"On the existence of Rayleigh waves with full impedance boundary condition","authors":"Pham Thi Ha Giang, Pham Chi Vinh","doi":"10.1177/10812865241266809","DOIUrl":"https://doi.org/10.1177/10812865241266809","url":null,"abstract":"The existence of Rayleigh waves (propagating in isotropic elastic half-spaces) with the tangential and normal impedance boundary conditions was investigated. It has been shown that for the tangential impedance boundary condition (TIBC), there always exists a unique Rayleigh wave, while for the normal impedance boundary condition (NIBC), there exists a domain (of impedance and material parameters) in which exactly one Rayleigh wave is possible and outside this domain a Rayleigh wave is impossible. In this paper, we consider the existence of Rayleigh waves with the full impedance boundary condition (FIBC) that contains both TIBC and NIBC. It is shown that the existence picture of Rayleigh waves for this general case is more complicated. It contains domain for which exactly one Rayleigh wave exists, domain where a Rayleigh wave is impossible, and domain for which all three possibilities may occur: two Rayleigh waves exist, one Rayleigh wave exists, and no Rayleigh wave exists at all. The obtained existence results recover the existence results established previously for the cases of TIBC and NIBC. The formulas for the Rayleigh wave velocity are derived. As these formulas are totally explicit, they are very useful in various practical applications, especially in the non-destructive evaluation of the mechanical properties of structures. In order to establish the existence results and derive formulas for the Rayleigh wave velocity, the complex function method, which is based on the Cauchy-type integrals, is employed.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"10 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Moore-Gibson-Thompson heat conduction problem with second gradient 具有第二梯度的摩尔-吉布森-汤普森热传导问题
IF 2.6 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-14 DOI: 10.1177/10812865241266992
Noelia Bazarra, José R Fernández, Ramón Quintanilla
In this work, we study, from both analytical and numerical points of view, a heat conduction model which is based on the Moore-Gibson-Thompson equation. The second gradient effects are also included. First, the existence of a unique solution is proved by using the theory of linear semigroups, and the exponential energy decay is also shown when the constitutive tensors are homogeneous. The analyticity of the semigroup is also discussed in the isotropic case, and its spatial behavior is studied. The spatial exponential decay is also proved. Then, we provide the numerical analysis of a fully discrete approximation obtained by using the finite element method and an implicit Euler scheme. A discrete stability property is shown, and some a priori error estimates are derived, from which the linear convergence is concluded under suitable regularity conditions. Finally, some one-dimensional numerical simulations are presented to demonstrate the accuracy of the approximations and the behavior of the discrete energy.
在这项工作中,我们从分析和数值角度研究了基于摩尔-吉布森-汤普森方程的热传导模型。其中还包括第二梯度效应。首先,利用线性半群理论证明了唯一解的存在,并证明了当构成张量为同质时的指数能量衰减。还讨论了各向同性情况下半群的解析性,并研究了其空间行为。我们还证明了空间指数衰减。然后,我们对使用有限元法和隐式欧拉方案获得的完全离散近似值进行了数值分析。分析表明了离散稳定性,并推导出一些先验误差估计,由此得出在合适的正则条件下线性收敛的结论。最后,介绍了一些一维数值模拟,以证明近似的准确性和离散能量的行为。
