Pub Date : 2020-04-02Epub Date: 2020-02-11DOI: 10.1080/10937404.2020.1724577
Khaled Habas, Martin H Brinkworth, Diana Anderson
Male germ stem cells are responsible for transmission of genetic information to the next generation. Some chemicals exert a negative impact on male germ cells, either directly, or indirectly affecting them through their action on somatic cells. Ultimately, these effects might inhibit fertility, and may exhibit negative consequences on future offspring. Genotoxic anticancer agents may interact with DNA in germ cells potentially leading to a heritable germline mutation. Experimental information in support of this theory has not always been reproducible and suitable in vivo studies remain limited. Thus, alternative male germ cell tests, which are now able to detect phase specificity of such agents, might be used by regulatory agencies to help evaluate the potential risk of mutation. However, there is an urgent need for such approaches for identification of male reproductive genotoxins since this area has until recently been dependent on in vivo studies. Many factors drive alternative approaches, including the (1) commitment to the principles of the 3R's (Replacement, Reduction, and Refinement), (2) time-consuming nature and high cost of animal experiments, and (3) new opportunities presented by new molecular analytical assays. There is as yet currently no apparent appropriate model of full mammalian spermatogenesis in vitro, under the REACH initiative, where new tests introduced to assess genotoxicity and mutagenicity need to avoid unnecessary testing on animals. Accordingly, a battery of tests used in conjunction with the high throughput STAPUT gravity sedimentation was recently developed for purification of male germ cells to investigate genotoxicity for phase specificity in germ cells. This system might be valuable for the examination of phases previously only available in mammals with large-scale studies of germ cell genotoxicity in vivo. The aim of this review was to focus on this alternative approach and its applications as well as on chemicals of known in vivo phase specificities used during this test system development.
{"title":"A male germ cell assay and supporting somatic cells: its application for the detection of phase specificity of genotoxins in vitro.","authors":"Khaled Habas, Martin H Brinkworth, Diana Anderson","doi":"10.1080/10937404.2020.1724577","DOIUrl":"https://doi.org/10.1080/10937404.2020.1724577","url":null,"abstract":"<p><p>Male germ stem cells are responsible for transmission of genetic information to the next generation. Some chemicals exert a negative impact on male germ cells, either directly, or indirectly affecting them through their action on somatic cells. Ultimately, these effects might inhibit fertility, and may exhibit negative consequences on future offspring. Genotoxic anticancer agents may interact with DNA in germ cells potentially leading to a heritable germline mutation. Experimental information in support of this theory has not always been reproducible and suitable <i>in vivo</i> studies remain limited. Thus, alternative male germ cell tests, which are now able to detect phase specificity of such agents, might be used by regulatory agencies to help evaluate the potential risk of mutation. However, there is an urgent need for such approaches for identification of male reproductive genotoxins since this area has until recently been dependent on <i>in vivo</i> studies. Many factors drive alternative approaches, including the (1) commitment to the principles of the 3R's (Replacement, Reduction, and Refinement), (2) time-consuming nature and high cost of animal experiments, and (3) new opportunities presented by new molecular analytical assays. There is as yet currently no apparent appropriate model of full mammalian spermatogenesis <i>in vitro</i>, under the REACH initiative, where new tests introduced to assess genotoxicity and mutagenicity need to avoid unnecessary testing on animals. Accordingly, a battery of tests used in conjunction with the high throughput STAPUT gravity sedimentation was recently developed for purification of male germ cells to investigate genotoxicity for phase specificity in germ cells. This system might be valuable for the examination of phases previously only available in mammals with large-scale studies of germ cell genotoxicity <i>in vivo</i>. The aim of this review was to focus on this alternative approach and its applications as well as on chemicals of known <i>in vivo</i> phase specificities used during this test system development.</p>","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":"23 3","pages":"91-106"},"PeriodicalIF":7.2,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10937404.2020.1724577","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37634295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-02Epub Date: 2020-02-27DOI: 10.1080/10937404.2020.1731896
Jody Morgan, Robin Bell, Alison L Jones
