首页 > 最新文献

arXiv - PHYS - Data Analysis, Statistics and Probability最新文献

英文 中文
Network inference from oscillatory signals based on circle map 基于圆图的振荡信号网络推理
Pub Date : 2024-07-10 DOI: arxiv-2407.07445
Akari Matsuki, Hiroshi Kori, Ryota Kobayashi
To understand and control the dynamics of coupled oscillators, it isimportant to reveal the structure of the interaction network from observeddata. While various techniques have been developed for inferring the network ofasynchronous systems, it remains challenging to infer the network ofsynchronized oscillators without external stimulations. In this study, wedevelop a method for non-invasively inferring the network of synchronizedand/or de-synchronized oscillators. An approach to network inference would beto fit the data to a set of differential equations describing the dynamics ofphase oscillators. However, we show that this method fails to infer the truenetwork due to the problems that arise when we use short-time phasedifferences. Therefore, we propose a method based on the circle map, whichdescribes the phase change in one oscillatory cycle. We demonstrate theefficacy of the proposed method through the successful inference of the networkstructure from simulated data of limit cycle oscillator models. Our methodprovides a unified and concise framework for network estimation for a wideclass of oscillator systems.
要理解和控制耦合振荡器的动态,从观测数据中揭示相互作用网络的结构非常重要。虽然已经开发了多种推断异步系统网络的技术,但在没有外部刺激的情况下推断同步振荡器的网络仍然具有挑战性。在这项研究中,我们开发了一种非侵入式推断同步和/或去同步振荡器网络的方法。网络推断的一种方法是将数据拟合到描述相位振荡器动态的微分方程组中。然而,我们的研究表明,由于使用短时相位差时出现的问题,这种方法无法推断出真实的网络。因此,我们提出了一种基于圆图的方法,该方法描述了一个振荡周期中的相位变化。我们从极限周期振荡器模型的模拟数据中成功推断出网络结构,证明了所提方法的有效性。我们的方法为多种振荡器系统的网络估计提供了一个统一而简洁的框架。
{"title":"Network inference from oscillatory signals based on circle map","authors":"Akari Matsuki, Hiroshi Kori, Ryota Kobayashi","doi":"arxiv-2407.07445","DOIUrl":"https://doi.org/arxiv-2407.07445","url":null,"abstract":"To understand and control the dynamics of coupled oscillators, it is\u0000important to reveal the structure of the interaction network from observed\u0000data. While various techniques have been developed for inferring the network of\u0000asynchronous systems, it remains challenging to infer the network of\u0000synchronized oscillators without external stimulations. In this study, we\u0000develop a method for non-invasively inferring the network of synchronized\u0000and/or de-synchronized oscillators. An approach to network inference would be\u0000to fit the data to a set of differential equations describing the dynamics of\u0000phase oscillators. However, we show that this method fails to infer the true\u0000network due to the problems that arise when we use short-time phase\u0000differences. Therefore, we propose a method based on the circle map, which\u0000describes the phase change in one oscillatory cycle. We demonstrate the\u0000efficacy of the proposed method through the successful inference of the network\u0000structure from simulated data of limit cycle oscillator models. Our method\u0000provides a unified and concise framework for network estimation for a wide\u0000class of oscillator systems.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ 研究 $D_{s1}(2536)$ 和 $D_{s2}^*(2573)$ 的衰变和生成特性
Pub Date : 2024-07-10 DOI: arxiv-2407.07651
