首页 > 最新文献

Marine Geodesy最新文献

英文 中文
Assessment of PRISMA Level-2 Hyperspectral Imagery for Large Scale Satellite-Derived Bathymetry Retrieval PRISMA二级高光谱成像用于大规模卫星测深反演的评估
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2022-01-22 DOI: 10.1080/01490419.2022.2032497
Evangelos Alevizos, T. Le Bas, D. Alexakis
Abstract Currently, several satellite-derived bathymetry (SDB) workflows are based on a variety of satellite imagery which are analyzed by empirical or analytical methods. The latest availability of PRISMA hyperspectral data provides a new opportunity for testing their application in shallow water bathymetry mapping. Here we utilize two Level-2 PRISMA scenes from the Caribbean Sea capturing seafloor areas with diverse benthic features and we analyze them using the shallow water analytical models provided by the water-color simulator (WASI) software. The presented study examines the influence of spatial resolution and end-member spectra on the SDB output. Consequently, in one study area we apply inversion using additional reference spectra and in the other study area we exploit the PRISMA panchromatic band for producing a pan-sharpened, hyperspectral cube for bathymetry inversion. The results show good correlation with reference bathymetry data (sonar and admiralty chart) suggesting that PRISMA imagery has a clear potential in optical bathymetry studies. The use of appropriate end-member spectra assists in enhancing the accuracy of SDB, and pan-sharpened PRISMA imagery assists in improving the results when detailed bathymetry is required. PRISMA imagery can be effectively analyzed with open-source software WASI-2D and thus contribute new bathymetric data to regional-scale seafloor mapping projects.
摘要目前,一些卫星测深工作流程基于各种卫星图像,这些图像通过经验或分析方法进行分析。PRISMA高光谱数据的最新可用性为测试其在浅水测深测绘中的应用提供了新的机会。在这里,我们利用加勒比海的两个二级PRISMA场景捕捉具有不同海底特征的海底区域,并使用由水色模拟器(WASI)软件提供的浅水分析模型对其进行分析。本研究考察了空间分辨率和端元光谱对SDB输出的影响。因此,在一个研究领域,我们使用额外的参考光谱进行反演,在另一个研究区域,我们利用PRISMA全色带来产生用于测深反演的泛锐化高光谱立方体。结果显示,PRISMA图像与参考测深数据(声纳和海图)具有良好的相关性,这表明PRISMA图像在光学测深研究中具有明显的潜力。使用适当的端部构件光谱有助于提高SDB的准确性,当需要详细的测深时,泛锐化PRISMA图像有助于改善结果。PRISMA图像可以使用开源软件WASI-2D进行有效分析,从而为区域尺度的海底测绘项目提供新的测深数据。
{"title":"Assessment of PRISMA Level-2 Hyperspectral Imagery for Large Scale Satellite-Derived Bathymetry Retrieval","authors":"Evangelos Alevizos, T. Le Bas, D. Alexakis","doi":"10.1080/01490419.2022.2032497","DOIUrl":"https://doi.org/10.1080/01490419.2022.2032497","url":null,"abstract":"Abstract Currently, several satellite-derived bathymetry (SDB) workflows are based on a variety of satellite imagery which are analyzed by empirical or analytical methods. The latest availability of PRISMA hyperspectral data provides a new opportunity for testing their application in shallow water bathymetry mapping. Here we utilize two Level-2 PRISMA scenes from the Caribbean Sea capturing seafloor areas with diverse benthic features and we analyze them using the shallow water analytical models provided by the water-color simulator (WASI) software. The presented study examines the influence of spatial resolution and end-member spectra on the SDB output. Consequently, in one study area we apply inversion using additional reference spectra and in the other study area we exploit the PRISMA panchromatic band for producing a pan-sharpened, hyperspectral cube for bathymetry inversion. The results show good correlation with reference bathymetry data (sonar and admiralty chart) suggesting that PRISMA imagery has a clear potential in optical bathymetry studies. The use of appropriate end-member spectra assists in enhancing the accuracy of SDB, and pan-sharpened PRISMA imagery assists in improving the results when detailed bathymetry is required. PRISMA imagery can be effectively analyzed with open-source software WASI-2D and thus contribute new bathymetric data to regional-scale seafloor mapping projects.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42260802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Precise Point Positioning with GNSS Raw Measurements from an Android Smartphone in Marine Environment Monitoring 海洋环境监测中基于Android智能手机GNSS原始测量的精确点定位
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2022-01-12 DOI: 10.1080/01490419.2022.2027831
N. Tunalioglu, T. Ocalan, Ali Hasan Doğan
Abstract In the next generation, the use of dual-frequency Embedded GNSS Chipset in the smart devices, which will be widely used in engineering applications, has been used for the first time in Xiaomi Mi8. Considering this development dynamics, a kinematic test was carried out in the marine environment monitoring with a geodetic GNSS receiver and an android smartphone in Turkey Oyak Port. According to the results of the test, RMSE for horizontal coordinate components were found as 0.0423 m and 5.9493 m for reference solution and PPP-AR solution of geodetic receiver, and reference solution and PPP solution of smartphone, respectively. Moreover, the positional errors of individual epochs were computed as 0.0411 m and 4.6871 m with respect to given order. The solution obtained from Xiaomi Mi8 raw GNSS data with PPP approach provides the Order 2 for hydrographic survey standards IHO S-44 in terms of Total Horizontal Uncertainty (THU).