Ambient air pollution is a leading risk factor for the global burden of disease. One possible pathway of particulate matter (PM)-induced toxicity is through iron (Fe), the most abundant metal in the atmosphere. The aim of the review was to consider the complexity of Fe-mediated toxicity following inhalation exposure focusing on the chemical and surface reactivity of Fe as a transition metal and possible pathways of toxicity via reactive oxygen species (ROS) generation as well as considerations of size, morphology, and source of PM. A broad term search of 4 databases identified 2189 journal articles and reports examining exposure to Fe via inhalation in the past 10 years. These were sequentially analyzed by title, abstract and full-text to identify 87 articles publishing results on the toxicity of Fe-containing PM by inhalation or instillation to the respiratory system. The remaining 87 papers were examined to summarize research dealing with in vitro, in vivo and epidemiological studies involving PM containing Fe or iron oxide following inhalation or instillation. The major findings from these investigations are summarized and tabulated. Epidemiological studies showed that exposure to Fe oxide is correlated with an increased incidence of cancer, cardiovascular diseases, and several respiratory diseases. Iron PM was found to induce inflammatory effects in vitro and in vivo and to translocate to remote locations including the brain following inhalation. A potential pathway for the PM-containing Fe-mediated toxicity by inhalation is via the generation of ROS which leads to lipid peroxidation and DNA and protein oxidation. Our recommendations include an expansion of epidemiological, in vivo and in vitro studies, integrating research improvements outlined in this review, such as the method of particle preparation, cell line type, and animal model, to enhance our understanding of the complex biological interactions of these particles.
{"title":"Endogenous doesn't always mean innocuous: a scoping review of iron toxicity by inhalation.","authors":"Jody Morgan, Robin Bell, Alison L Jones","doi":"10.1080/10937404.2020.1731896","DOIUrl":"10.1080/10937404.2020.1731896","url":null,"abstract":"<p><p>Ambient air pollution is a leading risk factor for the global burden of disease. One possible pathway of particulate matter (PM)-induced toxicity is through iron (Fe), the most abundant metal in the atmosphere. The aim of the review was to consider the complexity of Fe-mediated toxicity following inhalation exposure focusing on the chemical and surface reactivity of Fe as a transition metal and possible pathways of toxicity via reactive oxygen species (ROS) generation as well as considerations of size, morphology, and source of PM. A broad term search of 4 databases identified 2189 journal articles and reports examining exposure to Fe via inhalation in the past 10 years. These were sequentially analyzed by title, abstract and full-text to identify 87 articles publishing results on the toxicity of Fe-containing PM by inhalation or instillation to the respiratory system. The remaining 87 papers were examined to summarize research dealing with <i>in vitro, in vivo</i> and epidemiological studies involving PM containing Fe or iron oxide following inhalation or instillation. The major findings from these investigations are summarized and tabulated. Epidemiological studies showed that exposure to Fe oxide is correlated with an increased incidence of cancer, cardiovascular diseases, and several respiratory diseases. Iron PM was found to induce inflammatory effects <i>in vitro</i> and <i>in vivo</i> and to translocate to remote locations including the brain following inhalation. A potential pathway for the PM-containing Fe-mediated toxicity by inhalation is via the generation of ROS which leads to lipid peroxidation and DNA and protein oxidation. Our recommendations include an expansion of epidemiological, <i>in vivo</i> and <i>in vitro</i> studies, integrating research improvements outlined in this review, such as the method of particle preparation, cell line type, and animal model, to enhance our understanding of the complex biological interactions of these particles.</p>","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":"23 3","pages":"107-136"},"PeriodicalIF":6.4,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37684524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-02DOI: 10.1080/10937404.2019.1672364
Julieta R Camurati, Vanesa N. Salomone
ABSTRACT Arsenic is a metalloid naturally present in marine environments. Various toxic elements including arsenic (As) are bioaccumulated by macroalgae. This metalloid is subsequently incorporated as arsenate into the organism due to similarity to phosphate. In recent decades, the use of macroalgae in food has increased as a result of their numerous benefits; however, As consumption may exert potential consequences for human health. The objective of this review was to discuss the articles published up to 2019 on As in seaweed, including key topics such as speciation, toxicity of the most common species in marine macroalgae, and their effects on human health. Further, this review will emphasize the extraction methods and analysis techniques most frequently used in seaweed and the need to develop certified reference materials (CRMs) in order to support the validation of analytical methodologies for As speciation in macroalgae. Finally, this review will discuss current legislation in relation to the risk associated with consumption. The number of articles found and the different approaches, biological, analytical and toxicological, show the growing interest there has been in this field in the last few years. In addition, this review reveals aspects of As chemistry that need further study, such as transformation of organic metalloid species during digestion and cooking, which necessitates analytical improvement and toxicological experiments. Taken together our findings may contribute to revision of current legislation on As content in edible seaweed relating to human health in a growing market.
