首页 > 最新文献

Marine Geodesy最新文献

英文 中文
Detecting outliers in crowdsourced bathymetric data based on intelligently optimized 3D-DBSCAN algorithm 基于智能优化3D-DBSCAN算法的众包水深数据异常点检测
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-11-15 DOI: 10.1080/01490419.2023.2279086
Shuaidong Jia, Hao Yuan, Lihua Zhang, Zhicheng Liang, Zhou Yinfei
To address the problem of low quality of the outlier detection results caused by the irregular spatial distribution of crowdsourced bathymetric data, an intelligently optimized 3D-DBSCAN method is ...
针对众包水深数据空间分布不规则导致离群点检测结果质量不高的问题,提出了一种智能优化的3D-DBSCAN方法。
{"title":"Detecting outliers in crowdsourced bathymetric data based on intelligently optimized 3D-DBSCAN algorithm","authors":"Shuaidong Jia, Hao Yuan, Lihua Zhang, Zhicheng Liang, Zhou Yinfei","doi":"10.1080/01490419.2023.2279086","DOIUrl":"https://doi.org/10.1080/01490419.2023.2279086","url":null,"abstract":"To address the problem of low quality of the outlier detection results caused by the irregular spatial distribution of crowdsourced bathymetric data, an intelligently optimized 3D-DBSCAN method is ...","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"27 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138516833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global Sea Level Change Rate, Acceleration and Its Components from 1993 to 2016 1993 - 2016年全球海平面变化速率、加速度及其分量
4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-11-03 DOI: 10.1080/01490419.2023.2276478
Fengwei Wang, Yunzhong Shen, Qiujie Chen, Jianhua Chen, Jianhua Geng
AbstractInvestigating the global sea level budget is essential to quantify the total sea level change (altimetry) and its components, including the steric sea level change and the ocean mass change (gravity), where the latter is mainly attributed to four mass-driven components (Greenland, Antarctica, glaciers and land water storage). In this study, a 24-year global ocean mass change is derived by the joint use of Tongji-LEO2021 and Tongji-Grace2018 monthly gravity field models over 1993–2016, with which the sea level budgets in terms of rate and acceleration are investigated over global oceans within the latitudes 66oN to 66oS together with the IGG-SLR-HYBRID gravity field models, altimetry, steric and four mass-driven components. The statistical results show that the global mean ocean mass change rate accounts for ∼54% of 2.85 ± 0.30 mm/year of global mean total sea level change. The accelerations of global mean total sea level change and its components are 0.145 ± 0.025 mm/year2 (altimetry), 0.003 ± 0.021 mm/year2 (steric), 0.139 ± 0.047 mm/year2 (ocean mass from Tongji), and 0.137 ± 0.010 mm/year2 (the sum of mass-driven components) respectively, indicating that the global sea level budget in terms of acceleration can be closed and nearly no acceleration exists in the global mean steric sea level change for the period 1993–2016.Keywords: Global sea level changeGravity field modelsAltimetryStericAcceleration Disclosure StatementNo potential conflict of interest was reported by the author(s).Data Availability StatementThe merged altimetry gridded global sea level height anomalies are accessed at https://doi.org/10.24381/cds.4c328c78. The two situ steric datasets (EN4 and IK09) are accessed at https://doi.org/10.4121/12764933.v3. The Tongji-LEO2021 and Tongji-Grace2018 models are free to access from the websites of http://icgem.gfz-potsdam.de/series/03_other/Tongji/Tongji-LEO2021 and http://icgem.gfz-potsdam.de/series/03_other/Tongji/Tongji-Grace2018, respectively. Four mass components (i.e. Greenland, Antarctica, glaciers and land water storage) are accessed from https://catalogue.ceda.ac.uk/uuid/17c2ce31784048de93996275ee976fff. Besides, the IMBIE 2018 Antarctic and IMBIE 2019 Greenland datasets can be directly downloaded from the website of http://imbie.org/data-downloads/.Additional informationFundingThe research is supported by the Natural Science Foundation of China [42061134010, 42192532, 41731069 and 42174099] and the National Key R&D Program of China [2021YFB3900101].