摘要在下一代中,将在工程应用中广泛应用的双频嵌入式GNSS芯片组首次在小米Mi8中使用。考虑到这一发展动态,在土耳其Oyak港用测地GNSS接收器和安卓智能手机对海洋环境监测进行了运动学测试。根据测试结果,水平坐标分量的RMSE为0.0423 m和5.9493 m分别用于大地测量接收器的参考解和PPP-AR解,以及智能手机的参考解与PPP解。此外,单个历元的位置误差计算为0.0411 m和4.6871 m关于给定的次序。采用PPP方法从小米Mi8原始GNSS数据中获得的解决方案为水文测量标准IHO S-44的总水平不确定性(THU)提供了2级。
{"title":"Precise Point Positioning with GNSS Raw Measurements from an Android Smartphone in Marine Environment Monitoring","authors":"N. Tunalioglu, T. Ocalan, Ali Hasan Doğan","doi":"10.1080/01490419.2022.2027831","DOIUrl":"https://doi.org/10.1080/01490419.2022.2027831","url":null,"abstract":"Abstract In the next generation, the use of dual-frequency Embedded GNSS Chipset in the smart devices, which will be widely used in engineering applications, has been used for the first time in Xiaomi Mi8. Considering this development dynamics, a kinematic test was carried out in the marine environment monitoring with a geodetic GNSS receiver and an android smartphone in Turkey Oyak Port. According to the results of the test, RMSE for horizontal coordinate components were found as 0.0423 m and 5.9493 m for reference solution and PPP-AR solution of geodetic receiver, and reference solution and PPP solution of smartphone, respectively. Moreover, the positional errors of individual epochs were computed as 0.0411 m and 4.6871 m with respect to given order. The solution obtained from Xiaomi Mi8 raw GNSS data with PPP approach provides the Order 2 for hydrographic survey standards IHO S-44 in terms of Total Horizontal Uncertainty (THU).","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46447702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Case Study: Rigorous Boresight Alignment of a Marine Mobile LiDAR System Addressing the Specific Demands of Port Infrastructure Monitoring 案例研究:满足港口基础设施监测特定需求的海上移动激光雷达系统的严格轴视对准
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2022-01-11 DOI: 10.1080/01490419.2022.2025503
Mohsen H. Shahraji, C. Larouche
Abstract Accurate infrastructure monitoring of ports and harbors is a vital operation conducted by the port’s authority. To operate regularly in this highly dynamic environment, we explore the potential of the cutting-edge mobile LiDAR systems (MLS) mounted on a vessel. To generate a high-quality 3 D point cloud that would satisfy the expected accuracy required in the monitoring task, the LiDAR scanner and the positioning and orientation system (POS) must be angularly aligned also known as boresight alignment. In this research, we introduce a boresight alignment methodology adapted to the port infrastructure surveillance based on prefabricated planar targets. After an analysis of planar target simulated data, we propose a boresight alignment site design. Then, we apply this boresight alignment site design in a real-world scenario. Obtained results estimate accurately roll and yaw angles errors with standard deviations of less than 0.002 degrees and pitch angle error with standard deviation less than 0.015 degrees. Finally, we defined a validation site and described the procedure that uses these features to validate the quality of the estimated parameters. The relative comparison of the georeferenced point clouds, before and after boresight alignment demonstrates the mitigation of the boresight systematic error impact on the final point cloud.