{"title":"A Moore-Gibson-Thompson heat conduction problem with second gradient","authors":"Noelia Bazarra, José R Fernández, Ramón Quintanilla","doi":"10.1177/10812865241266992","DOIUrl":"https://doi.org/10.1177/10812865241266992","url":null,"abstract":"In this work, we study, from both analytical and numerical points of view, a heat conduction model which is based on the Moore-Gibson-Thompson equation. The second gradient effects are also included. First, the existence of a unique solution is proved by using the theory of linear semigroups, and the exponential energy decay is also shown when the constitutive tensors are homogeneous. The analyticity of the semigroup is also discussed in the isotropic case, and its spatial behavior is studied. The spatial exponential decay is also proved. Then, we provide the numerical analysis of a fully discrete approximation obtained by using the finite element method and an implicit Euler scheme. A discrete stability property is shown, and some a priori error estimates are derived, from which the linear convergence is concluded under suitable regularity conditions. Finally, some one-dimensional numerical simulations are presented to demonstrate the accuracy of the approximations and the behavior of the discrete energy.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"41 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic mesoscale mechanical modeling of metallic foams 金属泡沫的随机中尺度力学建模
IF 2.6 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-13 DOI: 10.1177/10812865241265049
Mujan N Seif, Jake Puppo, Metodi Zlatinov, Denver Schaffarzick, Alexandre Martin, Matthew J Beck
Investigating the mechanical properties of complex, porous microstructures by assessing model representative volumes is an established method of determining materials properties across a range of length scales. An understanding of how behavior evolves with length scale is essential for evaluating the material’s suitability for certain applications where the interaction volume is so small that the mechanical response originates from individual features rather than a set of features. Here, we apply the Kentucky Random Structure Toolkit (KRaSTk) to metallic foams, which are crucial to many emerging applications, among them shielding against hypervelocity impacts caused by micrometeoroids and orbital debris (MMOD). The variability of properties at feature-scale and mesoscale lengths originating from the inherently random microstructure makes developing predictive models challenging. It also hinders the optimization of components fabricated with such foams, an especially serious problem for spacecraft design where the benefit–cost–mass optimization is overshadowed by the catastrophic results of component failure. To address this problem, we compute the critical transition between the feature-scale, where mechanical properties are determined by individual features, and the mesoscale, where behavior is determined by ensembles of features. At the mesoscale, we compute distributions of properties—with respect to both expectation value and standard variability—that are consistent and predictable. A universal transition is found to occur when the side length of a cubic sample volume is ~10× greater than the characteristic length. Comparing KRaSTk-computed converged stiffness distributions with experimental measurements of a commercial metallic foam found an excellent agreement for both expectation value and standard variability at all reduced densities. Lastly, we observe that the diameter of a representative MMOD strike is ~30× shorter than the feature-scale to mesoscale transition for the foam at any reduced density, strongly implying that individual features will determine response to hypervelocity impacts, rather than bulk, or even mesoscale, structure.
通过评估模型代表体积来研究复杂多孔微结构的机械特性,是确定各种长度尺度材料特性的既定方法。在某些应用中,相互作用体积非常小,机械响应源自单个特征而非一系列特征,因此了解材料行为如何随长度尺度变化对于评估材料是否适用至关重要。在这里,我们将肯塔基随机结构工具包(KRaSTk)应用于金属泡沫,金属泡沫对许多新兴应用至关重要,其中包括屏蔽微流星体和轨道碎片(MMOD)造成的超高速撞击。由于微观结构本身具有随机性,因此在特征尺度和中尺度长度上的属性变化使得开发预测模型具有挑战性。这也阻碍了对使用此类泡沫制造的组件进行优化,对于航天器设计来说,这是一个尤为严重的问题,因为在航天器设计中,组件失效的灾难性结果会使效益-成本-质量的优化黯然失色。为了解决这个问题,我们计算了由单个特征决定机械性能的特征尺度与由特征集合决定行为的中尺度之间的临界过渡。在中尺度上,我们计算出的属性分布--在期望值和标准变异性方面--都是一致且可预测的。当立方体样品体积的边长大于特征长度约 10 倍时,就会发生普遍的转变。将 KRaSTk 计算出的收敛刚度分布与商用金属泡沫的实验测量结果进行比较后发现,在所有密度降低的情况下,两者的期望值和标准变异性都非常一致。最后,我们观察到,在任何密度降低的情况下,具有代表性的 MMOD 撞击的直径都比泡沫的特征尺度到中尺度的转变短 ~30倍,这强烈暗示了单个特征将决定对超高速撞击的响应,而不是整体结构,甚至是中尺度结构。
