首页 > 最新文献

Marine Geodesy最新文献

英文 中文
Shore Zone Classification from ICESat-2 Data over Saint Lawrence Island 基于圣劳伦斯岛ICESat-2数据的海岸带分类
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-03-29 DOI: 10.1080/01490419.2021.1898498
Huan Xie, Yuan Sun, Xiaoshuai Liu, Qi Xu, Yalei Guo, Shijie Liu, Xiong Xu, Sicong Liu, X. Tong
Abstract The shore zone is the most active zone in the atmosphere, hydrosphere, biosphere and lithosphere of nature, and has the environmental characteristics of both ocean and land. The ICESat-2 satellite provides height measurements of shore zone using a photon-counting LiDAR. The purpose of this study is to explore the application potential of ICESat-2 satellite data in shore zone classification. Saint Lawrence Island, Alaska, was chosen as the study area. Firstly, in this study, the upper and lower boundaries of the shore zone of the study area were extracted based on Google Earth images. The slope and width between the two boundaries were then calculated according to the formula. Secondly, six statistical indicators (standard deviation, relative standard deviation, average absolute deviation, relative average deviation, absolute median error and quartile deviation) related to the substrate and sediment classification that could reflect the characteristics of the shore zone profile were extracted, and the statistical indicators were used as input parameters of the softmax regression model for classification. Finally, the accuracy of the shore zone classification was validated using the ShoreZone classification system. The results show that, among the 246 shore zone sections in the study area, 86% (212) has been correctly classified. The results therefore indicate that ICESat-2 data can be used to support the characterization of shore zone morphology.
海岸带是自然界大气、水圈、生物圈和岩石圈中最活跃的区域,具有海洋和陆地的双重环境特征。ICESat-2卫星使用光子计数激光雷达提供海岸区域的高度测量。本研究旨在探讨ICESat-2卫星数据在海岸带分类中的应用潜力。阿拉斯加的圣劳伦斯岛被选为研究区域。首先,本研究基于谷歌地球影像提取研究区海岸带上下边界。然后根据公式计算两个边界之间的斜率和宽度。其次,提取出能反映岸带剖面特征的6个与底泥分类相关的统计指标(标准差、相对标准差、平均绝对偏差、相对平均偏差、绝对中位数误差和四分位数偏差),并将这些统计指标作为softmax回归模型的输入参数进行分类。最后,利用ShoreZone分类系统验证了岸带分类的准确性。结果表明,在研究区246个岸带剖面中,有86%(212个)的岸带剖面被正确划分。结果表明,ICESat-2数据可用于支持海岸带形态的表征。
{"title":"Shore Zone Classification from ICESat-2 Data over Saint Lawrence Island","authors":"Huan Xie, Yuan Sun, Xiaoshuai Liu, Qi Xu, Yalei Guo, Shijie Liu, Xiong Xu, Sicong Liu, X. Tong","doi":"10.1080/01490419.2021.1898498","DOIUrl":"https://doi.org/10.1080/01490419.2021.1898498","url":null,"abstract":"Abstract The shore zone is the most active zone in the atmosphere, hydrosphere, biosphere and lithosphere of nature, and has the environmental characteristics of both ocean and land. The ICESat-2 satellite provides height measurements of shore zone using a photon-counting LiDAR. The purpose of this study is to explore the application potential of ICESat-2 satellite data in shore zone classification. Saint Lawrence Island, Alaska, was chosen as the study area. Firstly, in this study, the upper and lower boundaries of the shore zone of the study area were extracted based on Google Earth images. The slope and width between the two boundaries were then calculated according to the formula. Secondly, six statistical indicators (standard deviation, relative standard deviation, average absolute deviation, relative average deviation, absolute median error and quartile deviation) related to the substrate and sediment classification that could reflect the characteristics of the shore zone profile were extracted, and the statistical indicators were used as input parameters of the softmax regression model for classification. Finally, the accuracy of the shore zone classification was validated using the ShoreZone classification system. The results show that, among the 246 shore zone sections in the study area, 86% (212) has been correctly classified. The results therefore indicate that ICESat-2 data can be used to support the characterization of shore zone morphology.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"44 1","pages":"454 - 466"},"PeriodicalIF":1.6,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01490419.2021.1898498","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44075488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Automatic Recognition of Geomagnetic Suitability Areas for Path Planning of Autonomous Underwater Vehicle 自主水下机器人路径规划地磁适宜区域的自动识别
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-03-24 DOI: 10.1080/01490419.2021.1906799
Yang Chong, Hongzhou Chai, Yonghong Li, Jian Yao, Guorui Xiao, Yunfei Guo
Abstract Currently, integrated navigation systems with the inertial navigation system (INS)/geomagnetic navigation system (GNS) have been widely used in underwater navigation of autonomous underwater vehicle (AUV). Restricting AUV to navigate in the geomagnetic suitability areas (GSA) as far as possible can effectively improve the accuracy of integrated navigation systems. In order to improve the classification accuracy of GSA, a new optimal classification method based on principal component analysis (PCA) and improved back propagation (BP) neural network is proposed. PCA is used to extract the independent characteristic parameters containing the main components. Then, considering similarity coefficient, the initial weights and thresholds of BP neural network is optimized by improved adaptive genetic algorithm (IAGA). Finally, the correspondence between the geomagnetic characteristic parameters and matching performance is established based on PCA and improved adaptive genetic algorithm and back propagation (IAGA-BP) neural network for the automatic recognition of GSA. Simulated experiments based on PCA and IAGA-BP neural network shows high classification accuracy and reliability in the GSA selection. The method could provide important support for AUV path planning, which is an effective guarantee for AUV high precision and long voyage autonomous navigation.