M. Ablikim, M. N. Achasov, P. Adlarson, O. Afedulidis, X. C. Ai, R. Aliberti, A. Amoroso, Q. An, Y. Bai, O. Bakina, I. Balossino, Y. Ban, H. -R. Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R. A. Briere, A. Brueggemann, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, X. Y. Chai, J. F. Chang, G. R. Che, Y. Z. Che, G. Chelkov, C. Chen, C. H. Chen, Chao Chen, G. Chen, H. S. Chen, H. Y. Chen, M. L. Chen, S. J. Chen, S. L. Chen, S. M. Chen, T. Chen, X. R. Chen, X. T. Chen, Y. B. Chen, Y. Q. Chen, Z. J. Chen, Z. Y. Chen, S. K. Choi, G. Cibinetto, F. Cossio, J. J. Cui, H. L. Dai, J. P. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, C. Q. Deng, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X. X. Ding, Y. Ding, Y. Ding, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, M. C. Du, S. X. Du, Y. Y. Duan, Z. H. Duan, P. Egorov, Y. H. Fan, J. Fang, J. Fang, S. S. Fang, W. X. Fang, Y. Fang, Y. Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, Y. T. Feng, M. Fritsch, C. D. Fu, J. L. Fu, Y. W. Fu, H. Gao, X. B. Gao, Y. N. Gao, Yang Gao, S. Garbolino, I. Garzia, L. Ge, P. T. Ge, Z. W. Ge, C. Geng, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, S. Gramigna, M. Greco, M. H. Gu, Y. T. Gu, C. Y. Guan, A. Q. Guo, L. B. Guo, M. J. Guo, R. P. Guo, Y. P. Guo, A. Guskov, J. Gutierrez, K. L. Han, T. T. Han, F. Hanisch, X. Q. Hao, F. A. Harris, K. K. He, K. L. He, F. H. Heinsius, C. H. Heinz, Y. K. Heng, C. Herold, T. Holtmann, P. C. Hong, G. Y. Hou, X. T. Hou, Y. R. Hou, Z. L. Hou, B. Y. Hu, H. M. Hu, J. F. Hu, S. L. Hu, T. Hu, Y. Hu, G. S. Huang, K. X. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Y. S. Huang, T. Hussain, F. Hölzken, N. Hüsken, N. in der Wiesche, J. Jackson, S. Janchiv, J. H. Jeong, Q. Ji, Q. P. Ji, W. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, X. Q. Jia, Z. K. Jia, D. Jiang, H. B. Jiang, P. C. Jiang, S. S. Jiang, T. J. Jiang, X. S. Jiang, Y. Jiang, J. B. Jiao, J. K. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, X. M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O. B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, J. J. Lane, L. Lavezzi, T. T. Lei, Z. H. Lei, M. Lellmann, T. Lenz, C. Li, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, H. N. Li, Hui Li, J. R. Li, J. S. Li, K. Li, K. L. Li, L. J. Li, L. K. Li, Lei Li, M. H. Li, P. R. Li, Q. M. Li, Q. X. Li, R. Li, S. X. Li, T. Li, W. D. Li, W. G. Li, X. Li, X. H. Li, X. L. Li, X. Y. Li, X. Z. Li, Y. G. Li, Z. J. Li, Z. Y. Li, C. Liang, H. Liang, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, Y. P. Liao, J. Libby, A. Limphirat, C. C. Lin, D. X. Lin, T. Lin, B. J. Liu, B. X. Liu, C. Liu, C. X. Liu, F. Liu, F. H. Liu, Feng Liu, G. M. Liu, H. Liu, H. B. Liu, H. H. Liu, H. M. Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, L. C. Liu, Lu Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, T. Liu, W. K. Liu, W. M. Liu, X. Liu, X. Liu, Y. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. D. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, Z. H. Lu, C. L. Luo, J. R. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, Y. F. Lyu, F. C. Ma, H. Ma, H. L. Ma, J. L. Ma, L. L. Ma, L. R. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, T. Ma, X. T. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, I. MacKay, M. Maggiora, S. Malde, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, H. Miao, T. J. Min, R. E. Mitchell, X. H. Mo, B. Moses, N. Yu. Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L. S. Nie, I. B. Nikolaev, Z. Ning, S. Nisar, Q. L. Niu, W. D. Niu, Y. Niu, S. L. Olsen, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y. P. Pei, M. Pelizaeus, H. P. Peng, Y. Y. Peng, K. Peters, J. L. Ping, R. G. Ping, S. Plura, V. Prasad, F. Z. Qi, H. Qi, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, C. F. Qiao, X. K. Qiao, J. J. Qin, L. Q. Qin, L. Y. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, Z. H. Qu, C. F. Redmer, K. J. Ren, A. Rivetti, M. Rolo, G. Rong, Ch. Rosner, M. Q. Ruan, S. N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K. Y. Shan, W. Shan, X. Y. Shan, Z. J. Shang, J. F. Shangguan, L. G. Shao, M. Shao, C. P. Shen, H. F. Shen, W. H. Shen, X. Y. Shen, B. A. Shi, H. Shi, H. C. Shi, J. L. Shi, J. Y. Shi, Q. Q. Shi, S. Y. Shi, X. Shi, J. J. Song, T. Z. Song, W. M. Song, Y. J. Song, Y. X. Song, S. Sosio, S. Spataro, F. Stieler, S. S Su, Y. J. Su, G. B. Sun, G. X. Sun, H. Sun, H. K. Sun, J. F. Sun, K. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, Y. Sun, Y. J. Sun, Y. Z. Sun, Z. Q. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, J. Tang, M. Tang, Y. A. Tang, L. Y. Tao, Q. T. Tao, M. Tat, J. X. Teng, V. Thoren, W. H. Tian, Y. Tian, Z. F. Tian, I. Uman, Y. Wan, S. J. Wang, B. Wang, B. L. Wang, Bo Wang, D. Y. Wang, F. Wang, H. J. Wang, J. J. Wang, J. P. Wang, K. Wang, L. L. Wang, M. Wang, N. Y. Wang, S. Wang, S. Wang, T. Wang, T. J. Wang, W. Wang, W. Wang, W. P. Wang, X. Wang, X. F. Wang, X. J. Wang, X. L. Wang, X. N. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. L. Wang, Y. N. Wang, Y. Q. Wang, Yaqian Wang, Yi Wang, Z. Wang, Z. L. Wang, Z. Y. Wang, Ziyi Wang, D. H. Wei, F. Weidner, S. P. Wen, Y. R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, C. Wu, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, X. H. Wu, Y. Wu, Y. H. Wu, Y. J. Wu, Z. Wu, L. Xia, X. M. Xian, B. H. Xiang, T. Xiang, D. Xiao, G. Y. Xiao, S. Y. Xiao, Y. L. Xiao, Z. J. Xiao, C. Xie, X. H. Xie, Y. Xie, Y. G. Xie, Y. H. Xie, Z. P. Xie, T. Y. Xing, C. F. Xu, C. J. Xu, G. F. Xu, H. Y. Xu, M. Xu, Q. J. Xu, Q. N. Xu, W. Xu, W. L. Xu, X. P. Xu, Y. Xu, Y. C. Xu, Z. S. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, X. Q. Yan, H. J. Yang, H. L. Yang, H. X. Yang, T. Yang, Y. Yang, Y. F. Yang, Y. F. Yang, Y. X. Yang, Z. W. Yang, Z. P. Yao, M. Ye, M. H. Ye, J. H. Yin, Junhao Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, M. C. Yu, T. Yu, X. D. Yu, Y. C. Yu, C. Z. Yuan, J. Yuan, J. Yuan, L. Yuan, S. C. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. A. Zafar, F. R. Zeng, S. H. Zeng, X. Zeng, Y. Zeng, Y. J. Zeng, Y. J. Zeng, X. Y. Zhai, Y. C. Zhai, Y. H. Zhan, A. Q. Zhang, B. L. Zhang, B. X. Zhang, D. H. Zhang, G. Y. Zhang, H. Zhang, H. Zhang, H. C. Zhang, H. H. Zhang, H. H. Zhang, H. Q. Zhang, H. R. Zhang, H. Y. Zhang, J. Zhang, J. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. S. Zhang, J. W. Zhang, J. X. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, L. M. Zhang, Lei Zhang, P. Zhang, Q. Y. Zhang, R. Y. Zhang, S. H. Zhang, Shulei Zhang, X. M. Zhang, X. Y Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. T. Zhang, Y. H. Zhang, Y. M. Zhang, Yan Zhang, Z. D. Zhang, Z. H. Zhang, Z. L. Zhang, Z. Y. Zhang, Z. Y. Zhang, Z. Z. Zhang, G. Zhao, J. Y. Zhao, J. Z. Zhao, L. Zhao, Lei Zhao, M. G. Zhao, N. Zhao, R. P. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, B. M. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, X. Zhong, H. Zhou, J. Y. Zhou, L. P. Zhou, S. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. Z. Zhou, Z. C. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, K. S. Zhu, L. Zhu, L. X. Zhu, S. H. Zhu, T. J. Zhu, W. D. Zhu, Y. C. Zhu, Z. A. Zhu, J. H. Zou, J. Zu
The $e^+e^-rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-rightarrowD_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected withthe BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. Theabsolute branching fractions of $D_{s1}(2536)^- rightarrow bar{D}^{*0}K^-$and $D_{s2}^*(2573)^- rightarrow bar{D}^0K^-$ are measured for the first timeto be $(35.9pm 4.8pm 3.5)%$ and $(37.4pm 3.1pm 4.6)%$, respectively. Themeasurements are in tension with predictions based on the assumption that the$D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $cbar{s}$component. The $e^+e^-rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-rightarrowD_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure ataround 4.6~GeV with a width of 50~MeV is observed for the first time with astatistical significance of $15sigma$ in the $e^+e^-rightarrowD_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Bellecollaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they havesimilar masses and widths. There is also evidence for a structure at around4.75~GeV in both processes.