摘要研究全球海平面收支对量化海平面总变化(海拔)及其分量至关重要,包括空间海平面变化和海洋质量变化(重力),其中海洋质量变化主要归因于四个质量驱动分量(格陵兰岛、南极洲、冰川和陆地蓄水)。本研究利用同济- leo2021和同济- grace - 2018每月重力场模型,结合IGG-SLR-HYBRID重力场模型、高程、空间和四个质量驱动分量,研究了1993-2016年全球海洋24年质量变化,研究了66oN ~ 66oS纬度范围内全球海洋海平面在速率和加速度方面的预算。统计结果表明,全球平均海洋质量变化率占全球平均总海平面变化(2.85±0.30 mm/年)的约54%。全球平均总海平面变化的加速度及其分量分别为0.145±0.025 mm/year2(高程)、0.003±0.021 mm/year2(空间)、0.139±0.047 mm/year2(同济洋面)和0.137±0.010 mm/year2(质量驱动分量之和),表明1993-2016年全球平均海平面变化在加速度方面可以接近,几乎不存在加速度。关键词:全球海平面变化重力场模型盐度时空加速度披露声明作者未报告潜在利益冲突。数据可用声明合并的高程网格全球海平面高度异常可在https://doi.org/10.24381/cds.4c328c78上访问。两个原位空间数据集(EN4和IK09)可在https://doi.org/10.4121/12764933.v3上访问。同济leo2021和同济grace2018可分别从http://icgem.gfz-potsdam.de/series/03_other/Tongji/Tongji-LEO2021和http://icgem.gfz-potsdam.de/series/03_other/Tongji/Tongji-Grace2018网站免费获取。四个质量组成部分(即格陵兰岛、南极洲、冰川和陆地储水)可从https://catalogue.ceda.ac.uk/uuid/17c2ce31784048de93996275ee976fff获取。本研究得到中国自然科学基金[42061134010,42192532,41731069和42174099]和中国国家重点研发计划[2021YFB3900101]的支持。
{"title":"Global Sea Level Change Rate, Acceleration and Its Components from 1993 to 2016","authors":"Fengwei Wang, Yunzhong Shen, Qiujie Chen, Jianhua Chen, Jianhua Geng","doi":"10.1080/01490419.2023.2276478","DOIUrl":"https://doi.org/10.1080/01490419.2023.2276478","url":null,"abstract":"AbstractInvestigating the global sea level budget is essential to quantify the total sea level change (altimetry) and its components, including the steric sea level change and the ocean mass change (gravity), where the latter is mainly attributed to four mass-driven components (Greenland, Antarctica, glaciers and land water storage). In this study, a 24-year global ocean mass change is derived by the joint use of Tongji-LEO2021 and Tongji-Grace2018 monthly gravity field models over 1993–2016, with which the sea level budgets in terms of rate and acceleration are investigated over global oceans within the latitudes 66oN to 66oS together with the IGG-SLR-HYBRID gravity field models, altimetry, steric and four mass-driven components. The statistical results show that the global mean ocean mass change rate accounts for ∼54% of 2.85 ± 0.30 mm/year of global mean total sea level change. The accelerations of global mean total sea level change and its components are 0.145 ± 0.025 mm/year2 (altimetry), 0.003 ± 0.021 mm/year2 (steric), 0.139 ± 0.047 mm/year2 (ocean mass from Tongji), and 0.137 ± 0.010 mm/year2 (the sum of mass-driven components) respectively, indicating that the global sea level budget in terms of acceleration can be closed and nearly no acceleration exists in the global mean steric sea level change for the period 1993–2016.Keywords: Global sea level changeGravity field modelsAltimetryStericAcceleration Disclosure StatementNo potential conflict of interest was reported by the author(s).Data Availability StatementThe merged altimetry gridded global sea level height anomalies are accessed at https://doi.org/10.24381/cds.4c328c78. The two situ steric datasets (EN4 and IK09) are accessed at https://doi.org/10.4121/12764933.v3. The Tongji-LEO2021 and Tongji-Grace2018 models are free to access from the websites of http://icgem.gfz-potsdam.de/series/03_other/Tongji/Tongji-LEO2021 and http://icgem.gfz-potsdam.de/series/03_other/Tongji/Tongji-Grace2018, respectively. Four mass components (i.e. Greenland, Antarctica, glaciers and land water storage) are accessed from https://catalogue.ceda.ac.uk/uuid/17c2ce31784048de93996275ee976fff. Besides, the IMBIE 2018 Antarctic and IMBIE 2019 Greenland datasets can be directly downloaded from the website of http://imbie.org/data-downloads/.Additional informationFundingThe research is supported by the Natural Science Foundation of China [42061134010, 42192532, 41731069 and 42174099] and the National Key R&D Program of China [2021YFB3900101].","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"54 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135819421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Case-Based Reasoning Method for Generalizing Depth Contours considering Both Navigational Safety Assurance and Line Shape Preservation 一种兼顾航行安全与线形保持的基于实例的深度轮廓泛化推理方法
4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-10-17 DOI: 10.1080/01490419.2023.2263907
Shuaidong Jia, Zikang Song, Lihua Zhang, Zhicheng Liang
AbstractTo address the problem that the parameters are relatively fixed in the existing automatic methods of depth contour generalization, a case-based reasoning method for generalizing depth contours is proposed considering navigational safety and line shape. First, the structured description of depth contours before and after cartography generalization is made to form case samples. Then, driven by the training samples, the machine learning of BP neural network model is constructed, to obtain the simplification degree taking into consideration the preservation of contour shapes. Finally, the generalization parameters are flexibly adjusted based on the simplification degree obtained through the case-based reasoning, so that depth contours can be adaptively generalized for various complex situations. The experimental results demonstrate that: (1) The case-based reasoning method can make the generalization of depth contours comply with the principle of navigational safety; (2) The case-based reasoning method has a stronger applicability maintaining the shape of depth contour, and is more suitable for the automatic generalization of depth contours, compared with the rolling circle method and the triangulation method. Generally, the case-based reasoning method has the potential to improve cartographic quality meeting the requirements of IHO specification, supporting the automatic production of ENC and nautical chart product.Keywords: Chart generalizationdepth contour generalizationnavigational safety assuranceline shape preservationcase-based reasoning AcknowledgmentsWe would like to thank the editor and anonymous reviewers for their valuable suggestions. We have made some modifications according their suggestions.Disclosure statementNo potential conflict of interest was reported by the authors.This paper is supported by National Natural Science Foundation of China (41901320, 41871369).Additional informationFundingThis paper is supported by National Natural Science Foundation of China (41901320, 41871369).