{"title":"Arsenic in edible macroalgae: an integrated approach","authors":"Julieta R Camurati, Vanesa N. Salomone","doi":"10.1080/10937404.2019.1672364","DOIUrl":"https://doi.org/10.1080/10937404.2019.1672364","url":null,"abstract":"ABSTRACT Arsenic is a metalloid naturally present in marine environments. Various toxic elements including arsenic (As) are bioaccumulated by macroalgae. This metalloid is subsequently incorporated as arsenate into the organism due to similarity to phosphate. In recent decades, the use of macroalgae in food has increased as a result of their numerous benefits; however, As consumption may exert potential consequences for human health. The objective of this review was to discuss the articles published up to 2019 on As in seaweed, including key topics such as speciation, toxicity of the most common species in marine macroalgae, and their effects on human health. Further, this review will emphasize the extraction methods and analysis techniques most frequently used in seaweed and the need to develop certified reference materials (CRMs) in order to support the validation of analytical methodologies for As speciation in macroalgae. Finally, this review will discuss current legislation in relation to the risk associated with consumption. The number of articles found and the different approaches, biological, analytical and toxicological, show the growing interest there has been in this field in the last few years. In addition, this review reveals aspects of As chemistry that need further study, such as transformation of organic metalloid species during digestion and cooking, which necessitates analytical improvement and toxicological experiments. Taken together our findings may contribute to revision of current legislation on As content in edible seaweed relating to human health in a growing market.","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":"12 1","pages":"1 - 12"},"PeriodicalIF":7.2,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89157519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01Epub Date: 2019-12-10DOI: 10.1080/10937404.2019.1700598
Laura Rubio, Ricard Marcos, Alba Hernández
In recent years, increasing global attention has focused on "microplastics" (MPs) and "nanoplastics" (NPs) resulting in many studies on the effects of these compounds on ecological and environmental aspects. These tiny particles (<5000 µm), predominantly derived from the degradation of plastics, pollute the marine and terrestrial ecosystems with the ability to enter into the food chain. In this manner, human consumption of food contaminated with MPs or NPs is unavoidable, but the related consequences remain to be determined. The aim of this review is to complement previous reviews on this topic by providing new studies related to exposure, absorption, and toxicity in mammalian in vivo and in vitro systems. With respect to novel information, gaps and limitations hindering attainment of firm conclusions as well as preparation of a reliable risk assessment are identified. Subsequently, recommendations for in vivo and in vitro testing methods are presented in order to perform further relevant and targeted research studies.
