首页 > 最新文献

Marine Geodesy最新文献

英文 中文
Extracting Coastal Water Depths from Multi-Temporal Sentinel-2 Images Using Convolutional Neural Networks 基于卷积神经网络的多时相Sentinel-2图像海岸水深提取
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-07-05 DOI: 10.1080/01490419.2022.2091696
Y. Lumban-Gaol, K. Ohori, R. Peters
Abstract Satellite-Derived Bathymetry (SDB) can be calculated using analytical or empirical approaches. Analytical approaches require several water properties and assumptions, which might not be known. Empirical approaches rely on the linear relationship between reflectances and in-situ depths, but the relationship may not be entirely linear due to bottom type variation, water column effect, and noise. Machine learning approaches have been used to address nonlinearity, but those treat pixels independently, while adjacent pixels are spatially correlated in depth. Convolutional Neural Networks (CNN) can detect this characteristic of the local connectivity. Therefore, this paper conducts a study of SDB using CNN and compares the accuracies between different areas and different amounts of training data, i.e., single and multi-temporal images. Furthermore, this paper discusses the accuracies of SDB when a pre-trained CNN model from one or a combination of multiple locations is applied to a new location. The results show that the accuracy of SDB using the CNN method outperforms existing works with other methods. Multi-temporal images enhance the variety in the training data and improve the CNN accuracy. SDB computation using the pre-trained model shows several limitations at particular depths or when water conditions differ.
摘要卫星测深(SDB)可以使用分析或经验方法进行计算。分析方法需要几种水的性质和假设,而这些可能是未知的。经验方法依赖于反射率和原位深度之间的线性关系,但由于底部类型变化、水柱效应和噪声,这种关系可能不完全是线性的。机器学习方法已被用于解决非线性问题,但这些方法独立处理像素,而相邻像素在深度上是空间相关的。卷积神经网络(CNN)可以检测这种局部连通性的特征。因此,本文使用CNN对SDB进行了研究,并比较了不同区域和不同训练数据量(即单时间图像和多时相图像)之间的精度。此外,本文还讨论了当将来自一个或多个位置的组合的预先训练的CNN模型应用于新位置时,SDB的准确性。结果表明,使用CNN方法的SDB的准确性优于现有的其他方法。多时相图像增强了训练数据的多样性,提高了CNN的准确性。使用预训练模型的SDB计算显示了在特定深度或水条件不同时的几个限制。
{"title":"Extracting Coastal Water Depths from Multi-Temporal Sentinel-2 Images Using Convolutional Neural Networks","authors":"Y. Lumban-Gaol, K. Ohori, R. Peters","doi":"10.1080/01490419.2022.2091696","DOIUrl":"https://doi.org/10.1080/01490419.2022.2091696","url":null,"abstract":"Abstract Satellite-Derived Bathymetry (SDB) can be calculated using analytical or empirical approaches. Analytical approaches require several water properties and assumptions, which might not be known. Empirical approaches rely on the linear relationship between reflectances and in-situ depths, but the relationship may not be entirely linear due to bottom type variation, water column effect, and noise. Machine learning approaches have been used to address nonlinearity, but those treat pixels independently, while adjacent pixels are spatially correlated in depth. Convolutional Neural Networks (CNN) can detect this characteristic of the local connectivity. Therefore, this paper conducts a study of SDB using CNN and compares the accuracies between different areas and different amounts of training data, i.e., single and multi-temporal images. Furthermore, this paper discusses the accuracies of SDB when a pre-trained CNN model from one or a combination of multiple locations is applied to a new location. The results show that the accuracy of SDB using the CNN method outperforms existing works with other methods. Multi-temporal images enhance the variety in the training data and improve the CNN accuracy. SDB computation using the pre-trained model shows several limitations at particular depths or when water conditions differ.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"45 1","pages":"615 - 644"},"PeriodicalIF":1.6,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45353937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Analytical Method for High-Precision Seabed Surface Modelling Combining B-Spline Functions and Fourier Series b样条函数与傅里叶级数相结合的高精度海底表面建模分析方法
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-06-19 DOI: 10.1080/01490419.2022.2091695
Ruichen Zhang, Guojun Zhai, S. Bian, Houpu Li, B. Ji
Abstract High-accuracy seabed surface modelling provides multi-source high-precision fundamental geographic datasets for marine visual computing, seabed topography detection, marine biology, marine engineering and other fields. Proposed in this paper is a high-precision seabed surface model, which combines B-spline functions and Fourier-series, referred to as the Spline-Fourier-series (S-FS) method. Firstly, the mathematical relationship between the B-spline functions and Fourier-series in the modelling process is explored in depth, deducing the non-recursive basis functions of the Spline-Fourier-series model and the specific representation of the two dimensional Spline-Fourier-series model. Furthermore, using a publicly available Large-area bathymetric dataset, extensive experiments are conducted for comparisons with traditional methods (nearest-neighbor, bilinear, bicubic) and traditional Fourier-series, which generally shows the S-FS method has higher accuracy, better convergence and stronger robustness. Finally, based on its mathematically theoretical model, three characteristics (dimensionality reduction, multi-resolution expression and multi-scale visualization) of the S-FS method for constructing high-precision seabed surface are analyzed visually and deeply. Compared with B-spline function, the basic functions of the S-FS method inherit its prioritized compactly-supported performance and do not need to be recursively calculated anymore, thereby further showing its feasibility and extensibility in the field of high-precision seabed surface modelling.