摘要针对现有深度轮廓自动泛化方法中参数相对固定的问题,提出了一种考虑航行安全和线形的基于实例的深度轮廓泛化推理方法。首先,对制图综合前后的深度等高线进行结构化描述,形成案例样本;然后,在训练样本的驱动下,构建BP神经网络的机器学习模型,得到考虑轮廓形状保留的简化程度。最后,根据案例推理得到的简化程度,灵活调整泛化参数,使深度轮廓能够适应各种复杂情况的泛化。实验结果表明:(1)基于实例的推理方法能使深度轮廓泛化符合航行安全原则;(2)与滚动圆法和三角剖分法相比,基于案例的推理方法在保持深度轮廓形状方面具有更强的适用性,更适合深度轮廓的自动泛化。一般来说,基于案例的推理方法有可能提高制图质量,满足IHO规范的要求,支持ENC和海图产品的自动生产。关键词:海图概化深度轮廓概化航行安全保证线条形状保留案例推理致谢感谢编辑和匿名审稿人提出的宝贵意见。我们根据他们的建议做了一些修改。披露声明作者未报告潜在的利益冲突。国家自然科学基金(41901320,41871369)资助。本文由国家自然科学基金资助(41901320,41871369)。
{"title":"A Case-Based Reasoning Method for Generalizing Depth Contours considering Both Navigational Safety Assurance and Line Shape Preservation","authors":"Shuaidong Jia, Zikang Song, Lihua Zhang, Zhicheng Liang","doi":"10.1080/01490419.2023.2263907","DOIUrl":"https://doi.org/10.1080/01490419.2023.2263907","url":null,"abstract":"AbstractTo address the problem that the parameters are relatively fixed in the existing automatic methods of depth contour generalization, a case-based reasoning method for generalizing depth contours is proposed considering navigational safety and line shape. First, the structured description of depth contours before and after cartography generalization is made to form case samples. Then, driven by the training samples, the machine learning of BP neural network model is constructed, to obtain the simplification degree taking into consideration the preservation of contour shapes. Finally, the generalization parameters are flexibly adjusted based on the simplification degree obtained through the case-based reasoning, so that depth contours can be adaptively generalized for various complex situations. The experimental results demonstrate that: (1) The case-based reasoning method can make the generalization of depth contours comply with the principle of navigational safety; (2) The case-based reasoning method has a stronger applicability maintaining the shape of depth contour, and is more suitable for the automatic generalization of depth contours, compared with the rolling circle method and the triangulation method. Generally, the case-based reasoning method has the potential to improve cartographic quality meeting the requirements of IHO specification, supporting the automatic production of ENC and nautical chart product.Keywords: Chart generalizationdepth contour generalizationnavigational safety assuranceline shape preservationcase-based reasoning AcknowledgmentsWe would like to thank the editor and anonymous reviewers for their valuable suggestions. We have made some modifications according their suggestions.Disclosure statementNo potential conflict of interest was reported by the authors.This paper is supported by National Natural Science Foundation of China (41901320, 41871369).Additional informationFundingThis paper is supported by National Natural Science Foundation of China (41901320, 41871369).","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136033326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validation of the Total Suspended Matter (TSM) algorithm using in situ datasets over the Bay of Bengal Coastal Water 使用孟加拉湾沿岸水域现场数据集验证总悬浮物(TSM)算法
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-08-25 DOI: 10.1080/01490419.2023.2249229
Bimalkumar Patel, Apurva Prajapati, R. Sarangi, Bhargav Devliya, Hitesh Patel
Abstract TSM (Total suspended matter) is important metric because it influences ocean biogeochemistry and seaweed habitat. Light penetration is influenced by the TSM range, which is linked to primary producer photosynthesis. Many regional and global approaches for measuring various ocean parameters using satellite remote sensing have been developed. The authors developed the linear TSM algorithm in 2022 using in situ data from the Arabian Sea, which has been validated in this work utilising in situ sampling along the Bay of Bengal coast to test its resilience. The algorithm has the remote sensing reflectance band ratio Rrs681/Rrs490 that has been validated against in situ TSM (R2 = 0.88, MAD = 12.28, RMSE = 12.45, NRMSE = 11.60) and satellite validation with OLCI-A (Ocean and Land Colour Instrument-A). OLCI A TSM product discovered poor regression with in situ datasets, suggesting that the algorithm in OLCI A might be modified. The article infers that the validated TSM algorithm in the Bay of Bengal could be useful for different satellite-based synoptic TSM mapping for the Indian Oceansat-3 OCM (Ocean Colour Monitor) mission as TSM could benefit seaweeds and biogeochemistry by improving nutrient flow, trophic interactions, shielding against UV radiation, and adding organic carbon pool.