{"title":"Potential adverse health effects of ingested micro- and nanoplastics on humans. Lessons learned from <i>in vivo</i> and <i>in vitro</i> mammalian models.","authors":"Laura Rubio, Ricard Marcos, Alba Hernández","doi":"10.1080/10937404.2019.1700598","DOIUrl":"https://doi.org/10.1080/10937404.2019.1700598","url":null,"abstract":"<p><p>In recent years, increasing global attention has focused on \"microplastics\" (MPs) and \"nanoplastics\" (NPs) resulting in many studies on the effects of these compounds on ecological and environmental aspects. These tiny particles (<5000 µm), predominantly derived from the degradation of plastics, pollute the marine and terrestrial ecosystems with the ability to enter into the food chain. In this manner, human consumption of food contaminated with MPs or NPs is unavoidable, but the related consequences remain to be determined. The aim of this review is to complement previous reviews on this topic by providing new studies related to exposure, absorption, and toxicity in mammalian <i>in vivo</i> and <i>in vitro</i> systems. With respect to novel information, gaps and limitations hindering attainment of firm conclusions as well as preparation of a reliable risk assessment are identified. Subsequently, recommendations for <i>in vivo</i> and <i>in vitro</i> testing methods are presented in order to perform further relevant and targeted research studies.</p>","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":"23 2","pages":"51-68"},"PeriodicalIF":7.2,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10937404.2019.1700598","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37444632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01Epub Date: 2020-01-10DOI: 10.1080/10937404.2019.1710914
Yuqiang Bi, Andrew K Marcus, Hervé Robert, Rosa Krajmalnik-Brown, Bruce E Rittmann, Paul Westerhoff, Marie-Hélène Ropers, Muriel Mercier-Bonin
Hundreds of consumer and commercial products containing silver nanoparticles (AgNPs) are currently used in food, personal-care products, pharmaceutical, and many other applications. Human exposure to AgNPs includes oral intake, inhalation, and dermal contact. The aim of this review was to focus on oral intake, intentional and incidental of AgNPs where well-known antimicrobial characteristics that might affect the microbiome and mucus in the gastrointestinal tract (GIT). This critical review summarizes what is known regarding the impacts of AgNPs on gut homeostasis. It is fundamental to understand the forms of AgNPs and their physicochemical characterization before and during digestion. For example, lab-synthesized AgNPs differ from "real" ingestable AgNPs used as food additives and dietary supplements. Similarly, the gut environment alters the chemical and physical state of Ag that is ingested as AgNPs. Emerging research on in vitro and in vivo rodent and human indicated complex multi-directional relationships among AgNPs, the intestinal microbiota, and the epithelial mucus. It may be necessary to go beyond today's descriptive approach to a modeling-based ecosystem approach that might quantitatively integrate spatio-temporal interactions among microbial groups, host factors (e.g., mucus), and environmental factors, including lifestyle-based stressors. It is suggested that future research (1) utilize more representative AgNPs, focus on microbe/mucus interactions, (2) assess the effects of environmental stressors for longer and longitudinal conditions, and (3) be integrated using quantitative modeling.
{"title":"The complex puzzle of dietary silver nanoparticles, mucus and microbiota in the gut.","authors":"Yuqiang Bi, Andrew K Marcus, Hervé Robert, Rosa Krajmalnik-Brown, Bruce E Rittmann, Paul Westerhoff, Marie-Hélène Ropers, Muriel Mercier-Bonin","doi":"10.1080/10937404.2019.1710914","DOIUrl":"https://doi.org/10.1080/10937404.2019.1710914","url":null,"abstract":"<p><p>Hundreds of consumer and commercial products containing silver nanoparticles (AgNPs) are currently used in food, personal-care products, pharmaceutical, and many other applications. Human exposure to AgNPs includes oral intake, inhalation, and dermal contact. The aim of this review was to focus on oral intake, intentional and incidental of AgNPs where well-known antimicrobial characteristics that might affect the microbiome and mucus in the gastrointestinal tract (GIT). This critical review summarizes what is known regarding the impacts of AgNPs on gut homeostasis. It is fundamental to understand the forms of AgNPs and their physicochemical characterization before and during digestion. For example, lab-synthesized AgNPs differ from \"real\" ingestable AgNPs used as food additives and dietary supplements. Similarly, the gut environment alters the chemical and physical state of Ag that is ingested as AgNPs. Emerging research on <i>in vitro</i> and <i>in vivo</i> rodent and human indicated complex multi-directional relationships among AgNPs, the intestinal microbiota, and the epithelial mucus. It may be necessary to go beyond today's descriptive approach to a modeling-based ecosystem approach that might quantitatively integrate spatio-temporal interactions among microbial groups, host factors (e.g., mucus), and environmental factors, including lifestyle-based stressors. It is suggested that future research (1) utilize more representative AgNPs, focus on microbe/mucus interactions, (2) assess the effects of environmental stressors for longer and longitudinal conditions, and (3) be integrated using quantitative modeling.</p>","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":"23 2","pages":"69-89"},"PeriodicalIF":7.2,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10937404.2019.1710914","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37528187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-20DOI: 10.1080/10937404.2019.1692744