高精度海底表面建模为海洋视觉计算、海底地形检测、海洋生物学、海洋工程等领域提供多源高精度基础地理数据集。本文提出了一种将b样条函数与傅里叶级数相结合的高精度海底表面模型,称为样条-傅里叶级数(S-FS)方法。首先,深入探讨了b样条函数与傅立叶级数在建模过程中的数学关系,推导出了样条-傅立叶级数模型的非递归基函数以及二维样条-傅立叶级数模型的具体表示。利用公开的大面积水深数据集,与传统方法(最近邻、双线性、双三次)和传统傅立叶级数进行了大量实验比较,结果表明S-FS方法具有更高的精度、更好的收敛性和更强的鲁棒性。最后,基于S-FS方法的数学理论模型,从视觉上深入分析了S-FS方法构建高精度海床表面的三个特点(降维、多分辨率表达和多尺度可视化)。与b样条函数相比,S-FS方法的基本函数继承了其优先的紧支撑性能,不再需要递归计算,进一步显示了其在高精度海底表面建模领域的可行性和可扩展性。
{"title":"Analytical Method for High-Precision Seabed Surface Modelling Combining B-Spline Functions and Fourier Series","authors":"Ruichen Zhang, Guojun Zhai, S. Bian, Houpu Li, B. Ji","doi":"10.1080/01490419.2022.2091695","DOIUrl":"https://doi.org/10.1080/01490419.2022.2091695","url":null,"abstract":"Abstract High-accuracy seabed surface modelling provides multi-source high-precision fundamental geographic datasets for marine visual computing, seabed topography detection, marine biology, marine engineering and other fields. Proposed in this paper is a high-precision seabed surface model, which combines B-spline functions and Fourier-series, referred to as the Spline-Fourier-series (S-FS) method. Firstly, the mathematical relationship between the B-spline functions and Fourier-series in the modelling process is explored in depth, deducing the non-recursive basis functions of the Spline-Fourier-series model and the specific representation of the two dimensional Spline-Fourier-series model. Furthermore, using a publicly available Large-area bathymetric dataset, extensive experiments are conducted for comparisons with traditional methods (nearest-neighbor, bilinear, bicubic) and traditional Fourier-series, which generally shows the S-FS method has higher accuracy, better convergence and stronger robustness. Finally, based on its mathematically theoretical model, three characteristics (dimensionality reduction, multi-resolution expression and multi-scale visualization) of the S-FS method for constructing high-precision seabed surface are analyzed visually and deeply. Compared with B-spline function, the basic functions of the S-FS method inherit its prioritized compactly-supported performance and do not need to be recursively calculated anymore, thereby further showing its feasibility and extensibility in the field of high-precision seabed surface modelling.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"45 1","pages":"519 - 556"},"PeriodicalIF":1.6,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46376325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hydrodynamic Modelling of Storm Surge with Modified Wind Fields along the East Coast of India 印度东海岸改变风场的风暴潮水动力模拟
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-06-02 DOI: 10.1080/01490419.2022.2082603
Rohini Selvaraj, Sannasiraj S. A., Sundar Vallam

Abstract

Propagation of tropical cyclones and their landfall along the coast affect the livelihood of the coastal community with loss of life, and Bay of Bengal is particularly vulnerable as past disasters have shown. The present study investigates the effects of tropical cyclones namely Phailin, Hudhud and Vardah during its landfall along the East Coast of India. Numerical modelling of storm surges primarily depends on the wind characteristics, for which, the performance of the simulated storm surge from cyclone wind and pressure fields of ECMWF is examined with Telemac-2D. The quality of the wind field is enhanced by applying available wind modification techniques, such as the parametric cyclone wind model superposed with ECMWF wind field, and the direct modification of ECMWF wind field. The superposed wind speed is found in good agreement with the measured wind data. The hydrodynamic simulation was then performed for the cyclonic events for the computation of the storm surge. The predictions agree well with the observed surges for the simulations performed with modified wind fields. The error reduced from 15 cm to 6 cm and model skill improved by 3% leading to a correlation coefficient of 0.98.