{"title":"Validation of the Total Suspended Matter (TSM) algorithm using in situ datasets over the Bay of Bengal Coastal Water","authors":"Bimalkumar Patel, Apurva Prajapati, R. Sarangi, Bhargav Devliya, Hitesh Patel","doi":"10.1080/01490419.2023.2249229","DOIUrl":"https://doi.org/10.1080/01490419.2023.2249229","url":null,"abstract":"Abstract TSM (Total suspended matter) is important metric because it influences ocean biogeochemistry and seaweed habitat. Light penetration is influenced by the TSM range, which is linked to primary producer photosynthesis. Many regional and global approaches for measuring various ocean parameters using satellite remote sensing have been developed. The authors developed the linear TSM algorithm in 2022 using in situ data from the Arabian Sea, which has been validated in this work utilising in situ sampling along the Bay of Bengal coast to test its resilience. The algorithm has the remote sensing reflectance band ratio Rrs681/Rrs490 that has been validated against in situ TSM (R2 = 0.88, MAD = 12.28, RMSE = 12.45, NRMSE = 11.60) and satellite validation with OLCI-A (Ocean and Land Colour Instrument-A). OLCI A TSM product discovered poor regression with in situ datasets, suggesting that the algorithm in OLCI A might be modified. The article infers that the validated TSM algorithm in the Bay of Bengal could be useful for different satellite-based synoptic TSM mapping for the Indian Oceansat-3 OCM (Ocean Colour Monitor) mission as TSM could benefit seaweeds and biogeochemistry by improving nutrient flow, trophic interactions, shielding against UV radiation, and adding organic carbon pool.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44232032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic Collision Avoidance Route Planning Method in Complex Navigation Environments 复杂导航环境下的自动避碰路径规划方法
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-08-08 DOI: 10.1080/01490419.2023.2241636
Yinfei Zho, Lihua Zhang, Shuaidong Jia, Zeyuan Dai, Junnan Liu
Abstract Efficient collision avoidance (CA) route planning is one of the important technologies for ensuring the safety of autonomous ships. Many CA route planning studies have been developed for the open sea, but few studies have been conducted for ships in complex navigation environments. A complex navigation environment refers to water encompassing various factors, such as multiple obstacles, varying water depths, ships collision risk, and other maritime challenges. These factors collectively contribute to the complexity of the environment. CA planning in this type of environment is a special type of route planning. To address CA in complex navigation environments, firstly, the route binary tree algorithm is utilized for conducting global route planning in order to determine the optimal path. Secondly, this paper proposes a dynamic generation of local collision avoidance trajectories along the optimal path, seamlessly integrating global route optimization and local collision avoidance. Finally, a comparative analysis is conducted using classical techniques to verify the effectiveness of the proposed method. Numerical simulation results reveal that when a ship is taken as the object of CA in the open sea, the route generated using the proposed method exhibits a remarkable level of unity with the one generated by the benchmark method of improved Artificial Potential Field (APF), particularly in terms of collision avoidance strategy selection, collision avoidance trends, and the actual trajectory. The former’s computational efficiency is improved by at least 30%. When dealing with CA at sea, with complex navigation obstacles, the proposed method considers static complex navigation obstacles, dynamic ships, and their unpredictable strategies to timeously generate a safe path which considers some key rules from the COLREGS (International Regulations for Preventing Collisions at Sea) (IMO, 1972).