Xiaoqing Guo, Ji‐Eun Seo, Xilin Li, N. Mei
ABSTRACT Genotoxic compounds may be detoxified to non-genotoxic metabolites while many pro-carcinogens require metabolic activation to exert their genotoxicity in vivo. Standard genotoxicity assays were developed and utilized for risk assessment for over 40 years. Most of these assays are conducted in metabolically incompetent rodent or human cell lines. Deficient in normal metabolism and relying on exogenous metabolic activation systems, the current in vitro genotoxicity assays often have yielded high false positive rates, which trigger unnecessary and costly in vivo studies. Metabolically active cells such as hepatocytes have been recognized as a promising cell model in predicting genotoxicity of carcinogens in vivo. In recent years, significant advances in tissue culture and biological technologies provided new opportunities for using hepatocytes in genetic toxicology. This review encompasses published studies (both in vitro and in vivo) using hepatocytes for genotoxicity assessment. Findings from both standard and newly developed genotoxicity assays are summarized. Various liver cell models used for genotoxicity assessment are described, including the potential application of advanced liver cell models such as 3D spheroids, organoids, and engineered hepatocytes. An integrated strategy, that includes the use of human-based cells with enhanced biological relevance and throughput, and applying the quantitative analysis of data, may provide an approach for future genotoxicity risk assessment.
{"title":"Genetic toxicity assessment using liver cell models: past, present, and future","authors":"Xiaoqing Guo, Ji‐Eun Seo, Xilin Li, N. Mei","doi":"10.1080/10937404.2019.1692744","DOIUrl":"https://doi.org/10.1080/10937404.2019.1692744","url":null,"abstract":"ABSTRACT Genotoxic compounds may be detoxified to non-genotoxic metabolites while many pro-carcinogens require metabolic activation to exert their genotoxicity in vivo. Standard genotoxicity assays were developed and utilized for risk assessment for over 40 years. Most of these assays are conducted in metabolically incompetent rodent or human cell lines. Deficient in normal metabolism and relying on exogenous metabolic activation systems, the current in vitro genotoxicity assays often have yielded high false positive rates, which trigger unnecessary and costly in vivo studies. Metabolically active cells such as hepatocytes have been recognized as a promising cell model in predicting genotoxicity of carcinogens in vivo. In recent years, significant advances in tissue culture and biological technologies provided new opportunities for using hepatocytes in genetic toxicology. This review encompasses published studies (both in vitro and in vivo) using hepatocytes for genotoxicity assessment. Findings from both standard and newly developed genotoxicity assays are summarized. Various liver cell models used for genotoxicity assessment are described, including the potential application of advanced liver cell models such as 3D spheroids, organoids, and engineered hepatocytes. An integrated strategy, that includes the use of human-based cells with enhanced biological relevance and throughput, and applying the quantitative analysis of data, may provide an approach for future genotoxicity risk assessment.","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":"8 1","pages":"27 - 50"},"PeriodicalIF":7.2,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75374110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-11-11DOI: 10.1080/10937404.2019.1689878
Vanessa Santana Vieira Santos, B. B. Pereira
ABSTRACT Characterized as a highly valuable bioactive natural product, spinosad is a pesticide with a complex chemical structure, composed of spinosyn A and D, molecules synthesized by the actinomycete Saccharopolyspora spinosa. The larvicidal activity of spinosad was postulated to be a promising approach to combat crop pests and control species responsible to transmit mosquito-borne illness, including Aedes aegypti. Although initially deemed as relatively safe for non-target organisms and highly effective against insects and crop pests, recent studies focused on the toxicity profile detected the occurrence of side effects in different living species. Thus, the present review was undertaken to describe the properties and characteristics of spinosad. In addition to indicating potential adverse effects on living organisms, alternative uses of the biopesticide as a mixture with different compounds are provided.