摘要目前,惯性导航系统(INS)/地磁导航系统(GNS)组合导航系统已广泛应用于自主水下航行器(AUV)的水下导航。尽可能限制AUV在地磁适宜区(GSA)导航,可以有效地提高组合导航系统的精度。为了提高GSA的分类精度,提出了一种新的基于主成分分析(PCA)和改进的反向传播(BP)神经网络的最优分类方法。PCA用于提取包含主要成分的独立特征参数。然后,考虑相似系数,采用改进的自适应遗传算法对BP神经网络的初始权值和阈值进行优化。最后,基于PCA和改进的自适应遗传算法和反向传播(IAGA-BP)神经网络,建立了地磁特征参数与匹配性能之间的对应关系,用于GSA的自动识别。基于PCA和IAGA-BP神经网络的模拟实验表明,GSA选择具有较高的分类精度和可靠性。该方法可为AUV路径规划提供重要支持,是实现AUV高精度长航距自主导航的有效保障。
{"title":"Automatic Recognition of Geomagnetic Suitability Areas for Path Planning of Autonomous Underwater Vehicle","authors":"Yang Chong, Hongzhou Chai, Yonghong Li, Jian Yao, Guorui Xiao, Yunfei Guo","doi":"10.1080/01490419.2021.1906799","DOIUrl":"https://doi.org/10.1080/01490419.2021.1906799","url":null,"abstract":"Abstract Currently, integrated navigation systems with the inertial navigation system (INS)/geomagnetic navigation system (GNS) have been widely used in underwater navigation of autonomous underwater vehicle (AUV). Restricting AUV to navigate in the geomagnetic suitability areas (GSA) as far as possible can effectively improve the accuracy of integrated navigation systems. In order to improve the classification accuracy of GSA, a new optimal classification method based on principal component analysis (PCA) and improved back propagation (BP) neural network is proposed. PCA is used to extract the independent characteristic parameters containing the main components. Then, considering similarity coefficient, the initial weights and thresholds of BP neural network is optimized by improved adaptive genetic algorithm (IAGA). Finally, the correspondence between the geomagnetic characteristic parameters and matching performance is established based on PCA and improved adaptive genetic algorithm and back propagation (IAGA-BP) neural network for the automatic recognition of GSA. Simulated experiments based on PCA and IAGA-BP neural network shows high classification accuracy and reliability in the GSA selection. The method could provide important support for AUV path planning, which is an effective guarantee for AUV high precision and long voyage autonomous navigation.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"44 1","pages":"287 - 305"},"PeriodicalIF":1.6,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01490419.2021.1906799","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42488201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Morphological Evolution of Sand Spits in Thailand 泰国沙刺的形态演变
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-03-24 DOI: 10.1080/01490419.2021.1893873
Cherdvong Saengsupavanich
Abstract A sand spit is a deposition of sediments built up and diverging from the coast. The spit can be beneficial or create problems. Understanding and being able to forecast its evolution is the key to maximizing its advantages and minimizing its drawbacks. Along the southern Gulf of Thailand, there are 3 major sand spits, being Laem Talumpuk spit, Laem Sui spit, and Laem Tachi spit. Each individual spit’s evolution was investigated by overlaying satellite images gathered from the U.S. Geological Survey and Google Earth. Five types of equations for their evolution were tested to determine the best-fitting relationships. Although it was found that different spit characteristics followed different types of expression, polynomial equations seemed to provide satisfactory coefficients of determination for all spits in the study. Each individual spit’s length, size, and orientation could be predicted by the derived relationships. Finally, proper spit managements such as dredging, community livelihood adaptation, economic development, and even tourism promotion can be planned.