{"title":"Automatic Collision Avoidance Route Planning Method in Complex Navigation Environments","authors":"Yinfei Zho, Lihua Zhang, Shuaidong Jia, Zeyuan Dai, Junnan Liu","doi":"10.1080/01490419.2023.2241636","DOIUrl":"https://doi.org/10.1080/01490419.2023.2241636","url":null,"abstract":"Abstract Efficient collision avoidance (CA) route planning is one of the important technologies for ensuring the safety of autonomous ships. Many CA route planning studies have been developed for the open sea, but few studies have been conducted for ships in complex navigation environments. A complex navigation environment refers to water encompassing various factors, such as multiple obstacles, varying water depths, ships collision risk, and other maritime challenges. These factors collectively contribute to the complexity of the environment. CA planning in this type of environment is a special type of route planning. To address CA in complex navigation environments, firstly, the route binary tree algorithm is utilized for conducting global route planning in order to determine the optimal path. Secondly, this paper proposes a dynamic generation of local collision avoidance trajectories along the optimal path, seamlessly integrating global route optimization and local collision avoidance. Finally, a comparative analysis is conducted using classical techniques to verify the effectiveness of the proposed method. Numerical simulation results reveal that when a ship is taken as the object of CA in the open sea, the route generated using the proposed method exhibits a remarkable level of unity with the one generated by the benchmark method of improved Artificial Potential Field (APF), particularly in terms of collision avoidance strategy selection, collision avoidance trends, and the actual trajectory. The former’s computational efficiency is improved by at least 30%. When dealing with CA at sea, with complex navigation obstacles, the proposed method considers static complex navigation obstacles, dynamic ships, and their unpredictable strategies to timeously generate a safe path which considers some key rules from the COLREGS (International Regulations for Preventing Collisions at Sea) (IMO, 1972).","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47613952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calibration of the Instrumental Errors on Marine Gravity Recovery from SWOT Altimeter SWOT高度计海洋重力恢复仪器误差的校正
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-07-19 DOI: 10.1080/01490419.2023.2232107
Gang Ma, T. Jin, Pengyuan Jiang, Jiasheng Shi, Mao Zhou
Abstract The wide-swath altimetry mission, Surface Water and Ocean Topography (SWOT), makes it possible to further break through the accuracy and resolution of marine gravity field recovery. However, as its main payload, the Ka-band radar interferometer (KaRIN) is easy to be affected by the spacecraft attitude, mechanical deformations and dual antenna signal reception status, which generates instrumental errors including roll errors, phase errors, baseline dilation errors, timing errors, and KaRIN noise. Together with ocean temporal variations, the instrumental errors have large effects on the SWOT Sea Surface Height (SSH) observations and hence the marine gravity field recovery. Here, taking the sea area around Japan as an example, we investigated the calibrations of instrumental errors and ocean temporal variations on the recovery of the marine gravity field. The SSH observations of SWOT are first simulated by Mean Sea Surface (MSS), Absolute Dynamic Topography (ADT), Mean Dynamic Topography (MDT) and instrumental errors. Next, the influence of instrumental errors on determining vertical deflection within single-cycle data was analyzed. Then, three calibration methods (KaRIN/KaRIN cross-calibration, Representative KaRIN/KaRIN cross-calibration, and KaRIN/Nadir cross-calibration) are used to reduce the instrumental errors; the experimental results show KaRIN/KaRIN cross-calibration is the optimal one. Last, for the multi-cycle observations containing ocean temporal variations, crossover calibration is done in single cycle and then followed by collinear adjustment in multi-cycles. This approach is verified by considering 18 simulated cycles that cover almost 1 year. Our result indicates an improvement in the accuracy of marine gravity anomaly by about 45% compared to that of one cycle. The calibration strategy of instrumental errors and ocean temporal variations can be used for high-precision marine gravity field recovery with abundant SWOT observations in the near future.
摘要广域测高任务,地表水和海洋地形(SWOT),使进一步突破海洋重力场恢复的准确性和分辨率成为可能。然而,Ka波段雷达干涉仪作为其主要有效载荷,容易受到航天器姿态、机械变形和双天线信号接收状态的影响,从而产生仪器误差,包括滚转误差、相位误差、基线膨胀误差、定时误差和KaRIN噪声。仪器误差与海洋时间变化一起,对SWOT海面高度(SSH)观测结果以及海洋重力场恢复产生了很大影响。本文以日本周边海域为例,研究了仪器误差和海洋时间变化对海洋重力场恢复的影响。SWOT的SSH观测首先通过平均海面(MSS)、绝对动态地形(ADT)、平均动态地形(MDT)和仪器误差进行模拟。其次,分析了仪器误差对单周数据内垂直挠度测定的影响。然后,使用三种校准方法(KaRIN/KaRIN交叉校准、代表性KaRIN/KaRIN交叉校准和KaRIN/Nadir交叉校准)来减少仪器误差;实验结果表明,KaRIN/KaRIN交叉校准是最佳的交叉校准。最后,对于包含海洋时间变化的多周期观测,在单周期内进行交叉校准,然后在多周期内进行共线平差。该方法通过考虑18个模拟循环来验证,这些模拟循环几乎涵盖了1 年我们的结果表明,与一个周期相比,海洋重力异常的精度提高了约45%。仪器误差和海洋时间变化的校准策略可以在不久的将来用于具有丰富SWOT观测的高精度海洋重力场恢复。