{"title":"Stochastic mesoscale mechanical modeling of metallic foams","authors":"Mujan N Seif, Jake Puppo, Metodi Zlatinov, Denver Schaffarzick, Alexandre Martin, Matthew J Beck","doi":"10.1177/10812865241265049","DOIUrl":"https://doi.org/10.1177/10812865241265049","url":null,"abstract":"Investigating the mechanical properties of complex, porous microstructures by assessing model representative volumes is an established method of determining materials properties across a range of length scales. An understanding of how behavior evolves with length scale is essential for evaluating the material’s suitability for certain applications where the interaction volume is so small that the mechanical response originates from individual features rather than a set of features. Here, we apply the Kentucky Random Structure Toolkit (KRaSTk) to metallic foams, which are crucial to many emerging applications, among them shielding against hypervelocity impacts caused by micrometeoroids and orbital debris (MMOD). The variability of properties at feature-scale and mesoscale lengths originating from the inherently random microstructure makes developing predictive models challenging. It also hinders the optimization of components fabricated with such foams, an especially serious problem for spacecraft design where the benefit–cost–mass optimization is overshadowed by the catastrophic results of component failure. To address this problem, we compute the critical transition between the feature-scale, where mechanical properties are determined by individual features, and the mesoscale, where behavior is determined by ensembles of features. At the mesoscale, we compute distributions of properties—with respect to both expectation value and standard variability—that are consistent and predictable. A universal transition is found to occur when the side length of a cubic sample volume is ~10× greater than the characteristic length. Comparing KRaSTk-computed converged stiffness distributions with experimental measurements of a commercial metallic foam found an excellent agreement for both expectation value and standard variability at all reduced densities. Lastly, we observe that the diameter of a representative MMOD strike is ~30× shorter than the feature-scale to mesoscale transition for the foam at any reduced density, strongly implying that individual features will determine response to hypervelocity impacts, rather than bulk, or even mesoscale, structure.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"5 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of a parabolic bilateral obstacle problem with non-monotone relations in the domain 具有非单调关系域的抛物线双边障碍问题分析
IF 2.6 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-13 DOI: 10.1177/10812865241261619
Xilu Wang, Xiaoliang Cheng, Hailing Xuan
In this paper, we consider a new parabolic bilateral obstacle model. Both upper and lower obstacles are elastic-rigid and assign a non-monotone reactive normal pressure with respect to the interpenetration. The weak form of the model is a parabolic variational–hemivariational inequality with non-monotone multivalued relations in the domain. We show the existence and uniqueness of the solution. Then, a fully discrete numerical method is introduced, with the approximations can be internal or external. We bound the error estimates and obtain the Céa type inequality. Using the linear finite elements, the optimal-order error estimates are derived. Finally, we report the numerical simulation results.