摘要沙口是从海岸形成并分叉的沉积物的沉积。随地吐痰可能有益,也可能造成问题。了解并能够预测其演变是最大限度地发挥其优势和最大限度地减少其缺点的关键。泰国湾南部有三个主要的沙口,分别是Laem Talumpuk沙口、Laem Sui沙口和Laem Tachi沙口。通过叠加从美国地质调查局和谷歌地球收集的卫星图像,对每个唾液的进化进行了调查。测试了五种类型的方程的演化,以确定最佳拟合关系。尽管发现不同类型的表达式具有不同的spit特征,但多项式方程似乎为研究中的所有spit提供了令人满意的确定系数。每个唾液的长度、大小和方向都可以通过导出的关系进行预测。最后,可以规划适当的随地吐痰管理,如疏浚、社区生计适应、经济发展,甚至旅游推广。
{"title":"Morphological Evolution of Sand Spits in Thailand","authors":"Cherdvong Saengsupavanich","doi":"10.1080/01490419.2021.1893873","DOIUrl":"https://doi.org/10.1080/01490419.2021.1893873","url":null,"abstract":"Abstract A sand spit is a deposition of sediments built up and diverging from the coast. The spit can be beneficial or create problems. Understanding and being able to forecast its evolution is the key to maximizing its advantages and minimizing its drawbacks. Along the southern Gulf of Thailand, there are 3 major sand spits, being Laem Talumpuk spit, Laem Sui spit, and Laem Tachi spit. Each individual spit’s evolution was investigated by overlaying satellite images gathered from the U.S. Geological Survey and Google Earth. Five types of equations for their evolution were tested to determine the best-fitting relationships. Although it was found that different spit characteristics followed different types of expression, polynomial equations seemed to provide satisfactory coefficients of determination for all spits in the study. Each individual spit’s length, size, and orientation could be predicted by the derived relationships. Finally, proper spit managements such as dredging, community livelihood adaptation, economic development, and even tourism promotion can be planned.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"44 1","pages":"432 - 453"},"PeriodicalIF":1.6,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01490419.2021.1893873","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42683689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Development of a Unified Vertical Reference Framework for Land and Hydrographic Surveying in Sri Lanka 斯里兰卡陆地和水文测量统一垂直参考框架的开发
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-03-14 DOI: 10.1080/01490419.2021.1902889
Indika Prasanna Herath Mudiyanselage, M. D. K. L. Gunathilaka, D. Welikanna
Abstract Topographic mapping and ocean charting are the outputs of two main surveying techniques for which data has been collected independently for long time. In recent years there has been a growing awareness of our coastal zones to manage our marine spaces in a more structured and sustainable manner. The requirement of this is seamless spatial data coverage across the land/sea interface. The major impediment to achieve this requirement is the absence of a consistent height datum across the land/sea interface. The main objective of this research project was to develop a vertical separation model to define the relationship between the Land surveying vertical datum (LSVD), i.e., MSL/geoid and hydrographic chart datum (CD), i.e., LAT, around Sri Lanka. The vertical datum models were analysed using IDW spatial interpolation with the assumption of the spatial autocorrelation. Polynomial curve fitting of first and the second order has been implemented and both the fitted functions show that the predictions could be made to a higher degree of certainty. The averaged separation of the CD and LSVD is about 0.3 m. The overall chart datum variation analysis suggested that the linear fit seems better with the prediction of the distribution of chart datum variation.