{"title":"Calibration of the Instrumental Errors on Marine Gravity Recovery from SWOT Altimeter","authors":"Gang Ma, T. Jin, Pengyuan Jiang, Jiasheng Shi, Mao Zhou","doi":"10.1080/01490419.2023.2232107","DOIUrl":"https://doi.org/10.1080/01490419.2023.2232107","url":null,"abstract":"Abstract The wide-swath altimetry mission, Surface Water and Ocean Topography (SWOT), makes it possible to further break through the accuracy and resolution of marine gravity field recovery. However, as its main payload, the Ka-band radar interferometer (KaRIN) is easy to be affected by the spacecraft attitude, mechanical deformations and dual antenna signal reception status, which generates instrumental errors including roll errors, phase errors, baseline dilation errors, timing errors, and KaRIN noise. Together with ocean temporal variations, the instrumental errors have large effects on the SWOT Sea Surface Height (SSH) observations and hence the marine gravity field recovery. Here, taking the sea area around Japan as an example, we investigated the calibrations of instrumental errors and ocean temporal variations on the recovery of the marine gravity field. The SSH observations of SWOT are first simulated by Mean Sea Surface (MSS), Absolute Dynamic Topography (ADT), Mean Dynamic Topography (MDT) and instrumental errors. Next, the influence of instrumental errors on determining vertical deflection within single-cycle data was analyzed. Then, three calibration methods (KaRIN/KaRIN cross-calibration, Representative KaRIN/KaRIN cross-calibration, and KaRIN/Nadir cross-calibration) are used to reduce the instrumental errors; the experimental results show KaRIN/KaRIN cross-calibration is the optimal one. Last, for the multi-cycle observations containing ocean temporal variations, crossover calibration is done in single cycle and then followed by collinear adjustment in multi-cycles. This approach is verified by considering 18 simulated cycles that cover almost 1 year. Our result indicates an improvement in the accuracy of marine gravity anomaly by about 45% compared to that of one cycle. The calibration strategy of instrumental errors and ocean temporal variations can be used for high-precision marine gravity field recovery with abundant SWOT observations in the near future.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"46 1","pages":"496 - 522"},"PeriodicalIF":1.6,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48910963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of the Sea State Bias Using the Interpolation Method and Applications to Inter-Mission Calibration 用插值法估计海况偏差及其在任务间校准中的应用
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-07-04 DOI: 10.1080/01490419.2023.2229019
Alexa Putnam, S. Desai, R. S. Nerem
Abstract An alternative approach to empirical, non-parametric sea state bias (SSB) modeling for satellite altimeter measurements was developed with the intention of providing a simple, transparent, and efficient means to derive both a raw and smoothed SSB solution. This alternative approach, referred to as the interpolation method, maintains the flexibility to generate 2-D or 3-D models using either direct or difference measurements of the sea level anomaly uncorrected for SSB (uSLA). The final, smoothed SSB solution derived using the interpolation method is obtained over three steps, with a supplemental fourth step that consists of estimating a model-dependent dual-frequency ionosphere calibration bias to correct for a relative range + SSB error. A tandem phase analysis for all Topex/Poseidon, Jason 1-3 and Sentinel-6 Michael Freilich satellite altimeter inter-calibration periods reveals that the ionosphere calibration bias removes an ionosphere-related component from intermission bias calculations required to generate the long-term sea level record.
{"title":"Estimation of the Sea State Bias Using the Interpolation Method and Applications to Inter-Mission Calibration","authors":"Alexa Putnam, S. Desai, R. S. Nerem","doi":"10.1080/01490419.2023.2229019","DOIUrl":"https://doi.org/10.1080/01490419.2023.2229019","url":null,"abstract":"Abstract An alternative approach to empirical, non-parametric sea state bias (SSB) modeling for satellite altimeter measurements was developed with the intention of providing a simple, transparent, and efficient means to derive both a raw and smoothed SSB solution. This alternative approach, referred to as the interpolation method, maintains the flexibility to generate 2-D or 3-D models using either direct or difference measurements of the sea level anomaly uncorrected for SSB (uSLA). The final, smoothed SSB solution derived using the interpolation method is obtained over three steps, with a supplemental fourth step that consists of estimating a model-dependent dual-frequency ionosphere calibration bias to correct for a relative range + SSB error. A tandem phase analysis for all Topex/Poseidon, Jason 1-3 and Sentinel-6 Michael Freilich satellite altimeter inter-calibration periods reveals that the ionosphere calibration bias removes an ionosphere-related component from intermission bias calculations required to generate the long-term sea level record.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"1 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43076871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Estimation of the sea state bias error budget for pulse-limited satellite altimetry 脉冲限制卫星测高的海况偏差误差预算估计
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-06-19 DOI: 10.1080/01490419.2023.2224513
Alexa Putnam, S. Desai, R. S. Nerem
Abstract Using an empirical, non-parametric sea state bias (SSB) modeling method, which was developed as a tool for SSB error analysis (Putnam, Alexa Forthcoming), we provide an error budget for overall SSB error, as well as the contributing sources of this error budget. The error analysis compares methods used to derive SSB models from observed altimeter measurements, collinear differences of measurements from adjacent repeat cycles, and methods using both collinear and crossover differences of measurements. Our error analysis reveals systematic error caused by ionosphere correction uncertainty in SSB models obtained from direct measurements, and wet troposphere correction uncertainty in SSB models generated using difference measurements. Results also expose a correlation to altimeter measurement error, with the backscatter coefficient accounting for over 20% of the SSB evaluation error and SWH accounting for approximately 50-60%. The error analysis presented here suggests SSB errors are lower than the often-used approximation of SSB error as 1% of SWH, except at SWH values less than 2 m where errors are likely larger. We find that increasing the pulse repetition frequency of the altimeter reduces SSB errors. The future for improving empirical, nonparametric SSB estimation primarily depends on improving measured SWH.