在本文中,我们考虑了一种新的抛物线双边障碍物模型。上部和下部障碍物都是弹性刚性的,并对相互穿透施加非单调的反作用法向压力。该模型的弱形式是一个抛物线变分-半变量不等式,域中存在非单调多值关系。我们证明了解的存在性和唯一性。然后,我们介绍了一种完全离散的数值方法,其近似值可以是内部的,也可以是外部的。我们对误差估计进行了约束,并得到了 Céa 型不等式。利用线性有限元,我们得出了最优阶误差估计。最后,我们报告了数值模拟结果。
{"title":"Analysis of a parabolic bilateral obstacle problem with non-monotone relations in the domain","authors":"Xilu Wang, Xiaoliang Cheng, Hailing Xuan","doi":"10.1177/10812865241261619","DOIUrl":"https://doi.org/10.1177/10812865241261619","url":null,"abstract":"In this paper, we consider a new parabolic bilateral obstacle model. Both upper and lower obstacles are elastic-rigid and assign a non-monotone reactive normal pressure with respect to the interpenetration. The weak form of the model is a parabolic variational–hemivariational inequality with non-monotone multivalued relations in the domain. We show the existence and uniqueness of the solution. Then, a fully discrete numerical method is introduced, with the approximations can be internal or external. We bound the error estimates and obtain the Céa type inequality. Using the linear finite elements, the optimal-order error estimates are derived. Finally, we report the numerical simulation results.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"19 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Size-dependent thermoelastic damping analysis of functionally graded polymer micro plate resonators reinforced with graphene nanoplatelets based on three-phase-lag heat conduction model 基于三相滞后热传导模型的功能分级聚合物微板谐振器热弹性阻尼尺寸分析
IF 2.6 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-08 DOI: 10.1177/10812865241263531
Wei Peng, Xu Zhang, Tianhu He, Yaru Gao, Yan Li
Nanocomposite materials, such as graphene nanoplatelets (GPLs), have been fabricated into high-efficient resonators due to the excellent thermo-mechanical properties. In addition, thermoelastic damping (TED), as a dominant intrinsic dissipation mechanisms, is a major challenge in optimizing high-performance micro-/nano-resonators. Nevertheless, the classical TED models fail on the micro-/nano-scale due to not considering the influences of the size-dependent effect and the thermal lagging effect. To fill these gaps, the present work aims to investigate TED analysis of functionally graded (FG) polymer microplate resonators reinforced with GPLs based on the modified couple stress theory (MCST) and the three-phase-lag (TPL) heat conduction model. Four patterns of GPL distribution including the UD, FG-O, FG-X, and FG-A pattern distributions are taken into account, and the effective mechanical properties of the plate-type nanocomposite are evaluated based on the Halpin-Tsai model. The energy equation and the transverse motion equation in the Kirchhoff microplate model are formulated, and then, the analytical solution of TED is solved by complex frequency method. The influences of the various parameters involving the material length-scale parameter, the phase-lag parameters, and the total weight fraction of GPLs on the TED are discussed in detail. The obtained results show that the effects of the modified parameter on the TED are pronounced. This paper provides a theoretical approach to estimate TED in the design of high-performance micro-resonators.
石墨烯纳米颗粒(GPLs)等纳米复合材料具有优异的热机械性能,已被制成高效谐振器。此外,热弹性阻尼(TED)作为一种主要的内在耗散机制,是优化高性能微/纳米谐振器的一大挑战。然而,由于没有考虑尺寸相关效应和热滞后效应的影响,经典的 TED 模型在微米/纳米尺度上失效。为了填补这些空白,本研究旨在基于修正耦合应力理论(MCST)和三相滞后(TPL)热传导模型,研究用 GPL 加固的功能分级(FG)聚合物微板谐振器的 TED 分析。考虑了四种 GPL 分布模式,包括 UD、FG-O、FG-X 和 FG-A 模式分布,并基于 Halpin-Tsai 模型评估了平板型纳米复合材料的有效力学性能。建立了基尔霍夫微板模型中的能量方程和横向运动方程,然后用复频法求解了 TED 的解析解。详细讨论了材料长度尺度参数、相位滞后参数和 GPL 总重量分数等各种参数对 TED 的影响。结果表明,修改后的参数对 TED 的影响非常明显。本文为高性能微谐振器的设计提供了一种估算 TED 的理论方法。