摘要地形图和海洋制图是两种主要测量技术的成果,长期以来,这两种技术的数据都是独立收集的。近年来,人们越来越意识到我们的沿海地区要以更结构化和可持续的方式管理我们的海洋空间。这样做的要求是跨越陆地/海洋界面的无缝空间数据覆盖。实现这一要求的主要障碍是陆地/海洋界面缺乏一致的高度基准。该研究项目的主要目标是开发一个垂直分离模型,以定义斯里兰卡周围陆地测量垂直基准(LSVD)(即MSL/大地水准面)和水文图基准(CD)(即LAT)之间的关系。在空间自相关的假设下,使用IDW空间插值对垂直基准模型进行了分析。已经实现了一阶和二阶多项式曲线拟合,两个拟合函数都表明预测可以达到更高的确定度。CD和LSVD的平均分离度约为0.3 m.对海图基准面变化的总体分析表明,对海图基准面的变化分布进行预测,线性拟合效果较好。
{"title":"Development of a Unified Vertical Reference Framework for Land and Hydrographic Surveying in Sri Lanka","authors":"Indika Prasanna Herath Mudiyanselage, M. D. K. L. Gunathilaka, D. Welikanna","doi":"10.1080/01490419.2021.1902889","DOIUrl":"https://doi.org/10.1080/01490419.2021.1902889","url":null,"abstract":"Abstract Topographic mapping and ocean charting are the outputs of two main surveying techniques for which data has been collected independently for long time. In recent years there has been a growing awareness of our coastal zones to manage our marine spaces in a more structured and sustainable manner. The requirement of this is seamless spatial data coverage across the land/sea interface. The major impediment to achieve this requirement is the absence of a consistent height datum across the land/sea interface. The main objective of this research project was to develop a vertical separation model to define the relationship between the Land surveying vertical datum (LSVD), i.e., MSL/geoid and hydrographic chart datum (CD), i.e., LAT, around Sri Lanka. The vertical datum models were analysed using IDW spatial interpolation with the assumption of the spatial autocorrelation. Polynomial curve fitting of first and the second order has been implemented and both the fitted functions show that the predictions could be made to a higher degree of certainty. The averaged separation of the CD and LSVD is about 0.3 m. The overall chart datum variation analysis suggested that the linear fit seems better with the prediction of the distribution of chart datum variation.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"44 1","pages":"238 - 256"},"PeriodicalIF":1.6,"publicationDate":"2021-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01490419.2021.1902889","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42682607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Validating Geoid Models with Marine GNSS Measurements, Sea Surface Models, and Additional Gravity Observations in the Gulf of Finland 用海洋GNSS测量、海面模型和芬兰湾额外重力观测验证大地水准面模型
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-03-11 DOI: 10.1080/01490419.2021.1889727
T. Saari, M. Bilker‐Koivula, H. Koivula, M. Nordman, P. Häkli, S. Lahtinen
Abstract Traditionally, geoid models have been validated using GNSS-levelling benchmarks on land only. As such benchmarks cannot be established offshore, marine areas of geoid models must be evaluated in a different way. In this research, we present a marine GNSS/gravity campaign where existing geoid models were validated at sea areas by GNSS measurements in combination with sea surface models. Additionally, a new geoid model, calculated using the newly collected marine gravity data, was validated. The campaign was carried out with the marine geology research catamaran Geomari (operated by the Geological Survey of Finland), which sailed back and forth the eastern part of the Finnish territorial waters of the Gulf of Finland during the early summer of 2018. From the GNSS and sea surface data we were able to obtain geoid heights at sea areas with an accuracy of a few centimetres. When the GNSS derived geoid heights are compared with geoid heights from the geoid models differences between the respective models are seen in the most eastern and southern parts of the campaign area. The new gravity data changed the geoid model heights by up to 15 cm in areas of sparse/non-existing gravity data.
摘要传统上,大地水准面模型仅使用陆地上的全球导航卫星系统水准基准进行验证。由于无法在海上建立此类基准,因此必须以不同的方式评估大地水准面模型的海洋区域。在这项研究中,我们提出了一项海洋GNSS/重力活动,通过GNSS测量和海面模型在海域验证了现有的大地水准面模型。此外,还验证了使用新收集的海洋重力数据计算的新大地水准面模型。该活动由海洋地质研究双体船Geomari(由芬兰地质调查局运营)执行,该船于2018年初夏在芬兰湾芬兰领海东部来回航行。根据全球导航卫星系统和海面数据,我们能够以几厘米的精度获得海域的大地水准面高度。当将GNSS导出的大地水准面高度与大地水准面模型的大地水准面的高度进行比较时,在活动区的最东部和最南部可以看到各个模型之间的差异。新的重力数据使大地水准面模型高度变化了15 cm的稀疏/不存在的重力数据区域。
{"title":"Validating Geoid Models with Marine GNSS Measurements, Sea Surface Models, and Additional Gravity Observations in the Gulf of Finland","authors":"T. Saari, M. Bilker‐Koivula, H. Koivula, M. Nordman, P. Häkli, S. Lahtinen","doi":"10.1080/01490419.2021.1889727","DOIUrl":"https://doi.org/10.1080/01490419.2021.1889727","url":null,"abstract":"Abstract Traditionally, geoid models have been validated using GNSS-levelling benchmarks on land only. As such benchmarks cannot be established offshore, marine areas of geoid models must be evaluated in a different way. In this research, we present a marine GNSS/gravity campaign where existing geoid models were validated at sea areas by GNSS measurements in combination with sea surface models. Additionally, a new geoid model, calculated using the newly collected marine gravity data, was validated. The campaign was carried out with the marine geology research catamaran Geomari (operated by the Geological Survey of Finland), which sailed back and forth the eastern part of the Finnish territorial waters of the Gulf of Finland during the early summer of 2018. From the GNSS and sea surface data we were able to obtain geoid heights at sea areas with an accuracy of a few centimetres. When the GNSS derived geoid heights are compared with geoid heights from the geoid models differences between the respective models are seen in the most eastern and southern parts of the campaign area. The new gravity data changed the geoid model heights by up to 15 cm in areas of sparse/non-existing gravity data.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"44 1","pages":"196 - 214"},"PeriodicalIF":1.6,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01490419.2021.1889727","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49097710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