摘要使用经验的非参数海况偏差(SSB)建模方法,该方法是作为SSB误差分析工具开发的(Putnam,Alexa Forthoning),我们提供了SSB总体误差的误差预算,以及该误差预算的贡献来源。误差分析比较了从观测到的高度计测量得出SSB模型的方法、相邻重复循环测量的共线差异以及使用共线和交叉测量差异的方法。我们的误差分析揭示了由直接测量获得的SSB模型中的电离层校正不确定性和使用差分测量生成的SSB模式中的湿对流层校正不确定性引起的系统误差。结果还揭示了与高度计测量误差的相关性,后向散射系数占SSB评估误差的20%以上,SWH约占50-60%。这里给出的误差分析表明,SSB误差低于通常使用的SSB误差的近似值,即SWH的1%,除非SWH值小于2 m,其中误差可能更大。我们发现,增加高度计的脉冲重复频率可以减少SSB误差。改进经验非参数SSB估计的未来主要取决于改进测量的SWH。
{"title":"Estimation of the sea state bias error budget for pulse-limited satellite altimetry","authors":"Alexa Putnam, S. Desai, R. S. Nerem","doi":"10.1080/01490419.2023.2224513","DOIUrl":"https://doi.org/10.1080/01490419.2023.2224513","url":null,"abstract":"Abstract Using an empirical, non-parametric sea state bias (SSB) modeling method, which was developed as a tool for SSB error analysis (Putnam, Alexa Forthcoming), we provide an error budget for overall SSB error, as well as the contributing sources of this error budget. The error analysis compares methods used to derive SSB models from observed altimeter measurements, collinear differences of measurements from adjacent repeat cycles, and methods using both collinear and crossover differences of measurements. Our error analysis reveals systematic error caused by ionosphere correction uncertainty in SSB models obtained from direct measurements, and wet troposphere correction uncertainty in SSB models generated using difference measurements. Results also expose a correlation to altimeter measurement error, with the backscatter coefficient accounting for over 20% of the SSB evaluation error and SWH accounting for approximately 50-60%. The error analysis presented here suggests SSB errors are lower than the often-used approximation of SSB error as 1% of SWH, except at SWH values less than 2 m where errors are likely larger. We find that increasing the pulse repetition frequency of the altimeter reduces SSB errors. The future for improving empirical, nonparametric SSB estimation primarily depends on improving measured SWH.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"46 1","pages":"460 - 478"},"PeriodicalIF":1.6,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48816605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Precise Navigation of USV Based on PPP-RTK/MEMS in the Offshore Environment 基于PPP-RTK/MEMS的海上无人潜航器精确导航
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-06-19 DOI: 10.1080/01490419.2023.2223764
Minzhi Xiang, Hongzhou Chai, Xiao Yin, Zhenqiang Du, Kaidi Jin
Abstract High-precision position, velocity and attitude information is the premise for the unmanned surface vehicle (USV) to perform various tasks. The traditional navigation technology of USV is to combine RTK (real-time kinematics) with MEMS (micro-electromechanical system). In order to avoid bi-directional communication of RTK/MEMS, a loosely coupled PPP (precise point positioning)-RTK/MEMS navigation method is proposed in this contribution, where the un-combined PPP-RTK positioning model and advanced time-differenced carrier-phase (TDCP) velocity determination model is adopted. When the reference stations are far away from the user, i.e., more than 55 km, the centimetre-level positioning results can be achieved and especially 99% horizontal error is less than 10 cm. Compared with the TDCP-only centimetre-per-second-level velocity accuracy, the proposed method can increase to accuracy of the order of millimetres per second. In terms of attitude determination accuracy, the roll and pitch are better than 0.1° and yaw is better than 0.5°, showing a similar performance to the nominal accuracy. Therefore, the proposed PPP-RTK/MEMS integration method can be a promising USV navigation solution in the offshore area.