对港口基础设施进行准确的监测是港务局的一项重要工作。为了在这种高度动态的环境中正常运行,我们探索了安装在船上的尖端移动激光雷达系统(MLS)的潜力。为了生成高质量的3d点云,以满足监测任务所需的预期精度,激光雷达扫描仪和定位和定向系统(POS)必须进行角度对齐,也称为轴视对齐。在本研究中,我们介绍了一种适用于港口基础设施监测的基于预制平面目标的瞄准方法。在对平面目标模拟数据进行分析的基础上,提出了一种准直点设计方案。然后,我们在一个真实的场景中应用这个轴向对齐站点设计。所得结果可准确估计横摇角和偏航角误差,标准差小于0.002度,俯仰角误差标准差小于0.015度。最后,我们定义了一个验证点,并描述了使用这些特征来验证估计参数质量的过程。轴视对准前后的地理参考点云的相对比较表明,轴视系统误差对最终点云的影响有所缓解。
{"title":"Case Study: Rigorous Boresight Alignment of a Marine Mobile LiDAR System Addressing the Specific Demands of Port Infrastructure Monitoring","authors":"Mohsen H. Shahraji, C. Larouche","doi":"10.1080/01490419.2022.2025503","DOIUrl":"https://doi.org/10.1080/01490419.2022.2025503","url":null,"abstract":"Abstract Accurate infrastructure monitoring of ports and harbors is a vital operation conducted by the port’s authority. To operate regularly in this highly dynamic environment, we explore the potential of the cutting-edge mobile LiDAR systems (MLS) mounted on a vessel. To generate a high-quality 3 D point cloud that would satisfy the expected accuracy required in the monitoring task, the LiDAR scanner and the positioning and orientation system (POS) must be angularly aligned also known as boresight alignment. In this research, we introduce a boresight alignment methodology adapted to the port infrastructure surveillance based on prefabricated planar targets. After an analysis of planar target simulated data, we propose a boresight alignment site design. Then, we apply this boresight alignment site design in a real-world scenario. Obtained results estimate accurately roll and yaw angles errors with standard deviations of less than 0.002 degrees and pitch angle error with standard deviation less than 0.015 degrees. Finally, we defined a validation site and described the procedure that uses these features to validate the quality of the estimated parameters. The relative comparison of the georeferenced point clouds, before and after boresight alignment demonstrates the mitigation of the boresight systematic error impact on the final point cloud.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42978508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishing a Marine Gravity Database around Egypt from Satellite Altimetry-Derived and Shipborne Gravity Data 利用卫星测高数据和船载重力数据建立埃及周围海洋重力数据库
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2021-12-30 DOI: 10.1080/01490419.2021.2020185
A. Zaki, Mahmoud Magdy, M. Rabah, A. Saber
Abstract For the purpose of marine geoid modeling and many other geodetic and geophysical applications, a marine gravity map around Egypt is established by the integration of gravity data provided by satellite altimetry and shipborne gravimetric observations. Firstly, the collected shipborne data were compared with GO_CONS_GCF_2_TIM_R6 and XGM2019e GGMs and with SSv29.1 and DTU17 altimetry models. Then, a pre-refinement of ship marine surveys was done with a rigorous condition, in which a number of 6525 points have been removed from the dataset. After that, 87709 points were deducted from the pre-filtered shipborne dataset to fit the study area and the cross-validation approach with the kriging interpolation algorithm were applied. A rigorous level of confidence was decided in this step where the points which have differences between the estimated and the observed values more than twice the STD of the residuals were removed until the STD reached a value less than 1 mGal. Finally, the filtered shipborne gravity data were combined with DTU17 (the best evaluation model) using the least-squares collocation technique (LSC). The final gravity map was tested using 8000 randomly chosen shipborne stations, which were not included when applying LSC, revealing the significant enhancement gained after the integration process.
为了海洋大地水准面建模和许多其他大地测量和地球物理应用,通过整合卫星测高和船载重力观测提供的重力数据,建立了埃及周围的海洋重力地图。首先,将收集到的船载数据与go_con_gcf_2_tim_r6和XGM2019e ggm以及SSv29.1和DTU17测高模型进行比较。然后,在严格的条件下对船舶海洋调查进行了预细化,其中从数据集中删除了6525个点。然后,从预滤波的船载数据集中扣除87709个点拟合研究区域,并采用kriging插值算法进行交叉验证。在这一步中确定了一个严格的置信水平,其中估计值与观测值之间的差异超过残差STD的两倍的点被去除,直到STD达到小于1 mGal的值。最后,利用最小二乘配置技术(LSC)将滤波后的船载重力数据与最佳评价模型DTU17相结合。最终的重力图使用随机选择的8000个船载站点进行测试,这些站点在应用LSC时不包括在内,揭示了整合过程后获得的显着增强。
{"title":"Establishing a Marine Gravity Database around Egypt from Satellite Altimetry-Derived and Shipborne Gravity Data","authors":"A. Zaki, Mahmoud Magdy, M. Rabah, A. Saber","doi":"10.1080/01490419.2021.2020185","DOIUrl":"https://doi.org/10.1080/01490419.2021.2020185","url":null,"abstract":"Abstract For the purpose of marine geoid modeling and many other geodetic and geophysical applications, a marine gravity map around Egypt is established by the integration of gravity data provided by satellite altimetry and shipborne gravimetric observations. Firstly, the collected shipborne data were compared with GO_CONS_GCF_2_TIM_R6 and XGM2019e GGMs and with SSv29.1 and DTU17 altimetry models. Then, a pre-refinement of ship marine surveys was done with a rigorous condition, in which a number of 6525 points have been removed from the dataset. After that, 87709 points were deducted from the pre-filtered shipborne dataset to fit the study area and the cross-validation approach with the kriging interpolation algorithm were applied. A rigorous level of confidence was decided in this step where the points which have differences between the estimated and the observed values more than twice the STD of the residuals were removed until the STD reached a value less than 1 mGal. Finally, the filtered shipborne gravity data were combined with DTU17 (the best evaluation model) using the least-squares collocation technique (LSC). The final gravity map was tested using 8000 randomly chosen shipborne stations, which were not included when applying LSC, revealing the significant enhancement gained after the integration process.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48218934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Evaluation of the ERA5 Significant Wave Height against NDBC Buoy Data from 1979 to 2019 1979 - 2019年ERA5有效波高与NDBC浮标数据的比较