An Automated Approach to Coastline Simplification for Maritime Structures with Collapse Operation 崩塌作业海上构筑物岸线简化的自动化方法
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-03-11 DOI: 10.1080/01490419.2021.1887014
Jiawei Du, Fang Wu, Ruixing Xing, Jinghan Li, Xianyong Gong
Abstract Maritime structures are significant man-made objects located along coastlines that have drawn considerable attention in maritime navigation, coastal engineering, and urban planning. During the process of map generalization, some maritime structures need to be collapsed. In our study, first, the representation characteristics of these maritime structures are analysed. Second, based on these characteristics, an automated approach of identifying these maritime structures that will potentially be collapsed while simultaneously extracting their partially proportional symbols is developed. Third, based on scale-driven thresholds, the collapse method is automated by selecting extracted partially proportional symbols and is collaborated with coastline simplification. Finally, the proposed approach is tested on various coastlines and maritime structures, and the experimental results demonstrate that our approach is effective for collapsing maritime structures and collaborating with the simplification operator for the automated generalization of coastlines.
摘要海洋结构物是位于海岸线上的重要人造物体,在航海、海岸工程和城市规划中引起了极大的关注。在地图综合过程中,一些海上结构需要倒塌。在我们的研究中,首先,分析了这些海事结构的表征特征。其次,基于这些特征,开发了一种自动识别这些可能倒塌的海事结构的方法,同时提取其部分比例符号。第三,基于尺度驱动阈值,通过选择提取的部分比例符号来实现塌陷方法的自动化,并与海岸线简化相结合。最后,在各种海岸线和海事结构上对所提出的方法进行了测试,实验结果表明,我们的方法对于瓦解海事结构和与简化操作员合作实现海岸线的自动综合是有效的。
{"title":"An Automated Approach to Coastline Simplification for Maritime Structures with Collapse Operation","authors":"Jiawei Du, Fang Wu, Ruixing Xing, Jinghan Li, Xianyong Gong","doi":"10.1080/01490419.2021.1887014","DOIUrl":"https://doi.org/10.1080/01490419.2021.1887014","url":null,"abstract":"Abstract Maritime structures are significant man-made objects located along coastlines that have drawn considerable attention in maritime navigation, coastal engineering, and urban planning. During the process of map generalization, some maritime structures need to be collapsed. In our study, first, the representation characteristics of these maritime structures are analysed. Second, based on these characteristics, an automated approach of identifying these maritime structures that will potentially be collapsed while simultaneously extracting their partially proportional symbols is developed. Third, based on scale-driven thresholds, the collapse method is automated by selecting extracted partially proportional symbols and is collaborated with coastline simplification. Finally, the proposed approach is tested on various coastlines and maritime structures, and the experimental results demonstrate that our approach is effective for collapsing maritime structures and collaborating with the simplification operator for the automated generalization of coastlines.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"44 1","pages":"157 - 195"},"PeriodicalIF":1.6,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01490419.2021.1887014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48011792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Short-Term Predictability of the Bay of Bengal Region Using a High-Resolution Indian Ocean Model 使用高分辨率印度洋模式对孟加拉湾地区的短期可预测性
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-03-06 DOI: 10.1080/01490419.2021.1894273
L. Pandey, S. Dwivedi, Matthew J. Martin
Abstract An ocean circulation model, Nucleus for European Modelling of the Ocean (NEMO version 3.6) is customized to run at high-resolution over a regional domain [30oE-105oE; 20oS-30oN] in the Indian Ocean. It uses horizontal resolution of 1/12° in longitude/latitude and 75 levels in the vertical direction. The model well captures the observed space-time variations of temperature and salinity at the surface and subsurface, and the surface currents and eddy kinetic energy. The short-term spatio-temporal predictability of the Bay of Bengal (BoB) region is quantified using the model currents. The Lagrangian measure of predictability, Finite Time Lyapunov Exponent (FTLE) is compared with the Eulerian measure (Okubo-Weiss parameter). The regions of chaotic stirring are identified in the BoB. The FTLE analysis reveals that the predictability on a biweekly time scale in the BoB is minimum during October-November, and the highest during May to July. The FTLE is shown to serve as a useful tool for planning targeted observations in the BoB region.