高精度的位置、速度和姿态信息是无人水面飞行器(USV)执行各种任务的前提。传统的无人潜航器导航技术是实时运动学与微机电系统相结合的技术。为了避免RTK/MEMS的双向通信,本文提出了一种松散耦合的PPP(精确点定位)-RTK/MEMS导航方法,该方法采用未结合的PPP-RTK定位模型和先进的时差载波相位(TDCP)速度确定模型。当参考站距离用户较远,即大于55km时,可以实现厘米级的定位结果,特别是99%的水平误差小于10cm。与仅tdcp的厘米/秒级速度精度相比,该方法可将精度提高到毫米/秒数量级。在姿态确定精度方面,横摇和俯仰优于0.1°,偏航优于0.5°,表现出与标称精度相似的性能。因此,提出的PPP-RTK/MEMS集成方法可以成为海上USV导航的一种很有前途的解决方案。
{"title":"Precise Navigation of USV Based on PPP-RTK/MEMS in the Offshore Environment","authors":"Minzhi Xiang, Hongzhou Chai, Xiao Yin, Zhenqiang Du, Kaidi Jin","doi":"10.1080/01490419.2023.2223764","DOIUrl":"https://doi.org/10.1080/01490419.2023.2223764","url":null,"abstract":"Abstract High-precision position, velocity and attitude information is the premise for the unmanned surface vehicle (USV) to perform various tasks. The traditional navigation technology of USV is to combine RTK (real-time kinematics) with MEMS (micro-electromechanical system). In order to avoid bi-directional communication of RTK/MEMS, a loosely coupled PPP (precise point positioning)-RTK/MEMS navigation method is proposed in this contribution, where the un-combined PPP-RTK positioning model and advanced time-differenced carrier-phase (TDCP) velocity determination model is adopted. When the reference stations are far away from the user, i.e., more than 55 km, the centimetre-level positioning results can be achieved and especially 99% horizontal error is less than 10 cm. Compared with the TDCP-only centimetre-per-second-level velocity accuracy, the proposed method can increase to accuracy of the order of millimetres per second. In terms of attitude determination accuracy, the roll and pitch are better than 0.1° and yaw is better than 0.5°, showing a similar performance to the nominal accuracy. Therefore, the proposed PPP-RTK/MEMS integration method can be a promising USV navigation solution in the offshore area.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"46 1","pages":"441 - 459"},"PeriodicalIF":1.6,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46772472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-cost multi-GNSS, single-frequency RTK averaging for marine applications: accurate stationary positioning and vertical tide measurements 用于海洋应用的低成本多gnss,单频RTK平均:精确的静止定位和垂直潮汐测量
IF 1.6 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-05-29 DOI: 10.1080/01490419.2023.2208289
Emily J. Tidey, R. Odolinski
Abstract The use of Real Time Kinematic (RTK) Global Navigation Satellite System (GNSS) for accurate horizontal and vertical measurements in the marine environment has been considered since the late-1980’s and tested from the 1990’s when GPS and GLONASS were the only operational constellations available and high-cost multi-frequency receiver equipment was required. This paper modernizes the conversation using multi-constellation, low-cost, single-frequency RTK GNSS measurements and proves their value with accurate positioning and tide measurements. Our tests show average stationary horizontal positioning measurements using this equipment are suitable (95% CI) for the most stringent International Hydrographic Organization (IHO) Standard S-44 ‘Exclusive Order’ at base station ranges of up to 27 km. Vertical observations on a moving platform, smoothed using a baseline distance-dependent moving average filter show the equipment and method are comparable with traditional electronic tide gauge observations over the same base station range. All of our measurement results show the potential to improve total uncertainty calculations undertaken by hydrographers, engineers and scientists in the marine realm, while the low-cost equipment raises the possibility that more measurements can be taken, leading to improvements in monitoring, modelling and understanding the marine environment.
自20世纪80年代末以来,人们一直在考虑使用实时动态(RTK)全球导航卫星系统(GNSS)在海洋环境中进行精确的水平和垂直测量,并从20世纪90年代开始进行测试,当时GPS和GLONASS是唯一可用的操作星座,需要高成本的多频接收器设备。本文采用多星座、低成本、单频的RTK GNSS测量实现了会话的现代化,并通过精确定位和潮汐测量证明了其价值。我们的测试表明,使用该设备进行的平均固定水平定位测量(95% CI)适用于最严格的国际水文组织(IHO)标准S-44“独家订单”,基站范围可达27公里。在移动平台上的垂直观测,使用与基线距离相关的移动平均滤波器进行平滑,显示设备和方法与在相同基站范围内的传统电子验潮仪观测结果相当。我们所有的测量结果都表明,有可能改善水文学家、工程师和科学家在海洋领域进行的总不确定度计算,而低成本的设备提高了进行更多测量的可能性,从而改善了对海洋环境的监测、建模和理解。
{"title":"Low-cost multi-GNSS, single-frequency RTK averaging for marine applications: accurate stationary positioning and vertical tide measurements","authors":"Emily J. Tidey, R. Odolinski","doi":"10.1080/01490419.2023.2208289","DOIUrl":"https://doi.org/10.1080/01490419.2023.2208289","url":null,"abstract":"Abstract The use of Real Time Kinematic (RTK) Global Navigation Satellite System (GNSS) for accurate horizontal and vertical measurements in the marine environment has been considered since the late-1980’s and tested from the 1990’s when GPS and GLONASS were the only operational constellations available and high-cost multi-frequency receiver equipment was required. This paper modernizes the conversation using multi-constellation, low-cost, single-frequency RTK GNSS measurements and proves their value with accurate positioning and tide measurements. Our tests show average stationary horizontal positioning measurements using this equipment are suitable (95% CI) for the most stringent International Hydrographic Organization (IHO) Standard S-44 ‘Exclusive Order’ at base station ranges of up to 27 km. Vertical observations on a moving platform, smoothed using a baseline distance-dependent moving average filter show the equipment and method are comparable with traditional electronic tide gauge observations over the same base station range. All of our measurement results show the potential to improve total uncertainty calculations undertaken by hydrographers, engineers and scientists in the marine realm, while the low-cost equipment raises the possibility that more measurements can be taken, leading to improvements in monitoring, modelling and understanding the marine environment.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"46 1","pages":"333 - 358"},"PeriodicalIF":1.6,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46480395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Marine Geodesy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1