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2021-12-16 DOI: 10.1080/01490419.2021.2011502
Jichao Wang, Yue Wang
Abstract Significant wave height (SWH) is a vital parameter in marine science research and engineering application. The up-to-date reanalysis product ERA5 SWH brings new possibilities to the long-term analysis. However, a systematic assessment of ERA5 SWH on a large scale is still lacking. This paper presents an evaluation of ERA5 SWH against observations from 103 buoys in the North American Atlantic and Pacific sourced by the National Data Buoy Center over the period 1979 to 2019. Overall, the ERA5 SWH has a good agreement with the in-situ observations, with a bias of −0.058 m, root mean squared error of 0.325 m, correlation coefficient of 0.961 and scatter index of 18.54%. The accuracy of ERA5 SWH is satisfactory under the most typical sea states (0.5 m < SWH < 4 m). The monthly analysis shows the performance of ERA5 SWH in summer is the best. The water depth and offshore distance have also been identified to impact the reliability of ERA5 SWH. Although the statistics vary at different locations, the performances of ERA5 SWH at most stations are reasonable. In addition, an evident improvement in the validity over time is observed, which can be attributed to the assimilation of the altimeter wave height.
有效波高(SWH)是海洋科学研究和工程应用中的一个重要参数。最新的再分析产品ERA5 SWH为长期分析带来了新的可能性。然而,目前仍缺乏对ERA5大尺度SWH的系统评价。本文利用美国国家数据浮标中心提供的北美大西洋和太平洋103个浮标1979 - 2019年的观测资料对ERA5 SWH进行了评价。总体而言,ERA5 SWH与现场观测值吻合较好,偏差为−0.058 m,均方根误差为0.325 m,相关系数为0.961,散点指数为18.54%。在最典型海况(0.5 m < SWH < 4 m)下,ERA5 SWH精度较好,逐月分析结果表明,ERA5 SWH在夏季表现最好。水深和离岸距离也会影响ERA5 SWH的可靠性。虽然不同位置的统计数据不同,但ERA5 SWH在大多数站点的性能是合理的。此外,观测到的有效性随时间的推移有明显的改善,这可归因于高度计波高的同化。
{"title":"Evaluation of the ERA5 Significant Wave Height against NDBC Buoy Data from 1979 to 2019","authors":"Jichao Wang, Yue Wang","doi":"10.1080/01490419.2021.2011502","DOIUrl":"https://doi.org/10.1080/01490419.2021.2011502","url":null,"abstract":"Abstract Significant wave height (SWH) is a vital parameter in marine science research and engineering application. The up-to-date reanalysis product ERA5 SWH brings new possibilities to the long-term analysis. However, a systematic assessment of ERA5 SWH on a large scale is still lacking. This paper presents an evaluation of ERA5 SWH against observations from 103 buoys in the North American Atlantic and Pacific sourced by the National Data Buoy Center over the period 1979 to 2019. Overall, the ERA5 SWH has a good agreement with the in-situ observations, with a bias of −0.058 m, root mean squared error of 0.325 m, correlation coefficient of 0.961 and scatter index of 18.54%. The accuracy of ERA5 SWH is satisfactory under the most typical sea states (0.5 m < SWH < 4 m). The monthly analysis shows the performance of ERA5 SWH in summer is the best. The water depth and offshore distance have also been identified to impact the reliability of ERA5 SWH. Although the statistics vary at different locations, the performances of ERA5 SWH at most stations are reasonable. In addition, an evident improvement in the validity over time is observed, which can be attributed to the assimilation of the altimeter wave height.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46796619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Impact of Initial and Boundary Conditions on Coupled Model Simulations for Bay of Bengal 初始和边界条件对孟加拉湾耦合模型模拟的影响
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2021-12-15 DOI: 10.1080/01490419.2021.2006376
Shailee Patel, Manisha Vithalpura, S. Mallick, S. Ratheesh
Abstract This study investigates the response of a high resolution coupled physical-ecosystem model simulations to initial and boundary conditions (IBCs) from various sources. For this purpose, we used physical parameters from the data sets World Ocean Atlas (WOA09), CSIRO Atlas of Regional Seas (CARS09) and North Indian Ocean Atlas (NIOA). Evaluating model simulated fields with standard validation data suggests that all three experiments could resolve most of the known surface and subsurface features of the Bay of Bengal (BoB) but with considerable differences in salinity and chlorophyll-a (Chl-a) and negligible differences in temperature among model simulations with various IBCs. The modeled Chl-a is well simulated with WOA09 as compared to NIOA and CARS09 data for climatological model simulations, with a correlation of 0.52 for the BoB. Moreover, the vertical distribution of Chl-a is found to be a function of nutrient supply to the base of the euphotic layer and mixed layer. These results significantly highlight the implicit and explicit use of IBCs for better representation of Chl-a concentration in the BoB from a high-resolution coupled model.