{"title":"Properties, toxicity and current applications of the biolarvicide spinosad","authors":"Vanessa Santana Vieira Santos, B. B. Pereira","doi":"10.1080/10937404.2019.1689878","DOIUrl":"https://doi.org/10.1080/10937404.2019.1689878","url":null,"abstract":"ABSTRACT Characterized as a highly valuable bioactive natural product, spinosad is a pesticide with a complex chemical structure, composed of spinosyn A and D, molecules synthesized by the actinomycete Saccharopolyspora spinosa. The larvicidal activity of spinosad was postulated to be a promising approach to combat crop pests and control species responsible to transmit mosquito-borne illness, including Aedes aegypti. Although initially deemed as relatively safe for non-target organisms and highly effective against insects and crop pests, recent studies focused on the toxicity profile detected the occurrence of side effects in different living species. Thus, the present review was undertaken to describe the properties and characteristics of spinosad. In addition to indicating potential adverse effects on living organisms, alternative uses of the biopesticide as a mixture with different compounds are provided.","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":"73 1","pages":"13 - 26"},"PeriodicalIF":7.2,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90516363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-08-18DOI: 10.1080/10937404.2019.1661588
M. Bocato, João Paulo Bianchi Ximenez, C. Hoffmann, F. Barbosa
ABSTRACT Human Biomonitoring (HB), the process for determining whether and to what extent chemical substances penetrated our bodies, serves as a useful tool to quantify human exposure to pollutants. In cases of nutrition and physiologic status, HB plays a critical role in the identification of excess or deficiency of essential nutrients. In pollutant HB studies, levels of substances measured in body fluids (blood, urine, and breast milk) or tissues (hair, nails or teeth) aid in the identification of potential health risks or associated adverse effects. However, even as a widespread practice in several countries, most HB studies reflect exposure to a single compound or mixtures which are measured at a single time point in lifecycle. On the other hand, throughout an individual’s lifespan, the contact with different physical, chemical, and social stressors occurs at varying intensities, differing times and durations. Further, the interaction between stressors and body receptors leads to dynamic responses of the entire biological system including proteome, metabolome, transcriptome, and adductome. Bearing this in mind, a relatively new vision in exposure science, defined as the exposome, is postulated to expand the traditional practice of measuring a single exposure to one or few chemicals at one-time point to an approach that addresses measures of exposure to multiple stressors throughout the lifespan. With the exposome concept, the science of exposure advances to an Environment-Wide Association Perspective, which might exhibit a stronger relationship with good health or disease conditions for an individual (phenotype). Thus, this critical review focused on the current progress of HB and exposome investigations, anticipating some challenges, strategies, and future needs to be taken into account for designing future surveys.