摘要热带气旋的传播及其在沿海地区的登陆影响了沿海社区的生计,造成了生命损失,而孟加拉湾就像过去的灾害所显示的那样特别脆弱。本研究探讨了热带气旋菲林、哈德哈德和瓦尔达在其沿印度东海岸登陆期间的影响。风暴潮的数值模拟主要取决于风的特征,为此,利用Telemac-2D对ECMWF气旋风场和气压场模拟的风暴潮进行了研究。采用参数化气旋风模式与ECMWF风场叠加、直接改造ECMWF风场等现有风改造技术,提高了风场质量。叠加风速与实测风速数据吻合较好。然后对气旋事件进行水动力模拟,计算风暴潮。这些预测结果与在改进风场条件下进行的模拟中观测到的浪涌吻合得很好。误差从15 cm减少到6 cm,模型技能提高了3%,相关系数为0.98。
{"title":"Hydrodynamic Modelling of Storm Surge with Modified Wind Fields along the East Coast of India","authors":"Rohini Selvaraj, Sannasiraj S. A., Sundar Vallam","doi":"10.1080/01490419.2022.2082603","DOIUrl":"https://doi.org/10.1080/01490419.2022.2082603","url":null,"abstract":"<p><b>Abstract</b></p><p>Propagation of tropical cyclones and their landfall along the coast affect the livelihood of the coastal community with loss of life, and Bay of Bengal is particularly vulnerable as past disasters have shown. The present study investigates the effects of tropical cyclones namely Phailin, Hudhud and Vardah during its landfall along the East Coast of India. Numerical modelling of storm surges primarily depends on the wind characteristics, for which, the performance of the simulated storm surge from cyclone wind and pressure fields of ECMWF is examined with Telemac-2D. The quality of the wind field is enhanced by applying available wind modification techniques, such as the parametric cyclone wind model superposed with ECMWF wind field, and the direct modification of ECMWF wind field. The superposed wind speed is found in good agreement with the measured wind data. The hydrodynamic simulation was then performed for the cyclonic events for the computation of the storm surge. The predictions agree well with the observed surges for the simulations performed with modified wind fields. The error reduced from 15 cm to 6 cm and model skill improved by 3% leading to a correlation coefficient of 0.98.</p>","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"107 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138516826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Self-Constraint Underwater Positioning Method without the Assistance of Measured Sound Velocity Profile 一种无需测量声速剖面辅助的水下自约束定位方法
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-05-18 DOI: 10.1080/01490419.2022.2079778
Jianhu Zhao, Wenbiao Liang, Jinye Ma, Meiqin Liu, Yuqing Li
Abstract Aiming at the problem that lack of the measured sound velocity profile (SVP) leads to the unreliable underwater positioning solution, this paper proposed an efficient underwater positioning method by the self-constraint conditions of water depth and sound velocity gradient. To construct the depth constraint condition, the sound propagation distance error model is deduced by acoustic ray tracing, and the sound vertical propagation error model related to the incident angle and sound velocity error is given firstly. By fitting the vertical propagation error model, the reference depth is solved, and the vertical propagation distances between the transducer and the underwater control points of all observation epochs are gotten. Then with the solved vertical distance of each epoch and the sound velocity gradient from neighbor SVPs as the constraint conditions, the SVP is retrieved by the simulated annealing (SA) algorithm. With the retrieved SVP, the underwater positioning can be performed when the measured SVP is absent. The proposed method was verified by an experiment in the 3000 m depth water area of the South China Sea. The results achieved 2.07 m/s of standard deviation of the SVP inversion, centimeter-level horizontal positioning accuracy and 0.54 m of vertical positioning accuracy under the circumstance of lack of SVP measurement.