摘要本研究研究了高分辨率耦合物理生态系统模型模拟对各种来源的初始和边界条件(IBCs)的响应。为此,我们使用了来自世界海洋图集(WOA09)、CSIRO区域海洋图集(CARS09)和北印度洋图集(NIOA)的数据集的物理参数。用标准验证数据评估模型模拟场表明,所有三个实验都可以解决孟加拉湾(BoB)的大部分已知地表和地下特征,但在使用各种IBC的模型模拟中,盐度和叶绿素a(Chl-a)差异很大,温度差异可以忽略不计。与气候模型模拟的NIOA和CARS09数据相比,WOA09很好地模拟了模拟的Chl-a,BoB的相关性为0.52。此外,叶绿素a的垂直分布是向透光层和混合层底部提供营养的函数。这些结果显著突出了IBC的隐式和显式使用,以更好地表示高分辨率耦合模型中BoB中的Chl-a浓度。
{"title":"Impact of Initial and Boundary Conditions on Coupled Model Simulations for Bay of Bengal","authors":"Shailee Patel, Manisha Vithalpura, S. Mallick, S. Ratheesh","doi":"10.1080/01490419.2021.2006376","DOIUrl":"https://doi.org/10.1080/01490419.2021.2006376","url":null,"abstract":"Abstract This study investigates the response of a high resolution coupled physical-ecosystem model simulations to initial and boundary conditions (IBCs) from various sources. For this purpose, we used physical parameters from the data sets World Ocean Atlas (WOA09), CSIRO Atlas of Regional Seas (CARS09) and North Indian Ocean Atlas (NIOA). Evaluating model simulated fields with standard validation data suggests that all three experiments could resolve most of the known surface and subsurface features of the Bay of Bengal (BoB) but with considerable differences in salinity and chlorophyll-a (Chl-a) and negligible differences in temperature among model simulations with various IBCs. The modeled Chl-a is well simulated with WOA09 as compared to NIOA and CARS09 data for climatological model simulations, with a correlation of 0.52 for the BoB. Moreover, the vertical distribution of Chl-a is found to be a function of nutrient supply to the base of the euphotic layer and mixed layer. These results significantly highlight the implicit and explicit use of IBCs for better representation of Chl-a concentration in the BoB from a high-resolution coupled model.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42505934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Validating a New GNSS-Based Sea Level Instrument (CalNaGeo) at Senetosa Cape 在塞内托萨角验证基于gnss的新海平面仪(CalNaGeo)
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2021-12-13 DOI: 10.1080/01490419.2021.2013355
P. Bonnefond, O. Laurain, P. Exertier, M. Calzas, T. Guinle, N. Picot
Abstract The geodetic Corsica site was set up in 1998 in order to perform altimeter calibration of the TOPEX/Poseidon (T/P) mission and subsequently, Jason-1, OSTM/Jason-2, Jason-3 and more recently Sentinel-6 Michael Freilich (launched on November, 21 2020). The aim of the present study held in June 2015 is to validate a recently developed GNSS-based sea level instrument (called CalNaGeo) that is designed with the intention to map Sea Surface Heights (SSH) over large areas. This has been undertaken using the well-defined geodetic infrastructure deployed at Senetosa Cape, and involved the estimation of the stability of the waterline (and thus the instantaneous separation of a GNSS antenna from water level) as a function of the velocity at which the instrument is towed. The results show a largely linear relationship which is approximately 1 mm/(m/s) up to a maximum practical towing speed of ∼10 knots (∼5 m/s). By comparing to the existing “geoid” map, it is also demonstrated that CalNaGeo can measure a sea surface slope with a precision better than 1 mm/km (∼2.5% of the physical slope). Different processing techniques are used and compared including GNSS Precise Point Positioning (PPP, where the goal is to extend SSH mapping far from coastal GNSS reference stations) showing an agreement at the 1-2 cm level.