{"title":"Size-dependent thermoelastic damping analysis of functionally graded polymer micro plate resonators reinforced with graphene nanoplatelets based on three-phase-lag heat conduction model","authors":"Wei Peng, Xu Zhang, Tianhu He, Yaru Gao, Yan Li","doi":"10.1177/10812865241263531","DOIUrl":"https://doi.org/10.1177/10812865241263531","url":null,"abstract":"Nanocomposite materials, such as graphene nanoplatelets (GPLs), have been fabricated into high-efficient resonators due to the excellent thermo-mechanical properties. In addition, thermoelastic damping (TED), as a dominant intrinsic dissipation mechanisms, is a major challenge in optimizing high-performance micro-/nano-resonators. Nevertheless, the classical TED models fail on the micro-/nano-scale due to not considering the influences of the size-dependent effect and the thermal lagging effect. To fill these gaps, the present work aims to investigate TED analysis of functionally graded (FG) polymer microplate resonators reinforced with GPLs based on the modified couple stress theory (MCST) and the three-phase-lag (TPL) heat conduction model. Four patterns of GPL distribution including the UD, FG-O, FG-X, and FG-A pattern distributions are taken into account, and the effective mechanical properties of the plate-type nanocomposite are evaluated based on the Halpin-Tsai model. The energy equation and the transverse motion equation in the Kirchhoff microplate model are formulated, and then, the analytical solution of TED is solved by complex frequency method. The influences of the various parameters involving the material length-scale parameter, the phase-lag parameters, and the total weight fraction of GPLs on the TED are discussed in detail. The obtained results show that the effects of the modified parameter on the TED are pronounced. This paper provides a theoretical approach to estimate TED in the design of high-performance micro-resonators.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"94 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractionalization of Forchheimer’s correction to Darcy’s law in porous media in large deformations 大变形多孔介质中达西定律的福克海默修正分数化
IF 2.6 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-03 DOI: 10.1177/10812865241252577
Sachin Gunda, Alessandro Giammarini, Ariel Ramírez-Torres, Sundararajan Natarajan, Olga Barrera, Alfio Grillo
This work presents a theoretical and numerical study of the flow of the interstitial fluid saturating a porous medium, principally aimed at modeling a bio-mimetic material and assumed to experience a dynamic regime different from the Darcian one, as is typically hypothesized in biomechanical scenarios. The main aspect of our research is the conjecture according to which, for a particular mechanical state of the porous medium, the fluid exhibits two types of deviation from Darcy’s law. One is due to the inertial forces characterizing the pore scale dynamics of the fluid. This aspect can be resolved by turning to the Forchheimer correction to Darcy’s law, which introduces non-linearities in the relationship between the fluid filtration velocity and the dissipative forces describing the interactions between the fluid and the solid matrix. The second source of discrepancies from classical Darcy’s law emerges, for example, when pore scale disturbances to the flow, such as obstructions of the fluid path or clogging of the pores, result in a time delay between drag force and filtration velocity. Recently, models have been proposed in which such delay is described through constitutive laws featuring fractional operators. Whereas, to the best of our knowledge, the aforementioned behaviors have been studied separately or in small deformations, we present a model of fluid flow in a deformable porous medium undergoing large deformations in which the fluid motion obeys a fractionalized Forchheimer’s correction. After reviewing Forchheimer’s formulation, we present a fractionalization of the Darcy–Forchheimer law, and we explain the numerical procedure adopted to solve the highly non-linear boundary value problem resulting from the presence of the two considered deviations from the Darcian regime. We complete our study by highlighting the way in which the fractional order of the model tunes the magnitude of the pore pressure and fluid filtration velocity.