摘要一个海洋环流模型,欧洲海洋建模核心(NEMO 3.6版)被定制为在印度洋的区域域[30oE-105oE;20oS-30oN]上以高分辨率运行。它在经度/纬度上使用1/12°的水平分辨率,在垂直方向上使用75级。该模型很好地捕捉到了观测到的地表和地下温度和盐度的时空变化,以及地表电流和涡流动能。孟加拉湾(BoB)地区的短期时空可预测性使用模型洋流进行量化。将可预测性的拉格朗日测度,有限时间李雅普诺夫指数(FTLE)与欧拉测度(大久保-维斯参数)进行了比较。在BoB中确定了混沌搅拌的区域。FTLE分析显示,英国央行每两周一次的可预测性在10月至11月期间最低,在5月至7月期间最高。FTLE被证明是规划BoB地区目标观测的有用工具。
{"title":"Short-Term Predictability of the Bay of Bengal Region Using a High-Resolution Indian Ocean Model","authors":"L. Pandey, S. Dwivedi, Matthew J. Martin","doi":"10.1080/01490419.2021.1894273","DOIUrl":"https://doi.org/10.1080/01490419.2021.1894273","url":null,"abstract":"Abstract An ocean circulation model, Nucleus for European Modelling of the Ocean (NEMO version 3.6) is customized to run at high-resolution over a regional domain [30oE-105oE; 20oS-30oN] in the Indian Ocean. It uses horizontal resolution of 1/12° in longitude/latitude and 75 levels in the vertical direction. The model well captures the observed space-time variations of temperature and salinity at the surface and subsurface, and the surface currents and eddy kinetic energy. The short-term spatio-temporal predictability of the Bay of Bengal (BoB) region is quantified using the model currents. The Lagrangian measure of predictability, Finite Time Lyapunov Exponent (FTLE) is compared with the Eulerian measure (Okubo-Weiss parameter). The regions of chaotic stirring are identified in the BoB. The FTLE analysis reveals that the predictability on a biweekly time scale in the BoB is minimum during October-November, and the highest during May to July. The FTLE is shown to serve as a useful tool for planning targeted observations in the BoB region.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"44 1","pages":"215 - 237"},"PeriodicalIF":1.6,"publicationDate":"2021-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01490419.2021.1894273","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47489109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Horizontal Calibration of Vessels with UASs 用UASs对容器进行水平校正
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-01-27 DOI: 10.1080/01490419.2021.1879330
Casey O’Heran, B. Calder
Abstract Knowledge of offset vectors from vessel mounted sonars, to systems such as Inertial Measurement Units and Global Navigation Satellite Systems is crucial for accurate ocean mapping applications. Traditional survey methods, such as employing laser scanners or total stations, are used to determine professional vessel offset distances reliably. However, for vessels of opportunity that are collecting volunteer bathymetric data, it is beneficial to consider survey methods that may be less time consuming, less expensive, or which do not involve bringing the vessel into a dry dock. Thus, this article explores two alternative methods that meet this criterion for horizontally calibrating vessels. Unmanned Aircraft Systems (UASs) were used to horizontally calibrate a vessel with both Structure from Motion photogrammetry and aerial lidar while the vessel was moored to a floating dock. Estimates of the horizontal deviations from ground truth, were obtained by comparing the horizontal distances between targets on a vessel, acquired by the UAS methods, to multiple ground truth sources: a survey-grade terrestrial laser scan and fiberglass tape measurements. The investigated methods were able to achieve horizontal deviations on the order of centimeters with the use of Ground Control Points.