科西嘉测量站建立于1998年,目的是对TOPEX/Poseidon (T/P)任务以及随后的Jason-1、OSTM/Jason-2、Jason-3和最近的Sentinel-6 Michael Freilich(于2020年11月21日发射)进行高度计校准。本研究于2015年6月进行,目的是验证最近开发的基于gnss的海平面仪器(称为CalNaGeo),该仪器旨在绘制大面积的海面高度(SSH)。这是使用部署在塞内托萨角的定义明确的大地测量基础设施进行的,并涉及估计水线的稳定性(因此GNSS天线与水位的瞬时分离),作为仪器拖曳速度的函数。结果显示了一个很大程度上的线性关系,大约为1毫米/(米/秒),直到最大实际拖曳速度为~ 10节(~ 5米/秒)。通过与现有的“大地水准面”地图进行比较,还证明CalNaGeo可以以优于1 mm/km(物理坡度的约2.5%)的精度测量海面坡度。使用并比较了不同的处理技术,包括GNSS精确点定位(PPP,其目标是将SSH映射扩展到远离沿海GNSS参考站的地方),显示出1-2厘米水平的一致性。
{"title":"Validating a New GNSS-Based Sea Level Instrument (CalNaGeo) at Senetosa Cape","authors":"P. Bonnefond, O. Laurain, P. Exertier, M. Calzas, T. Guinle, N. Picot","doi":"10.1080/01490419.2021.2013355","DOIUrl":"https://doi.org/10.1080/01490419.2021.2013355","url":null,"abstract":"Abstract The geodetic Corsica site was set up in 1998 in order to perform altimeter calibration of the TOPEX/Poseidon (T/P) mission and subsequently, Jason-1, OSTM/Jason-2, Jason-3 and more recently Sentinel-6 Michael Freilich (launched on November, 21 2020). The aim of the present study held in June 2015 is to validate a recently developed GNSS-based sea level instrument (called CalNaGeo) that is designed with the intention to map Sea Surface Heights (SSH) over large areas. This has been undertaken using the well-defined geodetic infrastructure deployed at Senetosa Cape, and involved the estimation of the stability of the waterline (and thus the instantaneous separation of a GNSS antenna from water level) as a function of the velocity at which the instrument is towed. The results show a largely linear relationship which is approximately 1 mm/(m/s) up to a maximum practical towing speed of ∼10 knots (∼5 m/s). By comparing to the existing “geoid” map, it is also demonstrated that CalNaGeo can measure a sea surface slope with a precision better than 1 mm/km (∼2.5% of the physical slope). Different processing techniques are used and compared including GNSS Precise Point Positioning (PPP, where the goal is to extend SSH mapping far from coastal GNSS reference stations) showing an agreement at the 1-2 cm level.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43403790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A Hybrid Iterated Greedy Algorithm for Hydrographic Survey Routing Problem 水文测量路由问题的混合迭代贪婪算法
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2021-11-12 DOI: 10.1080/01490419.2021.1993386
S. D. Dao, Antoine Mallégol, P. Meyer, Mehrdad Mohammadi, S. Loyer
Abstract Hydrographic surveying is a necessary task in the maritime community, which can contribute to maritime security, economic development, scientific research, and environmental protection. Hydrographic surveying is a regular and costly activity; hence, careful hydrographic survey planning is required. Hydrographic survey routing is one of the main tasks in hydrographic survey planning, in which we not only need to find the most interesting maritime area(s) (usually evaluated through a risk measure, aggregating navigation risk, environmental impact, and/or data obsolescence), but also the shortest route to do the hydrographic surveying. In this article, first, we attempt to formulate the hydrographic survey routing problem and then develop an efficient hybrid iterated greedy algorithm to solve the problem. The proposed algorithm consists of three stages, that is, Stage 1 with a memetic algorithm to find a good starting point, Stage 2 with a global greedy algorithm to explore the global search space, and Stage 3 with a local greedy algorithm to exploit the local search space. Five real case studies in France are conducted to validate the performance of the developed algorithm.