摘要针对缺乏实测声速剖面导致水下定位解不可靠的问题,利用水深和声速梯度的自约束条件,提出了一种有效的水下定位方法。为了构造深度约束条件,通过声线追踪推导了声传播距离误差模型,并首先给出了与入射角和声速误差相关的声垂直传播误差模型。通过拟合垂直传播误差模型,求解了基准深度,得到了所有观测时期换能器与水下控制点之间的垂直传播距离。然后,以求解的每个历元的垂直距离和来自相邻SVP的声速梯度为约束条件,通过模拟退火(SA)算法检索SVP。利用检索到的SVP,当测量的SVP不存在时,可以执行水下定位。所提出的方法已在3000 m深的南海水域。结果达到2.07 SVP反演的标准偏差m/s,厘米级水平定位精度和0.54 m的垂直定位精度。
{"title":"A Self-Constraint Underwater Positioning Method without the Assistance of Measured Sound Velocity Profile","authors":"Jianhu Zhao, Wenbiao Liang, Jinye Ma, Meiqin Liu, Yuqing Li","doi":"10.1080/01490419.2022.2079778","DOIUrl":"https://doi.org/10.1080/01490419.2022.2079778","url":null,"abstract":"Abstract Aiming at the problem that lack of the measured sound velocity profile (SVP) leads to the unreliable underwater positioning solution, this paper proposed an efficient underwater positioning method by the self-constraint conditions of water depth and sound velocity gradient. To construct the depth constraint condition, the sound propagation distance error model is deduced by acoustic ray tracing, and the sound vertical propagation error model related to the incident angle and sound velocity error is given firstly. By fitting the vertical propagation error model, the reference depth is solved, and the vertical propagation distances between the transducer and the underwater control points of all observation epochs are gotten. Then with the solved vertical distance of each epoch and the sound velocity gradient from neighbor SVPs as the constraint conditions, the SVP is retrieved by the simulated annealing (SA) algorithm. With the retrieved SVP, the underwater positioning can be performed when the measured SVP is absent. The proposed method was verified by an experiment in the 3000 m depth water area of the South China Sea. The results achieved 2.07 m/s of standard deviation of the SVP inversion, centimeter-level horizontal positioning accuracy and 0.54 m of vertical positioning accuracy under the circumstance of lack of SVP measurement.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"46 1","pages":"62 - 82"},"PeriodicalIF":1.6,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48982416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An Empirical Study of the Influence of Seafloor Morphology on the Uncertainty of Bathymetric Data 海底形态对水深数据不确定性影响的实证研究
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-05-09 DOI: 10.1080/01490419.2022.2075499
Willian Ney Cassol, S. Daniel, É. Guilbert, N. Debese
Abstract The estimation of the uncertainty related to bathymetric data is essential in determining the quality of the data acquisition. This estimation is based on the covariance propagation considering the classical sounding georeferencing model. The estimation of the uncertainty using the Total Propagated Uncertainty (TPU) model is well described in the literature. Developing on this model, this study introduces an analysis of the morphological influence of the seafloor on the uncertainty value of the sounded points. Advancing the comprehension of the influence of the seafloor on the uncertainty value of the bathymetric data would improve the processing and interpretation of the seafloor surface as well as the structures present on the seafloor.
摘要与测深数据相关的不确定性的估计对于确定数据采集的质量至关重要。该估计基于协方差传播,考虑了经典的测深地理参考模型。文献中充分描述了使用总传播不确定性(TPU)模型估计不确定性。在该模型的基础上,本研究分析了海底形态对测点不确定性值的影响。加深对海底对测深数据不确定性值的影响的理解,将改进对海底表面以及海底结构的处理和解释。
{"title":"An Empirical Study of the Influence of Seafloor Morphology on the Uncertainty of Bathymetric Data","authors":"Willian Ney Cassol, S. Daniel, É. Guilbert, N. Debese","doi":"10.1080/01490419.2022.2075499","DOIUrl":"https://doi.org/10.1080/01490419.2022.2075499","url":null,"abstract":"Abstract The estimation of the uncertainty related to bathymetric data is essential in determining the quality of the data acquisition. This estimation is based on the covariance propagation considering the classical sounding georeferencing model. The estimation of the uncertainty using the Total Propagated Uncertainty (TPU) model is well described in the literature. Developing on this model, this study introduces an analysis of the morphological influence of the seafloor on the uncertainty value of the sounded points. Advancing the comprehension of the influence of the seafloor on the uncertainty value of the bathymetric data would improve the processing and interpretation of the seafloor surface as well as the structures present on the seafloor.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"45 1","pages":"496 - 518"},"PeriodicalIF":1.6,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44806664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Satellite Derived Bathymetry with Sentinel-2 Imagery: Comparing Traditional Techniques with Advanced Methods and Machine Learning Ensemble Models Sentinel-2成像的卫星测深:传统技术与先进方法的比较和机器学习集成模型
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-04-11 DOI: 10.1080/01490419.2022.2064572
Tyler Susa
Abstract Accurate charting of nearshore bathymetry is critical to the safe and dependable use of coastal waterways frequented by the trading, fishing, tourism, and ocean energy industries. The accessibility of satellite imagery and the availability of various satellite-derived bathymetry (SDB) techniques have provided a cost-effective alternative to traditional in-situ bathymetric surveys. Furthermore, improved algorithms and the advancement of machine learning models have provided opportunity for higher quality bathymetric derivations. However, to date the relative accuracy and performance between traditional physics-based techniques, improved physics-based methods, and machine learning ensemble models have not been adequately quantified. In this study, nearshore bathymetry is derived from Sentinel-2 satellite imagery near La Parguera, Puerto Rico utilizing a traditional band-ratio algorithm, a band-ratio switching method, a random forest machine learning model, and the XGBoost machine learning model. The machine learning models returned comparable results and were markedly more accurate relative to other techniques; however, both machine learning models required an extensive training dataset. All models were constrained by environmental influences and image spatial resolution, which were assessed to be the limiting factors for routine use of satellite-derived bathymetry as a reliable method for hydrographic surveying.