{"title":"An overview of the current progress, challenges, and prospects of human biomonitoring and exposome studies","authors":"M. Bocato, João Paulo Bianchi Ximenez, C. Hoffmann, F. Barbosa","doi":"10.1080/10937404.2019.1661588","DOIUrl":"https://doi.org/10.1080/10937404.2019.1661588","url":null,"abstract":"ABSTRACT Human Biomonitoring (HB), the process for determining whether and to what extent chemical substances penetrated our bodies, serves as a useful tool to quantify human exposure to pollutants. In cases of nutrition and physiologic status, HB plays a critical role in the identification of excess or deficiency of essential nutrients. In pollutant HB studies, levels of substances measured in body fluids (blood, urine, and breast milk) or tissues (hair, nails or teeth) aid in the identification of potential health risks or associated adverse effects. However, even as a widespread practice in several countries, most HB studies reflect exposure to a single compound or mixtures which are measured at a single time point in lifecycle. On the other hand, throughout an individual’s lifespan, the contact with different physical, chemical, and social stressors occurs at varying intensities, differing times and durations. Further, the interaction between stressors and body receptors leads to dynamic responses of the entire biological system including proteome, metabolome, transcriptome, and adductome. Bearing this in mind, a relatively new vision in exposure science, defined as the exposome, is postulated to expand the traditional practice of measuring a single exposure to one or few chemicals at one-time point to an approach that addresses measures of exposure to multiple stressors throughout the lifespan. With the exposome concept, the science of exposure advances to an Environment-Wide Association Perspective, which might exhibit a stronger relationship with good health or disease conditions for an individual (phenotype). Thus, this critical review focused on the current progress of HB and exposome investigations, anticipating some challenges, strategies, and future needs to be taken into account for designing future surveys.","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":"1 1","pages":"131 - 156"},"PeriodicalIF":7.2,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87744607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-08-18DOI: 10.1080/10937404.2019.1654422
T. Erickson, Julia Brooks, E. Nilles, P. Pham, P. Vinck
ABSTRACT Extreme hydrometeorological events such as hurricanes and cyclones are increasing in frequency and intensity due to climate change and often associated with flash floods in coastal, urbanized and industrial areas. Preparedness and response measures need to concentrate on toxicological and infectious hazards, the potential impact on environmental health, and threat to human lives. The recognition of the danger of flood water after hurricanes is critical. Effective health management needs to consider the likelihood and specific risks of toxic agents present in waters contaminated by chemical spills, bio-toxins, waste, sewage, and water-borne pathogens. Despite significant progress in the ability to rapidly detect and test water for a wide range of chemicals and pathogens, there has been a lack of implementation to adapt toxicity measurements in the context of flash and hurricane-induced flooding. The aim of this review was to highlight the need to collect and analyze data on toxicity of flood waters to understand the risks and prepare vulnerable communities and first responders. It is proposed that new and routinely used technologies be employed during disaster response to rapidly assess toxicity and infectious disease threats, and subsequently take necessary remedial actions.
{"title":"Environmental health effects attributed to toxic and infectious agents following hurricanes, cyclones, flash floods and major hydrometeorological events","authors":"T. Erickson, Julia Brooks, E. Nilles, P. Pham, P. Vinck","doi":"10.1080/10937404.2019.1654422","DOIUrl":"https://doi.org/10.1080/10937404.2019.1654422","url":null,"abstract":"ABSTRACT Extreme hydrometeorological events such as hurricanes and cyclones are increasing in frequency and intensity due to climate change and often associated with flash floods in coastal, urbanized and industrial areas. Preparedness and response measures need to concentrate on toxicological and infectious hazards, the potential impact on environmental health, and threat to human lives. The recognition of the danger of flood water after hurricanes is critical. Effective health management needs to consider the likelihood and specific risks of toxic agents present in waters contaminated by chemical spills, bio-toxins, waste, sewage, and water-borne pathogens. Despite