摘要海道测量是海洋社会必不可少的一项工作,对海洋安全、经济发展、科学研究和环境保护具有重要意义。水文测量是一项定期和昂贵的活动;因此,需要仔细的水文测量规划。航道测量路线是航道测量规划的主要任务之一,我们不仅需要找到最有兴趣的海域(通常通过风险度量,综合航行风险,环境影响和/或数据过时进行评估),而且还需要找到最短的航道进行航道测量。在本文中,我们首先尝试制定航道测量路线问题,然后开发一种高效的混合迭代贪心算法来解决该问题。该算法分为三个阶段,即第一阶段使用模因算法寻找良好的起始点,第二阶段使用全局贪婪算法探索全局搜索空间,第三阶段使用局部贪婪算法利用局部搜索空间。在法国进行了五个实际案例研究,以验证所开发算法的性能。
{"title":"A Hybrid Iterated Greedy Algorithm for Hydrographic Survey Routing Problem","authors":"S. D. Dao, Antoine Mallégol, P. Meyer, Mehrdad Mohammadi, S. Loyer","doi":"10.1080/01490419.2021.1993386","DOIUrl":"https://doi.org/10.1080/01490419.2021.1993386","url":null,"abstract":"Abstract Hydrographic surveying is a necessary task in the maritime community, which can contribute to maritime security, economic development, scientific research, and environmental protection. Hydrographic surveying is a regular and costly activity; hence, careful hydrographic survey planning is required. Hydrographic survey routing is one of the main tasks in hydrographic survey planning, in which we not only need to find the most interesting maritime area(s) (usually evaluated through a risk measure, aggregating navigation risk, environmental impact, and/or data obsolescence), but also the shortest route to do the hydrographic surveying. In this article, first, we attempt to formulate the hydrographic survey routing problem and then develop an efficient hybrid iterated greedy algorithm to solve the problem. The proposed algorithm consists of three stages, that is, Stage 1 with a memetic algorithm to find a good starting point, Stage 2 with a global greedy algorithm to explore the global search space, and Stage 3 with a local greedy algorithm to exploit the local search space. Five real case studies in France are conducted to validate the performance of the developed algorithm.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48302724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Historical Shoreline Analysis and Field Monitoring at Ennore Coastal Stretch along the Southeast Coast of India 印度东南海岸埃诺尔海岸历史岸线分析与现场监测
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2021-11-08 DOI: 10.1080/01490419.2021.1992546
D. M, V. S., S. S. A., M. K
Abstract A shoreline change analysis has been carried out for the coastal stretch from Ennore creek to Karungali village located along the southeast coast of India. This 15 km-long coastal stretch had undergone significant changes such as erosion and accretion concerning infrastructure developments and leading to large impact on the livelihood of the community. To assess the shoreline changes, the analysis of multi-temporal satellite images has been carried out. A historical trend is established for the study period from 1991 to 2019. The analysis has been made in three timelines considering various developing activities. There was no significant coastal infrastructure development during 1991 to 1999; however, between 1999 and 2009, a major port, pier, and a groyne field were constructed. Additionally, a port was established between 2009 and 2019. Erosion was observed on the coast from Kattupalli to Karungali at a rate of −16.85 m/yr since 2009, while the coast on the south of Ennore port is accreting at the rate of +12.43 m/yr during the same period. The near-future projection using a linear regression model shows further erosion in the coast under similar conditions. The results of this study provide a baseline data for future anthropogenic activities along this coast.
摘要对印度东南海岸从Ennore溪到Karungali村的海岸线进行了海岸线变化分析。这15 公里长的海岸线发生了重大变化,如基础设施发展方面的侵蚀和堆积,对社区生计产生了巨大影响。为了评估海岸线的变化,对多时相卫星图像进行了分析。从1991年到2019年的研究期间确立了一个历史趋势。考虑到各种发展活动,分三个时间进行了分析。1991年至1999年期间没有重大的沿海基础设施发展;然而,在1999年至2009年间,建造了一个主要港口、码头和一个丁坝。此外,还在2009年至2019年期间建立了一个港口。在Kattupalli至Karungali的海岸上观察到侵蚀率为-16.85 自2009年以来,米/年,而Ennore港南部的海岸正以+12.43的速度增长 m/年。使用线性回归模型的近期预测显示,在类似条件下,海岸将进一步受到侵蚀。这项研究的结果为该海岸未来的人类活动提供了基线数据。
{"title":"Historical Shoreline Analysis and Field Monitoring at Ennore Coastal Stretch along the Southeast Coast of India","authors":"D. M, V. S., S. S. A., M. K","doi":"10.1080/01490419.2021.1992546","DOIUrl":"https://doi.org/10.1080/01490419.2021.1992546","url":null,"abstract":"Abstract A shoreline change analysis has been carried out for the coastal stretch from Ennore creek to Karungali village located along the southeast coast of India. This 15 km-long coastal stretch had undergone significant changes such as erosion and accretion concerning infrastructure developments and leading to large impact on the livelihood of the community. To assess the shoreline changes, the analysis of multi-temporal satellite images has been carried out. A historical trend is established for the study period from 1991 to 2019. The analysis has been made in three timelines considering various developing activities. There was no significant coastal infrastructure development during 1991 to 1999; however, between 1999 and 2009, a major port, pier, and a groyne field were constructed. Additionally, a port was established between 2009 and 2019. Erosion was observed on the coast from Kattupalli to Karungali at a rate of −16.85 m/yr since 2009, while the coast on the south of Ennore port is accreting at the rate of +12.43 m/yr during the same period. The near-future projection using a linear regression model shows further erosion in the coast under similar conditions. The results of this study provide a baseline data for future anthropogenic activities along this coast.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41709499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