本研究对饱和多孔介质中的间隙流体的流动进行了理论和数值研究,主要目的是模拟生物仿生材料,并假定其动态机制不同于达西定律,正如通常在生物力学情景中所假设的那样。我们研究的主要方面是一种猜想,根据这种猜想,在多孔介质的特定力学状态下,流体表现出两种偏离达西定律的情况。一种是由于惯性力导致的流体孔隙尺度动力学特征。这可以通过对达西定律进行福赫海默修正来解决,福赫海默修正在流体过滤速度与描述流体和固体基质之间相互作用的耗散力之间引入了非线性关系。与经典达西定律存在差异的第二个原因是孔隙尺度对流动的干扰,例如流体路径受阻或孔隙堵塞,导致阻力与过滤速度之间出现时间延迟。最近,有人提出了通过具有分数算子的构成定律来描述这种延迟的模型。据我们所知,上述行为都是单独或在小变形情况下进行研究的,而我们提出了一个流体在发生大变形的可变形多孔介质中流动的模型,在这个模型中,流体运动服从分数化福克海默修正。在回顾了福克海默公式之后,我们介绍了达西-福克海默定律的分数化,并解释了为解决因所考虑的两种达西机制偏差的存在而产生的高度非线性边界值问题所采用的数值计算程序。最后,我们强调了模型的分数阶数对孔隙压力和流体过滤速度大小的影响。
{"title":"Fractionalization of Forchheimer’s correction to Darcy’s law in porous media in large deformations","authors":"Sachin Gunda, Alessandro Giammarini, Ariel Ramírez-Torres, Sundararajan Natarajan, Olga Barrera, Alfio Grillo","doi":"10.1177/10812865241252577","DOIUrl":"https://doi.org/10.1177/10812865241252577","url":null,"abstract":"This work presents a theoretical and numerical study of the flow of the interstitial fluid saturating a porous medium, principally aimed at modeling a bio-mimetic material and assumed to experience a dynamic regime different from the Darcian one, as is typically hypothesized in biomechanical scenarios. The main aspect of our research is the conjecture according to which, for a particular mechanical state of the porous medium, the fluid exhibits two types of deviation from Darcy’s law. One is due to the inertial forces characterizing the pore scale dynamics of the fluid. This aspect can be resolved by turning to the Forchheimer correction to Darcy’s law, which introduces non-linearities in the relationship between the fluid filtration velocity and the dissipative forces describing the interactions between the fluid and the solid matrix. The second source of discrepancies from classical Darcy’s law emerges, for example, when pore scale disturbances to the flow, such as obstructions of the fluid path or clogging of the pores, result in a time delay between drag force and filtration velocity. Recently, models have been proposed in which such delay is described through constitutive laws featuring fractional operators. Whereas, to the best of our knowledge, the aforementioned behaviors have been studied separately or in small deformations, we present a model of fluid flow in a deformable porous medium undergoing large deformations in which the fluid motion obeys a fractionalized Forchheimer’s correction. After reviewing Forchheimer’s formulation, we present a fractionalization of the Darcy–Forchheimer law, and we explain the numerical procedure adopted to solve the highly non-linear boundary value problem resulting from the presence of the two considered deviations from the Darcian regime. We complete our study by highlighting the way in which the fractional order of the model tunes the magnitude of the pore pressure and fluid filtration velocity.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"52 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hidden convexity in continuum mechanics, with application to classical, continuous-time, rate-(in)dependent plasticity 连续介质力学中的隐蔽凸性,应用于经典、连续时间、速率(不)相关塑性
IF 2.6 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-31 DOI: 10.1177/10812865241258154
Amit Acharya
A methodology for defining variational principles for a class of PDE (partial differential equations) models from continuum mechanics is demonstrated, and some of its features are explored. The scheme is applied to quasi-static and dynamic models of rate-independent and rate-dependent, single-crystal plasticity at finite deformation.