利用BESIII探测器在4.530到4.946~GeV的质心能量范围内收集的数据样本,研究了$e^+e^-rightarrow D_s^+D_{s1}(2536)^-$和$e^+e^-rightarrowD_s^+D^*_{s2}(2573)^-$过程。首次测得$D_{s1}(2536)^- rightarrow bar{D}^{*0}K^-$ 和$D_{s2}^*(2573)^- rightarrow bar{D}^0K^-$ 的绝对分支分数分别为$(35.9/pm 4.8pm 3.5)%$和$(37.4/pm 3.1pm 4.6)%$。测量结果与基于$D_{s1}(2536)$和$D_{s2}^*(2573)$是由裸$cbar{s}$ 成分主导的假设所做的预测不一致。测量了 $e^+e^-rightarrow D_s^+D_{s1}(2536)^-$ 和 $e^+e^-rightarrowD_s^+D^*_{s2}(2573)^-$ 的横截面,并在 4.首次在 $e^+e^-rightarrowD_s^+D^*_{s2}(2573)^-$ 过程中观测到宽度为 50~MeV 的 6~GeV 共振结构,其统计意义为 $15sigma$。这可能是贝勒合作小组在$D_s^+D_{s1}(2536)^{-}$终态中发现的$Y(4626)$,因为它们具有相似的质量和宽度。还有证据表明,在这两个过程中,在4.75~GeV左右存在一个结构。
{"title":"Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$","authors":"M. Ablikim, M. N. Achasov, P. Adlarson, O. Afedulidis, X. C. Ai, R. Aliberti, A. Amoroso, Q. An, Y. Bai, O. Bakina, I. Balossino, Y. Ban, H. -R. Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R. A. Briere, A. Brueggemann, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, X. Y. Chai, J. F. Chang, G. R. Che, Y. Z. Che, G. Chelkov, C. Chen, C. H. Chen, Chao Chen, G. Chen, H. S. Chen, H. Y. Chen, M. L. Chen, S. J. Chen, S. L. Chen, S. M. Chen, T. Chen, X. R. Chen, X. T. Chen, Y. B. Chen, Y. Q. Chen, Z. J. Chen, Z. Y. Chen, S. K. Choi, G. Cibinetto, F. Cossio, J. J. Cui, H. L. Dai, J. P. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, C. Q. Deng, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X. X. Ding, Y. Ding, Y. Ding, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, M. C. Du, S. X. Du, Y. Y. Duan, Z. H. Duan, P. Egorov, Y. H. Fan, J. Fang, J. Fang, S. S. Fang, W. X. Fang, Y. Fang, Y. Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, Y. T. Feng, M. Fritsch, C. D. Fu, J. L. Fu, Y. W. Fu, H. Gao, X. B. Gao, Y. N. Gao, Yang Gao, S. Garbolino, I. Garzia, L. Ge, P. T. Ge, Z. W. Ge, C. Geng, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, S. Gramigna, M. Greco, M. H. Gu, Y. T. Gu, C. Y. Guan, A. Q. Guo, L. B. Guo, M. J. Guo, R. P. Guo, Y. P. Guo, A. Guskov, J. Gutierrez, K. L. Han, T. T. Han, F. Hanisch, X. Q. Hao, F. A. Harris, K. K. He, K. L. He, F. H. Heinsius, C. H. Heinz, Y. K. Heng, C. Herold, T. Holtmann, P. C. Hong, G. Y. Hou, X. T. Hou, Y. R. Hou, Z. L. Hou, B. Y. Hu, H. M. Hu, J. F. Hu, S. L. Hu, T. Hu, Y. Hu, G. S. Huang, K. X. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Y. S. Huang, T. Hussain, F. Hölzken, N. Hüsken, N. in der Wiesche, J. Jackson, S. Janchiv, J. H. Jeong, Q. Ji, Q. P. Ji, W. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, X. Q. Jia, Z. K. Jia, D. Jiang, H. B. Jiang, P. C. Jiang, S. S. Jiang, T. J. Jiang, X. S. Jiang, Y. Jiang, J. B. Jiao, J. K. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, X. M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O. B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, J. J. Lane, L. Lavezzi, T. T. Lei, Z. H. Lei, M. Lellmann, T. Lenz, C. Li, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, H. N. Li, Hui Li, J. R. Li, J. S. Li, K. Li, K. L. Li, L. J. Li, L. K. Li, Lei Li, M. H. Li, P. R. Li, Q. M. Li, Q. X. Li, R. Li, S. X. Li, T. Li, W. D. Li, W. G. Li, X. Li, X. H. Li, X. L. Li, X. Y. Li, X. Z. Li, Y. G. Li, Z. J. Li, Z. Y. Li, C. Liang, H. Liang, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, Y. P. Liao, J. Libby, A. Limphirat, C. C. Lin, D. X. Lin, T. Lin, B. J. Liu, B. X. Liu, C. Liu, C. X. Liu, F. Liu, F. H. Liu, Feng Liu, G. M. Liu, H. Liu, H. B. Liu, H. H. Liu, H. M. Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, L. C. Liu, Lu Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, T. Liu, W. K. Liu, W. M. Liu, X. Liu, X. Liu, Y. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. D. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, Z. H. Lu, C. L. Luo, J. R. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, Y. F. Lyu, F. C. Ma, H. Ma, H. L. Ma, J. L. Ma, L. L. Ma, L. R. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, T. Ma, X. T. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, I. MacKay, M. Maggiora, S. Malde, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, H. Miao, T. J. Min, R. E. Mitchell, X. H. Mo, B. Moses, N. Yu. Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L. S. Nie, I. B. Nikolaev, Z. Ning, S. Nisar, Q. L. Niu, W. D. Niu, Y. Niu, S. L. Olsen, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y. P. Pei, M. Pelizaeus, H. P. Peng, Y. Y. Peng, K. Peters, J. L. Ping, R. G. Ping, S. Plura, V. Prasad, F. Z. Qi, H. Qi, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, C. F. Qiao, X. K. Qiao, J. J. Qin, L. Q. Qin, L. Y. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, Z. H. Qu, C. F. Redmer, K. J. Ren, A. Rivetti, M. Rolo, G. Rong, Ch. Rosner, M. Q. Ruan, S. N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K. Y. Shan, W. Shan, X. Y. Shan, Z. J. Shang, J. F. Shangguan, L. G. Shao, M. Shao, C. P. Shen, H. F. Shen, W. H. Shen, X. Y. Shen, B. A. Shi, H. Shi, H. C. Shi, J. L. Shi, J. Y. Shi, Q. Q. Shi, S. Y. Shi, X. Shi, J. J. Song, T. Z. Song, W. M. Song, Y. J. Song, Y. X. Song, S. Sosio, S. Spataro, F. Stieler, S. S Su, Y. J. Su, G. B. Sun, G. X. Sun, H. Sun, H. K. Sun, J. F. Sun, K. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, Y. Sun, Y. J. Sun, Y. Z. Sun, Z. Q. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, J. Tang, M. Tang, Y. A. Tang, L. Y. Tao, Q. T. Tao, M. Tat, J. X. Teng, V. Thoren, W. H. Tian, Y. Tian, Z. F. Tian, I. Uman, Y. Wan, S. J. Wang, B. Wang, B. L. Wang, Bo Wang, D. Y. Wang, F. Wang, H. J. Wang, J. J. Wang, J. P. Wang, K. Wang, L. L. Wang, M. Wang, N. Y. Wang, S. Wang, S. Wang, T. Wang, T. J. Wang, W. Wang, W. Wang, W. P. Wang, X. Wang, X. F. Wang, X. J. Wang, X. L. Wang, X. N. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. L. Wang, Y. N. Wang, Y. Q. Wang, Yaqian Wang, Yi Wang, Z. Wang, Z. L. Wang, Z. Y. Wang, Ziyi Wang, D. H. Wei, F. Weidner, S. P. Wen, Y. R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, C. Wu, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, X. H. Wu, Y. Wu, Y. H. Wu, Y. J. Wu, Z. Wu, L. Xia, X. M. Xian, B. H. Xiang, T. Xiang, D. Xiao, G. Y. Xiao, S. Y. Xiao, Y. L. Xiao, Z. J. Xiao, C. Xie, X. H. Xie, Y. Xie, Y. G. Xie, Y. H. Xie, Z. P. Xie, T. Y. Xing, C. F. Xu, C. J. Xu, G. F. Xu, H. Y. Xu, M. Xu, Q. J. Xu, Q. N. Xu, W. Xu, W. L. Xu, X. P. Xu, Y. Xu, Y. C. Xu, Z. S. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, X. Q. Yan, H. J. Yang, H. L. Yang, H. X. Yang, T. Yang, Y. Yang, Y. F. Yang, Y. F. Yang, Y. X. Yang, Z. W. Yang, Z. P. Yao, M. Ye, M. H. Ye, J. H. Yin, Junhao Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, M. C. Yu, T. Yu, X. D. Yu, Y. C. Yu, C. Z. Yuan, J. Yuan, J. Yuan, L. Yuan, S. C. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. A. Zafar, F. R. Zeng, S. H. Zeng, X. Zeng, Y. Zeng, Y. J. Zeng, Y. J. Zeng, X. Y. Zhai, Y. C. Zhai, Y. H. Zhan, A. Q. Zhang, B. L. Zhang, B. X. Zhang, D. H. Zhang, G. Y. Zhang, H. Zhang, H. Zhang, H. C. Zhang, H. H. Zhang, H. H. Zhang, H. Q. Zhang, H. R. Zhang, H. Y. Zhang, J. Zhang, J. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. S. Zhang, J. W. Zhang, J. X. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, L. M. Zhang, Lei Zhang, P. Zhang, Q. Y. Zhang, R. Y. Zhang, S. H. Zhang, Shulei Zhang, X. M. Zhang, X. Y Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. T. Zhang, Y. H. Zhang, Y. M. Zhang, Yan Zhang, Z. D. Zhang, Z. H. Zhang, Z. L. Zhang, Z. Y. Zhang, Z. Y. Zhang, Z. Z. Zhang, G. Zhao, J. Y. Zhao, J. Z. Zhao, L. Zhao, Lei Zhao, M. G. Zhao, N. Zhao, R. P. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, B. M. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, X. Zhong, H. Zhou, J. Y. Zhou, L. P. Zhou, S. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. Z. Zhou, Z. C. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, K. S. Zhu, L. Zhu, L. X. Zhu, S. H. Zhu, T. J. Zhu, W. D. Zhu, Y. C. Zhu, Z. A. Zhu, J. H. Zou, J. Zu","doi":"arxiv-2407.07651","DOIUrl":"https://doi.org/arxiv-2407.07651","url":null,"abstract":"The $e^+e^-rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-rightarrow\u0000D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with\u0000the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The\u0000absolute branching fractions of $D_{s1}(2536)^- rightarrow bar{D}^{*0}K^-$\u0000and $D_{s2}^*(2573)^- rightarrow bar{D}^0K^-$ are measured for the first time\u0000to be $(35.9pm 4.8pm 3.5)%$ and $(37.4pm 3.1pm 4.6)%$, respectively. The\u0000measurements are in tension with predictions based on the assumption that the\u0000$D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $cbar{s}$\u0000component. The $e^+e^-rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-rightarrow\u0000D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at\u0000around 4.6~GeV with a width of 50~MeV is observed for the first time with a\u0000statistical significance of $15sigma$ in the $e^+e^-rightarrow\u0000D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle\u0000collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have\u0000similar masses and widths. There is also evidence for a structure at around\u00004.75~GeV in both processes.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid Parameter Estimation for Merging Massive Black Hole Binaries Using ODE-Based Generative Models 利用基于 ODE 的生成模型快速估算大质量黑洞双星合并的参数
Pub Date : 2024-07-09 DOI: arxiv-2407.07125
Bo Liang, Minghui Du, He Wang, Yuxiang Xu, Chang Liu, Xiaotong Wei, Peng Xu, Li-e Qiang, Ziren Luo
Detecting the coalescences of massive black hole binaries (MBHBs) is one ofthe primary targets for space-based gravitational wave observatories such asLISA, Taiji, and Tianqin. The fast and accurate parameter estimation of mergingMBHBs is of great significance for both astrophysics and the global fitting ofall resolvable sources. However, such analyses entail significant computationalcosts. To address these challenges, inspired by the latest progress ingenerative models, we proposed a novel artificial intelligence (AI) basedparameter estimation method called Variance Preserving Flow Matching PosteriorEstimation (VPFMPE). Specifically, we utilize triangular interpolation tomaintain variance over time, thereby constructing a transport path for trainingcontinuous normalization flows. Compared to the simple linear interpolationmethod used in flow matching to construct the optimal transport path, ourapproach better captures continuous temporal variations, making it moresuitable for the parameter estimation of MBHBs. Additionally, we creativelyintroduce a parameter transformation method based on the symmetry in thedetector's response function. This transformation is integrated within VPFMPE,allowing us to train the model using a simplified dataset, and then performparameter estimation on more general data, hence also acting as a crucialfactor in improving the training speed. In conclusion, for the first time,within a comprehensive and reasonable parameter range, we have achieved acomplete and unbiased 11-dimensional rapid inference for MBHBs in the presenceof astrophysical confusion noise using ODE-based generative models. In theexperiments based on simulated data, our model produces posterior distributionscomparable to those obtained by nested sampling.