近岸水深测量的准确绘制对于贸易、渔业、旅游和海洋能源行业频繁使用的沿海航道的安全可靠使用至关重要。卫星图像的可访问性和各种卫星衍生测深(SDB)技术的可用性为传统的原位测深提供了一种具有成本效益的替代方案。此外,改进的算法和机器学习模型的进步为更高质量的水深衍生提供了机会。然而,迄今为止,传统的基于物理的技术、改进的基于物理的方法和机器学习集成模型之间的相对准确性和性能还没有得到充分的量化。在本研究中,利用传统的带比算法、带比切换方法、随机森林机器学习模型和XGBoost机器学习模型,从波多黎各La Parguera附近的Sentinel-2卫星图像中获得近岸水深测量数据。机器学习模型返回了类似的结果,并且相对于其他技术明显更准确;然而,这两种机器学习模型都需要广泛的训练数据集。所有模型都受到环境影响和图像空间分辨率的限制,这被评估为常规使用卫星衍生测深作为可靠的水文测量方法的限制因素。
{"title":"Satellite Derived Bathymetry with Sentinel-2 Imagery: Comparing Traditional Techniques with Advanced Methods and Machine Learning Ensemble Models","authors":"Tyler Susa","doi":"10.1080/01490419.2022.2064572","DOIUrl":"https://doi.org/10.1080/01490419.2022.2064572","url":null,"abstract":"Abstract Accurate charting of nearshore bathymetry is critical to the safe and dependable use of coastal waterways frequented by the trading, fishing, tourism, and ocean energy industries. The accessibility of satellite imagery and the availability of various satellite-derived bathymetry (SDB) techniques have provided a cost-effective alternative to traditional in-situ bathymetric surveys. Furthermore, improved algorithms and the advancement of machine learning models have provided opportunity for higher quality bathymetric derivations. However, to date the relative accuracy and performance between traditional physics-based techniques, improved physics-based methods, and machine learning ensemble models have not been adequately quantified. In this study, nearshore bathymetry is derived from Sentinel-2 satellite imagery near La Parguera, Puerto Rico utilizing a traditional band-ratio algorithm, a band-ratio switching method, a random forest machine learning model, and the XGBoost machine learning model. The machine learning models returned comparable results and were markedly more accurate relative to other techniques; however, both machine learning models required an extensive training dataset. All models were constrained by environmental influences and image spatial resolution, which were assessed to be the limiting factors for routine use of satellite-derived bathymetry as a reliable method for hydrographic surveying.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"45 1","pages":"435 - 461"},"PeriodicalIF":1.6,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48388000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Toll-Like Receptor Signalling Pathways and the Pathogenesis of Retinal Diseases. Toll-Like 受体信号通路与视网膜疾病的发病机制。
4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-03-31 eCollection Date: 2022-01-01 DOI: 10.3389/fopht.2022.850394
Owuraku Titi-Lartey, Imran Mohammed, Winfried M Amoaku

There is growing evidence that the pathogenesis of retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD) have a significant chronic inflammatory component. A vital part of the inflammatory cascade is through the activation of pattern recognition receptors (PRR) such as toll-like receptors (TLR). Here, we reviewed the past and current literature to ascertain the cumulative knowledge regarding the effect of TLRs on the development and progression of retinal diseases. There is burgeoning research demonstrating the relationship between TLRs and risk of developing retinal diseases, utilising a range of relevant disease models and a few large clinical investigations. The literature confirms that TLRs are involved in the development and progression of retinal diseases such as DR, AMD, and ischaemic retinopathy. Genetic polymorphisms in TLRs appear to contribute to the risk of developing AMD and DR. However, there are some inconsistencies in the published reports which require further elucidation. The evidence regarding TLR associations in retinal dystrophies including retinitis pigmentosa is limited. Based on the current evidence relating to the role of TLRs, combining anti-VEGF therapies with TLR inhibition may provide a longer-lasting treatment in some retinal vascular diseases.