展示了一种为连续介质力学中的一类 PDE(偏微分方程)模型定义变分原理的方法,并探讨了其中的一些特点。该方案被应用于有限变形下与速率无关和与速率有关的单晶塑性的准静态和动态模型。
{"title":"A hidden convexity in continuum mechanics, with application to classical, continuous-time, rate-(in)dependent plasticity","authors":"Amit Acharya","doi":"10.1177/10812865241258154","DOIUrl":"https://doi.org/10.1177/10812865241258154","url":null,"abstract":"A methodology for defining variational principles for a class of PDE (partial differential equations) models from continuum mechanics is demonstrated, and some of its features are explored. The scheme is applied to quasi-static and dynamic models of rate-independent and rate-dependent, single-crystal plasticity at finite deformation.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"78 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear elastic general integral equations in micromechanics of random structure composites 随机结构复合材料微观力学中的非线性弹性一般积分方程
IF 2.6 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-31 DOI: 10.1177/10812865241255048
Valeriy A Buryachenko
We consider static problems for composite materials (CMs) with either locally elastic or peridynamic constitutive properties. The general integral equation (GIE) is the exact integral equationWe consider static problems for composite materials connecting the random fields at the point being considered and the surrounding points. There is a very long and colored history of the development of GIE which goes back to Lord Rayleigh. Owing to the new GIE (forming the second background of micromechanics also called the computational analytical micromechanics, CAM), one proved that local micromechanics (LM) and peridynamic micromechanics (PM) are formally similar to each other for CM of random structures. By now, the GIEs are generalized to CMs (of statistically homogeneous and inhomogeneous structures) with the phases described by local models, strongly nonlocal models (strain type and displacement type, peridynamics), and weakly nonlocal models (strain-gradient theories, stress-gradient theories, and higher-order models). However, a fundamental restriction of all mentioned GIEs is their linearity with respect to a primary unknown variable. The goal of this study is obtaining nonlinear GIEs for PM, and, in a particular case, for LM. For the presentation of PM as a unified theory, we describe PM as the formalized schemes of blocked (or modular) structures so that the experts developing one block need not be experts in the underlying another block (this is a good background for effective collaborations of different teams in so many multidisciplinary areas as PM). The opportunity for the creation of this blocked structure of the PM is supported by a critical generalization of CAM which is extremely flexible, robust, and general.
我们考虑的是具有局部弹性或周动构成特性的复合材料(CMs)的静态问题。一般积分方程(GIE)是精确的积分方程。我们考虑的是复合材料的静态问题,它连接了被考虑点和周围点的随机场。GIE 的发展历史可以追溯到 Lord Rayleigh。由于新的 GIE(构成微观力学的第二个背景,也称为计算分析微观力学,CAM),人们证明了对于随机结构的 CM,局部微观力学(LM)和周动微观力学(PM)在形式上彼此相似。到目前为止,GIEs 已被推广到由局部模型、强非局部模型(应变类型和位移类型、周动态)和弱非局部模型(应变梯度理论、应力梯度理论和高阶模型)描述相位的(统计均质和非均质结构的)CM。然而,所有上述 GIE 的一个基本限制是它们与主要未知变量的线性关系。本研究的目标是获得 PM 的非线性 GIE,以及在特定情况下 LM 的非线性 GIE。为了将 PM 表述为一种统一理论,我们将 PM 描述为分块(或模块)结构的正规化方案,这样,开发一个分块的专家就不必是另一个分块底层的专家(这是不同团队在 PM 等多学科领域进行有效合作的良好背景)。创建这种项目管理分块结构的机会得到了 CAM 的关键性概括的支持,CAM 非常灵活、强大和通用。
{"title":"Nonlinear elastic general integral equations in micromechanics of random structure composites","authors":"Valeriy A Buryachenko","doi":"10.1177/10812865241255048","DOIUrl":"https://doi.org/10.1177/10812865241255048","url":null,"abstract":"We consider static problems for composite materials (CMs) with either locally elastic or peridynamic constitutive properties. The general integral equation (GIE) is the exact integral equationWe consider static problems for composite materials connecting the random fields at the point being considered and the surrounding points. There is a very long and colored history of the development of GIE which goes back to Lord Rayleigh. Owing to the new GIE (forming the second background of micromechanics also called the computational analytical micromechanics, CAM), one proved that local micromechanics (LM) and peridynamic micromechanics (PM) are formally similar to each other for CM of random structures. By now, the GIEs are generalized to CMs (of statistically homogeneous and inhomogeneous structures) with the phases described by local models, strongly nonlocal models (strain type and displacement type, peridynamics), and weakly nonlocal models (strain-gradient