significant progress in the ability to rapidly detect and test water for a wide range of chemicals and pathogens, there has been a lack of implementation to adapt toxicity measurements in the context of flash and hurricane-induced flooding. The aim of this review was to highlight the need to collect and analyze data on toxicity of flood waters to understand the risks and prepare vulnerable communities and first responders. It is proposed that new and routinely used technologies be employed during disaster response to rapidly assess toxicity and infectious disease threats, and subsequently take necessary remedial actions.","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":"42 1","pages":"157 - 171"},"PeriodicalIF":7.2,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85975248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-08-18DOI: 10.1080/10937404.2019.1659197
C. Vaccari, R. El Dib, Huda Gomaa, L. Lopes, J. D. de Camargo
ABSTRACT This investigation aimed to conduct a systematic review of the literature and meta-analysis to determine whether exposure to the herbicide paraquat was associated with the development of Parkinson’s disease (PD). Observational studies that enrolled adults exposed to paraquat with PD as the outcome of interest were searched in the PubMed, Embase, LILACS, TOXNET, and Web of Science databases up to May 2019. Two authors independently selected relevant studies, extracted data, and assessed methodological quality. The evidence certainty was assessed by the GRADE approach, which served as basis for a tentative causality assessment, supplemented by the Bradford Hill criteria when necessary. Results from nine case–control studies indicated that PD occurrence was 25% higher in participants exposed to paraquat. The only cohort investigation included demonstrated a non-significant OR of 1.08. Results from subgroup analyses also indicated higher PD frequency in participants that were exposed to paraquat for longer periods or individuals co-exposed with paraquat and any other dithiocarbamate. Data indicate apositive association between exposure to paraquat and PD occurrence, but the weight-of-evidence does not enable one to assume an indisputable cause–effect relationship between these two conditions. Better designed studies are needed to increase confidence in results. Systematic Review Registration: PROSPERO CRD42017069994.
本研究旨在对文献进行系统回顾和荟萃分析,以确定暴露于除草剂百草枯是否与帕金森病(PD)的发展有关。在PubMed、Embase、LILACS、TOXNET和Web of Science数据库中检索了截至2019年5月的观察性研究,这些研究纳入了暴露于百草枯并患有PD的成年人。两位作者独立选择相关研究,提取数据,并评估方法学质量。证据确定性通过GRADE方法进行评估,该方法作为初步因果关系评估的基础,必要时辅以Bradford Hill标准。9个病例对照研究的结果表明,暴露于百草枯的参与者患帕金森病的几率高出25%。唯一纳入的队列调查显示OR为1.08,无显著性差异。亚组分析的结果还表明,暴露于百草枯时间较长的参与者或同时暴露于百草枯和任何其他二硫代氨基甲酸酯的个体的PD频率较高。数据表明,暴露于百草枯与PD的发生呈正相关,但证据的权重并不能使人们假设这两种情况之间存在无可争议的因果关系。需要设计更好的研究来增加对结果的信心。系统评价注册号:PROSPERO CRD42017069994。
{"title":"Paraquat and Parkinson’s disease: a systematic review and meta-analysis of observational studies","authors":"C. Vaccari, R. El Dib, Huda Gomaa, L. Lopes, J. D. de Camargo","doi":"10.1080/10937404.2019.1659197","DOIUrl":"https://doi.org/10.1080/10937404.2019.1659197","url":null,"abstract":"ABSTRACT This investigation aimed to conduct a systematic review of the literature and meta-analysis to determine whether exposure to the herbicide paraquat was associated with the development of Parkinson’s disease (PD). Observational studies that enrolled adults exposed to paraquat with PD as the outcome of interest were searched in the PubMed, Embase, LILACS, TOXNET, and Web of Science databases up to May 2019. Two authors independently selected relevant studies, extracted data, and assessed methodological quality. The evidence certainty was assessed by the GRADE approach, which served as basis for a tentative causality assessment, supplemented by the Bradford Hill criteria when necessary. Results from nine case–control studies indicated that PD occurrence was 25% higher in participants exposed to paraquat. The only cohort investigation included demonstrated a non-significant OR of 1.08. Results from subgroup analyses also indicated higher PD frequency in participants that were exposed to paraquat for longer periods or individuals co-exposed with paraquat and any other dithiocarbamate. Data indicate apositive association between exposure to paraquat and PD occurrence, but the weight-of-evidence does not enable one to assume an indisputable cause–effect relationship between these two conditions. Better designed studies are needed to increase confidence in results. Systematic Review Registration: PROSPERO CRD42017069994.","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":"24 1","pages":"172 - 202"},"PeriodicalIF":7.2,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78220754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}