越来越多的证据表明,糖尿病视网膜病变(DR)和老年性黄斑变性(AMD)等视网膜疾病的发病机理中有一个重要的慢性炎症因素。炎症级联的一个重要组成部分是通过激活模式识别受体(PRR),如收费样受体(TLR)。在此,我们回顾了过去和当前的文献,以确定有关 TLR 对视网膜疾病的发生和发展的影响的累积知识。利用一系列相关疾病模型和一些大型临床研究,证明 TLR 与视网膜疾病发病风险之间关系的研究正在蓬勃发展。文献证实,TLRs 与 DR、AMD 和缺血性视网膜病变等视网膜疾病的发生和发展有关。TLRs 的基因多态性似乎会增加罹患 AMD 和 DR 的风险。然而,已发表的报告中存在一些不一致之处,需要进一步澄清。有关 TLR 与视网膜营养不良(包括视网膜色素变性)相关性的证据十分有限。根据目前与 TLR 作用相关的证据,将抗血管内皮生长因子疗法与 TLR 抑制疗法相结合可能会为某些视网膜血管疾病提供更持久的治疗。
{"title":"Toll-Like Receptor Signalling Pathways and the Pathogenesis of Retinal Diseases.","authors":"Owuraku Titi-Lartey, Imran Mohammed, Winfried M Amoaku","doi":"10.3389/fopht.2022.850394","DOIUrl":"10.3389/fopht.2022.850394","url":null,"abstract":"<p><p>There is growing evidence that the pathogenesis of retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD) have a significant chronic inflammatory component. A vital part of the inflammatory cascade is through the activation of pattern recognition receptors (PRR) such as toll-like receptors (TLR). Here, we reviewed the past and current literature to ascertain the cumulative knowledge regarding the effect of TLRs on the development and progression of retinal diseases. There is burgeoning research demonstrating the relationship between TLRs and risk of developing retinal diseases, utilising a range of relevant disease models and a few large clinical investigations. The literature confirms that TLRs are involved in the development and progression of retinal diseases such as DR, AMD, and ischaemic retinopathy. Genetic polymorphisms in TLRs appear to contribute to the risk of developing AMD and DR. However, there are some inconsistencies in the published reports which require further elucidation. The evidence regarding TLR associations in retinal dystrophies including retinitis pigmentosa is limited. Based on the current evidence relating to the role of TLRs, combining anti-VEGF therapies with TLR inhibition may provide a longer-lasting treatment in some retinal vascular diseases.</p>","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"25 1","pages":"850394"},"PeriodicalIF":0.0,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11182157/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81223502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acoustic Ray-Trace Correction for UUVs Cooperative Localization in Deep Ocean Applications 深海无人潜航器协同定位的声线轨迹校正
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-03-29 DOI: 10.1080/01490419.2022.2059601
Zhenqiang Du, Hongzhou Chai, Zeyu Li, Minzhi Xiang, Fan Zhang, Jun Hui
Abstract Precise position of Unmanned Underwater Vehicles (UUVs) plays a decisive role in optimal formation control, reasonable path planning, and efficient cooperative operation. However, the traditional method has the deficiency of low ranging accuracy and contains systematic deviation in the deep ocean applications, which seriously affects the accuracy of UUVs position and makes the goal of UUVs optimal configuration no longer applicable. A novel acoustic ray-trace correction method is proposed for UUVs cooperative localization in deep ocean applications. Considering the bending of underwater sound ray and the variation of sound velocity, the model of UUVs cooperative localization based on ray-trace correction is established. Two master UUVs in shallow ocean and one slave UUV in deep ocean under five configurations are simulated. The experimental results show that the average position bias of UUVs cooperative localization under the five configurations are reduced by 57.97%, 62.29%, 68.51%, 74.93% and 82.54%, respectively, which can expand the application scenarios of UUV. Furthermore, the proposed method can overcome the drawback of systematic deviation in the traditional method, so as to be consistent with the goal of UUVs optimal configuration.