theories, stress-gradient theories, and higher-order models). However, a fundamental restriction of all mentioned GIEs is their linearity with respect to a primary unknown variable. The goal of this study is obtaining nonlinear GIEs for PM, and, in a particular case, for LM. For the presentation of PM as a unified theory, we describe PM as the formalized schemes of blocked (or modular) structures so that the experts developing one block need not be experts in the underlying another block (this is a good background for effective collaborations of different teams in so many multidisciplinary areas as PM). The opportunity for the creation of this blocked structure of the PM is supported by a critical generalization of CAM which is extremely flexible, robust, and general.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"4 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient mode-III problem of the elastic matrix with a line inclusion 带线包容的弹性矩阵的瞬态模态-III 问题
IF 2.6 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-26 DOI: 10.1177/10812865241262491
YS Wang, BL Wang, KF Wang
The method of pull-out test has been used to identify the mechanical performance of hybrid and fiber-reinforced composite materials. This paper investigates the elastic phase preceding the pull-out of a rigid line inclusion from the polymer matrix with fixed top and bottom surfaces. The mode-III problem is investigated such that the pull-out force is applied from the out-of-plane direction and it can be either transient or static. By applying the singular integral equation technique, the semi-analytical elastic field expressions are obtained. Under the static pull-out force, the stress intensity factor (SIF) near the inclusion tip shows a monotonic increase as the length and height of the matrix increase, whereas for the transient pull-out force, the SIF displays an initial increasing and followed by a decline. The maximum SIF is obtained for (1) the matrix length is 2 to 2.5 times of the inclusion length, and (2) the matrix height is 1 to 2 times of the inclusion length. Moreover, this paper provides a solution approach that incorporates the elasticity of the inclusion, showing that there is an optimal shear stiffness that minimizes the stress singularity of system. The conclusions of this study hold significance for the design and performance evaluation of fiber-reinforced composite materials.
拉出试验方法已被用于确定混合材料和纤维增强复合材料的机械性能。本文研究的是上下表面固定的刚性线粒体从聚合物基体中拉出之前的弹性阶段。研究了模态 III 问题,即从平面外方向施加拉拔力,拉拔力可以是瞬态的,也可以是静态的。通过应用奇异积分方程技术,得到了半解析弹性场表达式。在静态拉拔力作用下,随着基体长度和高度的增加,包体顶端附近的应力强度因子(SIF)呈单调上升趋势,而在瞬态拉拔力作用下,SIF 呈先上升后下降的趋势。在以下情况下 SIF 最大:(1)基体长度为包含体长度的 2 至 2.5 倍;(2)基体高度为包含体长度的 1 至 2 倍。此外,本文还提供了一种包含包体弹性的求解方法,表明存在一个最佳剪切刚度,可使系统的应力奇异性最小。本研究的结论对纤维增强复合材料的设计和性能评估具有重要意义。
{"title":"Transient mode-III problem of the elastic matrix with a line inclusion","authors":"YS Wang, BL Wang, KF Wang","doi":"10.1177/10812865241262491","DOIUrl":"https://doi.org/10.1177/10812865241262491","url":null,"abstract":"The method of pull-out test has been used to identify the mechanical performance of hybrid and fiber-reinforced composite materials. This paper investigates the elastic phase preceding the pull-out of a rigid line inclusion from the polymer matrix with fixed top and bottom surfaces. The mode-III problem is investigated such that the pull-out force is applied from the out-of-plane direction and it can be either transient or static. By applying the singular integral equation technique, the semi-analytical elastic field expressions are obtained. Under the static pull-out force, the stress intensity factor (SIF) near the inclusion tip shows a monotonic increase as the length and height of the matrix increase, whereas for the transient pull-out force, the SIF displays an initial increasing and followed by a decline. The maximum SIF is obtained for (1) the matrix length is 2 to 2.5 times of the inclusion length, and (2) the matrix height is 1 to 2 times of the inclusion length. Moreover, this paper provides a solution approach that incorporates the elasticity of the inclusion, showing that there is an optimal shear stiffness that minimizes the stress singularity of system. The conclusions of this study hold significance for the design and performance evaluation of fiber-reinforced composite materials.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"245 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mathematics and Mechanics of Solids
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1