摘要从船载声纳到惯性测量单元和全球导航卫星系统等系统的偏移矢量知识对于精确的海洋测绘应用至关重要。传统的测量方法,如使用激光扫描仪或全站仪,用于可靠地确定专业船只偏移距离。然而,对于正在收集自愿水深数据的有机会的船只,考虑可能耗时较少、成本较低或不涉及将船只带入干船坞的调查方法是有益的。因此,本文探索了两种满足水平校准容器标准的替代方法。无人机系统(UASs)用于在船只停泊在浮船坞时,使用运动摄影测量结构和航空激光雷达对船只进行水平校准。通过将无人机方法获取的船只上目标之间的水平距离与多个地面实况源(勘测级地面激光扫描和玻璃纤维胶带测量)进行比较,获得了与地面实况水平偏差的估计值。通过使用地面控制点,所研究的方法能够实现厘米级的水平偏差。
{"title":"Horizontal Calibration of Vessels with UASs","authors":"Casey O’Heran, B. Calder","doi":"10.1080/01490419.2021.1879330","DOIUrl":"https://doi.org/10.1080/01490419.2021.1879330","url":null,"abstract":"Abstract Knowledge of offset vectors from vessel mounted sonars, to systems such as Inertial Measurement Units and Global Navigation Satellite Systems is crucial for accurate ocean mapping applications. Traditional survey methods, such as employing laser scanners or total stations, are used to determine professional vessel offset distances reliably. However, for vessels of opportunity that are collecting volunteer bathymetric data, it is beneficial to consider survey methods that may be less time consuming, less expensive, or which do not involve bringing the vessel into a dry dock. Thus, this article explores two alternative methods that meet this criterion for horizontally calibrating vessels. Unmanned Aircraft Systems (UASs) were used to horizontally calibrate a vessel with both Structure from Motion photogrammetry and aerial lidar while the vessel was moored to a floating dock. Estimates of the horizontal deviations from ground truth, were obtained by comparing the horizontal distances between targets on a vessel, acquired by the UAS methods, to multiple ground truth sources: a survey-grade terrestrial laser scan and fiberglass tape measurements. The investigated methods were able to achieve horizontal deviations on the order of centimeters with the use of Ground Control Points.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"44 1","pages":"91 - 107"},"PeriodicalIF":1.6,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01490419.2021.1879330","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41414762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing the Performance of Turbulent Kinetic Energy and K-Profile Parameterization Vertical Parameterization Schemes over the Tropical Indian Ocean 热带印度洋湍流动能和k线参数化垂直参数化方案的性能比较
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2021-01-02 DOI: 10.1080/01490419.2020.1835758
L. Pandey, S. Dwivedi
Abstract The performance of vertical parameterization schemes, namely, turbulent kinetic energy (TKE) and K-profile parameterization (KPP), is evaluated over the domain [30E-120E; 20S-30N] in the Indian Ocean using the Nucleus for European Modeling of the Ocean (NEMO) regional model. The surface and sub-surface hydrography and mixed layer depth (MLD) of the simulations using TKE and KPP schemes have been compared. The KPP scheme produces higher bias (∼0.5 °C) of sea surface temperature (SST) in monsoon and post-monsoon seasons, which reduces on using the TKE scheme. The maximum surface salinity difference (0.45 psu) between TKE and KPP simulations is obtained over the head Bay of Bengal (BoB) in the post-monsoon months. The KPP scheme also overestimates MLD of the region. Barring highly convective regions as well as regions marked with very low and rapidly changing salinity, the TKE scheme performs better than KPP scheme in simulating the hydrography and MLD of the region. The differences between TKE and KPP simulations in the vertical stability and mixing are studied using buoyancy frequency, vertical shear of horizontal currents and energy required for mixing as quantifiers. The mixed layer heat budget analysis explains seasonal variability of SST and differences in vertical mixing parameterizations.
摘要使用欧洲海洋建模核(NEMO)区域模型,在印度洋[30E-120E;20S-30N]域上评估了垂直参数化方案,即湍流动能(TKE)和K剖面参数化(KPP)的性能。对TKE和KPP方案模拟的地表和亚表层水文和混合层深度(MLD)进行了比较。KPP方案产生更高的偏置(~0.5 °C)的海面温度(SST),这在使用TKE方案时会降低。TKE和KPP模拟之间的最大表面盐度差(0.45 psu)是在后季风月份孟加拉湾(BoB)上空获得的。KPP方案也高估了该地区的MLD。除了高对流区域以及盐度极低且变化迅速的区域外,TKE方案在模拟该区域的水文和MLD方面比KPP方案表现更好。使用浮力频率、水平流的垂直剪切和混合所需的能量作为量化指标,研究了TKE和KPP模拟在垂直稳定性和混合方面的差异。混合层热预算分析解释了SST的季节变化和垂直混合参数化的差异。
{"title":"Comparing the Performance of Turbulent Kinetic Energy and K-Profile Parameterization Vertical Parameterization Schemes over the Tropical Indian Ocean","authors":"L. Pandey, S. Dwivedi","doi":"10.1080/01490419.2020.1835758","DOIUrl":"https://doi.org/10.1080/01490419.2020.1835758","url":null,"abstract":"Abstract The performance of vertical parameterization schemes, namely, turbulent kinetic energy (TKE) and K-profile parameterization (KPP), is evaluated over the domain [30E-120E; 20S-30N] in the Indian Ocean using the Nucleus for European Modeling of the Ocean (NEMO) regional model. The surface and sub-surface hydrography and mixed layer depth (MLD) of the simulations using TKE and KPP schemes have been compared. The KPP scheme produces higher bias (∼0.5 °C) of sea surface temperature (SST) in monsoon and post-monsoon seasons, which reduces on using the TKE scheme. The maximum surface salinity difference (0.45 psu) between TKE and KPP simulations is obtained over the head Bay of Bengal (BoB) in the post-monsoon months. The KPP scheme also overestimates MLD of the region. Barring highly convective regions as well as regions marked with very low and rapidly changing salinity, the TKE scheme performs better than KPP scheme in simulating the hydrography and MLD of the region. The differences between TKE and KPP simulations in the vertical stability and mixing are studied using buoyancy frequency, vertical shear of horizontal currents and energy required for mixing as quantifiers. The mixed layer heat budget analysis explains seasonal variability of SST and differences in vertical mixing parameterizations.