摘要无人潜航器的精确定位对最优编队控制、合理的路径规划和高效的协同作战起着决定性的作用。然而,在深海应用中,传统方法存在测距精度低的缺陷,并且存在系统偏差,严重影响了无人潜航器定位精度,使无人潜航机优化配置的目标不再适用。针对深海无人潜航器协同定位问题,提出了一种新的声线轨迹校正方法。考虑到水下声线的弯曲和声速的变化,建立了基于声线轨迹校正的无人潜航器协同定位模型。模拟了五种配置下的两个浅海主UUV和一个深海从UUV。实验结果表明,在五种配置下,无人潜航器协同定位的平均位置偏差分别降低了57.97%、62.29%、68.51%、74.93%和82.54%,可以扩展无人潜航机的应用场景。此外,该方法可以克服传统方法中系统偏差的缺点,从而符合无人潜水器优化配置的目标。
{"title":"Acoustic Ray-Trace Correction for UUVs Cooperative Localization in Deep Ocean Applications","authors":"Zhenqiang Du, Hongzhou Chai, Zeyu Li, Minzhi Xiang, Fan Zhang, Jun Hui","doi":"10.1080/01490419.2022.2059601","DOIUrl":"https://doi.org/10.1080/01490419.2022.2059601","url":null,"abstract":"Abstract Precise position of Unmanned Underwater Vehicles (UUVs) plays a decisive role in optimal formation control, reasonable path planning, and efficient cooperative operation. However, the traditional method has the deficiency of low ranging accuracy and contains systematic deviation in the deep ocean applications, which seriously affects the accuracy of UUVs position and makes the goal of UUVs optimal configuration no longer applicable. A novel acoustic ray-trace correction method is proposed for UUVs cooperative localization in deep ocean applications. Considering the bending of underwater sound ray and the variation of sound velocity, the model of UUVs cooperative localization based on ray-trace correction is established. Two master UUVs in shallow ocean and one slave UUV in deep ocean under five configurations are simulated. The experimental results show that the average position bias of UUVs cooperative localization under the five configurations are reduced by 57.97%, 62.29%, 68.51%, 74.93% and 82.54%, respectively, which can expand the application scenarios of UUV. Furthermore, the proposed method can overcome the drawback of systematic deviation in the traditional method, so as to be consistent with the goal of UUVs optimal configuration.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"45 1","pages":"595 - 614"},"PeriodicalIF":1.6,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46372703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Realization and Evaluation of Real-Time Uncombined GPS/Galileo/BDS PPP-RTK in the Offshore Area of China’s Bohai Sea 实时非组合GPS/Gileo/BDS PPP-RTK在中国渤海近海的实现与评估
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-03-28 DOI: 10.1080/01490419.2022.2057628
Xiao Yin, Hongzhou Chai, W. Xu, Liang Zhao, Huawei Zhu
Abstract The real-time kinematic (RTK) technology has been widely used as the high-precision positioning method in the offshore area. However, RTK requires a bi-directional communication and groups measurement errors together, thereby limiting its mass-market applications. Combining the advantages of precise point positioning (PPP) and RTK, PPP-RTK has become one of the hotspot technologies in the mass market. In this contribution, we propose the uncombined multi-GNSS PPP-RTK model using uncalibrated phase delays (UPDs) estimated from the legacy ionosphere-free and Melbourne-Wübbena combination. With the UPDs estimated based on 14 regional stations, we conduct PPP ambiguity resolution (AR) at 3 augmentation stations and derive precise atmospheric corrections, i.e., RMS of zenith tropospheric and slant ionospheric correction can be up to 4.89 mm and 2.20 cm, respectively. After applying atmospheric correction, the correct fixed solution of four on-board kinematic experiments can be better than 95% and the positioning accuracy can be better than 5 cm in both horizontal and vertical direction, showing the encouraging performance similar to RTK in the offshore area.
摘要实时动态技术(RTK)作为一种高精度的海洋定位方法,得到了广泛的应用。然而,RTK需要双向通信,并将测量误差分组在一起,从而限制了其在大众市场的应用。PPP-RTK结合了精确点定位(PPP)和RTK的优势,已成为大众市场的热点技术之一。在这篇文章中,我们提出了使用从传统的无电离层和Melbourne-Wübbena组合估计的未校准相位延迟(UPD)的非组合多GNSS PPP-RTK模型。利用基于14个区域站的UPD估计,我们在3个增强站进行了PPP模糊度分辨率(AR),并导出了精确的大气校正,即天顶对流层的RMS和倾斜电离层的校正可以高达4.89 mm和2.20 厘米。应用大气校正后,四次机载运动学实验的正确固定解可以优于95%,定位精度可以优于5 cm,显示出类似于RTK在海上区域的令人鼓舞的性能。
