Growing capacity requirements are leading to the deployment of multiple fibers in each optical network link. Even though deploying state-of-the-art multi-fiber network architectures with stacked and independent fiber layers simplifies network design and control, spectrum can be used more efficiently if the optical-network nodes allow fiber layers to be interconnected, i.e., if the so-called lane change is enabled. Unfortunately, lane change in high-degree optical nodes requires wavelength selective switches (WSSs) with a high number of ports, which is prohibitively costly or even unfeasible with current WSS technology. Instead, lane change in low-degree optical nodes can be enabled at no extra cost, using WSS ports that are otherwise left empty. In this study, we describe our proposal for a multi-fiber network with partial lane-change capabilities and perform a simulative study to identify the advantages of this architecture, as well as discuss the emerging resource allocation challenges associated with it. We demonstrate that, by enabling lane change in degree-2 nodes, we can increase network throughput by 3% and restore 5%–8% more traffic in the case of single- and double-link failures at no additional equipment cost.
{"title":"Zero-cost upgrade to a multi-fiber network with partial lane-change capabilities","authors":"Oleg Karandin;Francesco Musumeci;Gabriel Charlet;Yvan Pointurier;Massimo Tornatore","doi":"10.1364/JOCN.533906","DOIUrl":"https://doi.org/10.1364/JOCN.533906","url":null,"abstract":"Growing capacity requirements are leading to the deployment of multiple fibers in each optical network link. Even though deploying state-of-the-art multi-fiber network architectures with stacked and independent fiber layers simplifies network design and control, spectrum can be used more efficiently if the optical-network nodes allow fiber layers to be interconnected, i.e., if the so-called lane change is enabled. Unfortunately, lane change in high-degree optical nodes requires wavelength selective switches (WSSs) with a high number of ports, which is prohibitively costly or even unfeasible with current WSS technology. Instead, lane change in low-degree optical nodes can be enabled at no extra cost, using WSS ports that are otherwise left empty. In this study, we describe our proposal for a multi-fiber network with partial lane-change capabilities and perform a simulative study to identify the advantages of this architecture, as well as discuss the emerging resource allocation challenges associated with it. We demonstrate that, by enabling lane change in degree-2 nodes, we can increase network throughput by 3% and restore 5%–8% more traffic in the case of single- and double-link failures at no additional equipment cost.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 11","pages":"H18-H26"},"PeriodicalIF":4.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we propose an original adaptive neural network equalizer (NNE) algorithm named SkipNet, which is suitable for rapid training on a packet-by-packet basis for burst-mode non-linear equalization in upstream PON transmission. SkipNet uses the simple LMS algorithm and avoids complex neural network training algorithms such as backpropagation and mini-batch training. We demonstrate SkipNet on captured continuous mode 100 Gbit/s PAM4 signals using an SOA preamplifier to achieve the challenging 29 dB PON optical loss budget. The adaptive SkipNet equalizer is shown to overcome combinations of severe SOA patterning effects and fiber dispersion impairments to achieve ${gt}{29};{rm dB}$