P-Order Secant Method for Rapidly Solving the Ray Inverse Problem of Underwater Acoustic Positioning 快速求解水声定位射线逆问题的p阶割线法
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2021-10-19 DOI: 10.1080/01490419.2021.1992547
Wenlong Yang, S. Xue, Yixu Liu
Abstract The computational efficiency of underwater acoustic positioning based on the ray tracing is mainly limited to a great amount of calculation of ray inverse problem. We propose two kinds of p-order secant methods to improve the efficiency of traditional method, and the proposed methods can be regarded as a generalization of the traditional secant method from two points to p points for rapidly solving the inverse problem. In the proposed methods, the calculation information in previous iterations is utilized to fit a polynomial model to speed up the algorithm convergence. In the first-kind method, the inverse problem is calculated by solving a polynomial equation approximating the function mapping from the emission angle to the radial distance of the ray. In the second-kind method, the inverse problem is however directly solved by approximating the function mapping from the radial distance to the emission angle. As the first-kind method needs to solve a p-order polynomial equation, the practicability of this method is limited to the complexity of solving the high-order equation, while the second-kind method can directly approximate the solution of the inverse problem, which is more practical and flexible. The proposed methods have been verified in deep-sea trial. It shows that, the proposed methods can precisely produce the solution of the acoustic ray inverse problem within one iteration, and the computational efficiency of proposed method is about 6 times faster than that of the traditional method.
摘要基于射线追踪的水声定位的计算效率主要局限于射线反演问题的大量计算。我们提出了两种p阶割线方法来提高传统方法的效率,并且所提出的方法可以看作是传统割线方法从两点到p点的推广,用于快速求解逆问题。在所提出的方法中,利用先前迭代中的计算信息来拟合多项式模型,以加快算法的收敛速度。在第一种方法中,反问题是通过求解多项式方程来计算的,该方程近似于从发射角到射线径向距离的函数映射。然而,在第二种方法中,通过近似从径向距离到发射角的函数映射来直接解决反问题。由于第一种方法需要求解p阶多项式方程,因此该方法的实用性仅限于求解高阶方程的复杂性,而第二种方法可以直接逼近逆问题的解,更具实用性和灵活性。所提出的方法已在深海试验中得到验证。结果表明,所提出的方法可以在一次迭代中精确地求解声线逆问题,并且计算效率比传统方法快约6倍。
{"title":"P-Order Secant Method for Rapidly Solving the Ray Inverse Problem of Underwater Acoustic Positioning","authors":"Wenlong Yang, S. Xue, Yixu Liu","doi":"10.1080/01490419.2021.1992547","DOIUrl":"https://doi.org/10.1080/01490419.2021.1992547","url":null,"abstract":"Abstract The computational efficiency of underwater acoustic positioning based on the ray tracing is mainly limited to a great amount of calculation of ray inverse problem. We propose two kinds of p-order secant methods to improve the efficiency of traditional method, and the proposed methods can be regarded as a generalization of the traditional secant method from two points to p points for rapidly solving the inverse problem. In the proposed methods, the calculation information in previous iterations is utilized to fit a polynomial model to speed up the algorithm convergence. In the first-kind method, the inverse problem is calculated by solving a polynomial equation approximating the function mapping from the emission angle to the radial distance of the ray. In the second-kind method, the inverse problem is however directly solved by approximating the function mapping from the radial distance to the emission angle. As the first-kind method needs to solve a p-order polynomial equation, the practicability of this method is limited to the complexity of solving the high-order equation, while the second-kind method can directly approximate the solution of the inverse problem, which is more practical and flexible. The proposed methods have been verified in deep-sea trial. It shows that, the proposed methods can precisely produce the solution of the acoustic ray inverse problem within one iteration, and the computational efficiency of proposed method is about 6 times faster than that of the traditional method.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44242204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Marine Geodesy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1