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"44 1","pages":"42 - 69"},"PeriodicalIF":1.6,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01490419.2020.1835758","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43245100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Experimental Study on Underwater Moving Gravity Measurement by Using Strapdown Gravimeter Based on AUV Platform 基于AUV平台的捷联式重力仪水下运动重力测量实验研究
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2020-12-10 DOI: 10.1080/01490419.2020.1861138
Zhiqiang Zhang, Jiancheng Li, Kai-Jun Zhang, R. Yu
Abstract Autonomous underwater vehicle (AUV) can be controlled autonomously and cable-less, which can reduce the cost and has good applicability for underwater gravity measurement. Based on airborne gravity measurement, the basic principle of underwater moving gravity measurement is studied, and the mathematical model of AUV underwater moving gravity measurement is established, which based on the data obtained by the gravimeter with a fibre optic inertial navigation system (INS), short baseline underwater acoustic positioning (SBL), Doppler velocity log (DVL) and depth gauge (DG). Underwater experimental verification system of moving gravity measurement consists of the reformed BQR800 Unmanned Underwater Vehicle and dg-M strapdown gravimeter. Mulan Lake in Wuhan was selected as the experimental site. Experimental scheme and processing flow of underwater moving gravity measurement data was designed. Data obtained by strapdown gravimeter, DG, DVL, SBL and other equipment was analysed, and the data calculation was completed. Moreover, the repetition lines are selected to evaluate the repeatability of gravity measurement. The experiment al verification of gravity measurement for three return trips were carried out from January 7 to 8, 2020. The accuracy of repetition line reached 0.42 mGal, which verified the feasibility of underwater moving gravity measurement.
摘要自主式水下机器人(AUV)可以实现自主控制,无需电缆,降低了成本,在水下重力测量中具有良好的适用性。在航空重力测量的基础上,研究了水下移动重力测量的基本原理,建立了AUV水下移动重量测量的数学模型,多普勒速度测井(DVL)和深度计(DG)。移动重力测量水下实验验证系统由改造后的BQR800型无人潜水器和dg-M型捷联式重力仪组成。实验地点选择武汉木兰湖。设计了水下移动重力测量数据的实验方案和处理流程。对捷联式重力仪、DG、DVL、SBL等设备获得的数据进行了分析,并完成了数据计算。此外,选择重复线来评估重力测量的可重复性。2020年1月7日至8日进行了三次返程重力测量的实验验证。重复线的精度达到0.42mGal,验证了水下移动重力测量的可行性。
{"title":"Experimental Study on Underwater Moving Gravity Measurement by Using Strapdown Gravimeter Based on AUV Platform","authors":"Zhiqiang Zhang, Jiancheng Li, Kai-Jun Zhang, R. Yu","doi":"10.1080/01490419.2020.1861138","DOIUrl":"https://doi.org/10.1080/01490419.2020.1861138","url":null,"abstract":"Abstract Autonomous underwater vehicle (AUV) can be controlled autonomously and cable-less, which can reduce the cost and has good applicability for underwater gravity measurement. Based on airborne gravity measurement, the basic principle of underwater moving gravity measurement is studied, and the mathematical model of AUV underwater moving gravity measurement is established, which based on the data obtained by the gravimeter with a fibre optic inertial navigation system (INS), short baseline underwater acoustic positioning (SBL), Doppler velocity log (DVL) and depth gauge (DG). Underwater experimental verification system of moving gravity measurement consists of the reformed BQR800 Unmanned Underwater Vehicle and dg-M strapdown gravimeter. Mulan Lake in Wuhan was selected as the experimental site. Experimental scheme and processing flow of underwater moving gravity measurement data was designed. Data obtained by strapdown gravimeter, DG, DVL, SBL and other equipment was analysed, and the data calculation was completed. Moreover, the repetition lines are selected to evaluate the repeatability of gravity measurement. The experiment al verification of gravity measurement for three return trips were carried out from January 7 to 8, 2020. The accuracy of repetition line reached 0.42 mGal, which verified the feasibility of underwater moving gravity measurement.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"44 1","pages":"108 - 135"},"PeriodicalIF":1.6,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01490419.2020.1861138","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48997773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Marine Geodesy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1