{"title":"Realization and Evaluation of Real-Time Uncombined GPS/Galileo/BDS PPP-RTK in the Offshore Area of China’s Bohai Sea","authors":"Xiao Yin, Hongzhou Chai, W. Xu, Liang Zhao, Huawei Zhu","doi":"10.1080/01490419.2022.2057628","DOIUrl":"https://doi.org/10.1080/01490419.2022.2057628","url":null,"abstract":"Abstract The real-time kinematic (RTK) technology has been widely used as the high-precision positioning method in the offshore area. However, RTK requires a bi-directional communication and groups measurement errors together, thereby limiting its mass-market applications. Combining the advantages of precise point positioning (PPP) and RTK, PPP-RTK has become one of the hotspot technologies in the mass market. In this contribution, we propose the uncombined multi-GNSS PPP-RTK model using uncalibrated phase delays (UPDs) estimated from the legacy ionosphere-free and Melbourne-Wübbena combination. With the UPDs estimated based on 14 regional stations, we conduct PPP ambiguity resolution (AR) at 3 augmentation stations and derive precise atmospheric corrections, i.e., RMS of zenith tropospheric and slant ionospheric correction can be up to 4.89 mm and 2.20 cm, respectively. After applying atmospheric correction, the correct fixed solution of four on-board kinematic experiments can be better than 95% and the positioning accuracy can be better than 5 cm in both horizontal and vertical direction, showing the encouraging performance similar to RTK in the offshore area.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"45 1","pages":"577 - 594"},"PeriodicalIF":1.6,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43174760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Framework for Automatic Coral Reef Extraction Using Sentinel-2 Image Time Series 利用Sentinel-2图像时间序列自动提取珊瑚礁的框架
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2022-03-22 DOI: 10.1080/01490419.2022.2051648
Qizhi Zhuang, Jian Zhang, Liang Cheng, Hui Chen, Yanruo Song, Song Chen, Sensen Chu, Shengkun Dongye, Manchun Li
Abstract Using supervised and unsupervised classification on a single image to extract coral reef extent results in missing data and wrong extraction results. To improve the accuracy of coral reef extraction, this study proposes a novel technical framework for automatic coral reef extraction based on an image filtering strategy and spatiotemporal similarity measurements of pixel-level Sentinel-2 image time series. This method was applied to the Anda Reef, Daxian Reef, and Nanhua Reef, China, using 1464 Sentinel-2 images obtained from 2015–2020. Sentinel-2 images were automatically selected considering space, time, cloud cover, and image entropy after atmospheric correction. With the binary classification measurement standard using the digitization coral reef results of the Sentinel-2 images as the true value, the time series established by the modified normalized difference water index demonstrated high robustness and accuracy. Analyzing the time series curves of the coral reef and deep water verified that the spatiotemporal similarity measurement of this framework can stably extract the boundaries of the coral reef.
摘要在单个图像上使用有监督和无监督分类来提取珊瑚礁范围,导致数据丢失和提取结果错误。为了提高珊瑚礁提取的准确性,本研究基于图像滤波策略和像素级Sentinel-2图像时间序列的时空相似性测量,提出了一种新的珊瑚礁自动提取技术框架。该方法应用于中国安达礁、大仙礁和南华礁,使用了2015年至2020年获得的1464张Sentinel-2图像。Sentinel-2图像是在考虑空间、时间、云量和大气校正后的图像熵的情况下自动选择的。采用以Sentinel-2图像的数字化珊瑚礁结果为真值的二元分类测量标准,通过修正的归一化差分水指数建立的时间序列具有较高的稳健性和准确性。通过对珊瑚礁和深水的时间序列曲线的分析,验证了该框架的时空相似性测量可以稳定地提取珊瑚礁的边界。
{"title":"Framework for Automatic Coral Reef Extraction Using Sentinel-2 Image Time Series","authors":"Qizhi Zhuang, Jian Zhang, Liang Cheng, Hui Chen, Yanruo Song, Song Chen, Sensen Chu, Shengkun Dongye, Manchun Li","doi":"10.1080/01490419.2022.2051648","DOIUrl":"https://doi.org/10.1080/01490419.2022.2051648","url":null,"abstract":"Abstract Using supervised and unsupervised classification on a single image to extract coral reef extent results in missing data and wrong extraction results. To improve the accuracy of coral reef extraction, this study proposes a novel technical framework for automatic coral reef extraction based on an image filtering strategy and spatiotemporal similarity measurements of pixel-level Sentinel-2 image time series. This method was applied to the Anda Reef, Daxian Reef, and Nanhua Reef, China, using 1464 Sentinel-2 images obtained from 2015–2020. Sentinel-2 images were automatically selected considering space, time, cloud cover, and image entropy after atmospheric correction. With the binary classification measurement standard using the digitization coral reef results of the Sentinel-2 images as the true value, the time series established by the modified normalized difference water index demonstrated high robustness and accuracy. Analyzing the time series curves of the coral reef and deep water verified that the spatiotemporal similarity measurement of this framework can stably extract the boundaries of the coral reef.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"45 1","pages":"195 - 231"},"PeriodicalIF":1.6,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45195113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Marine Geodesy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1