探测大质量黑洞双星(MBHBs)的聚合是空间引力波天文台(如 LISA、太极和天琴)的主要目标之一。对合并的大质量黑洞双星进行快速而准确的参数估计,对天体物理学和所有可分辨源的全球拟合都具有重要意义。然而,这种分析需要大量的计算成本。为了应对这些挑战,我们受再生模型最新进展的启发,提出了一种新的基于人工智能(AI)的参数估计方法,称为 "方差保存流匹配后验估计(VPFMPE)"。具体来说,我们利用三角插值来保持随时间变化的方差,从而为训练连续的归一化流构建了一条传输路径。与流量匹配中用于构建最优传输路径的简单线性插值法相比,我们的方法能更好地捕捉连续的时间变化,因此更适合 MBHB 的参数估计。此外,我们还创造性地引入了一种基于探测器响应函数对称性的参数转换方法。这种变换方法集成在 VPFMPE 中,使我们能够使用简化数据集训练模型,然后在更一般的数据上进行参数估计,因此也是提高训练速度的关键因素。总之,我们首次在一个全面而合理的参数范围内,利用基于 ODE 的生成模型,在存在天体物理混淆噪声的情况下,实现了对 MBHB 的完整而无偏的 11 维快速推断。在基于模拟数据的实验中,我们的模型产生的后验分布可与嵌套采样得到的后验分布相媲美。
{"title":"Rapid Parameter Estimation for Merging Massive Black Hole Binaries Using ODE-Based Generative Models","authors":"Bo Liang, Minghui Du, He Wang, Yuxiang Xu, Chang Liu, Xiaotong Wei, Peng Xu, Li-e Qiang, Ziren Luo","doi":"arxiv-2407.07125","DOIUrl":"https://doi.org/arxiv-2407.07125","url":null,"abstract":"Detecting the coalescences of massive black hole binaries (MBHBs) is one of\u0000the primary targets for space-based gravitational wave observatories such as\u0000LISA, Taiji, and Tianqin. The fast and accurate parameter estimation of merging\u0000MBHBs is of great significance for both astrophysics and the global fitting of\u0000all resolvable sources. However, such analyses entail significant computational\u0000costs. To address these challenges, inspired by the latest progress in\u0000generative models, we proposed a novel artificial intelligence (AI) based\u0000parameter estimation method called Variance Preserving Flow Matching Posterior\u0000Estimation (VPFMPE). Specifically, we utilize triangular interpolation to\u0000maintain variance over time, thereby constructing a transport path for training\u0000continuous normalization flows. Compared to the simple linear interpolation\u0000method used in flow matching to construct the optimal transport path, our\u0000approach better captures continuous temporal variations, making it more\u0000suitable for the parameter estimation of MBHBs. Additionally, we creatively\u0000introduce a parameter transformation method based on the symmetry in the\u0000detector's response function. This transformation is integrated within VPFMPE,\u0000allowing us to train the model using a simplified dataset, and then perform\u0000parameter estimation on more general data, hence also acting as a crucial\u0000factor in improving the training speed. In conclusion, for the first time,\u0000within a comprehensive and reasonable parameter range, we have achieved a\u0000complete and unbiased 11-dimensional rapid inference for MBHBs in the presence\u0000of astrophysical confusion noise using ODE-based generative models. In the\u0000experiments based on simulated data, our model produces posterior distributions\u0000comparable to those obtained by nested sampling.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A unified machine learning approach for reconstructing hadronically decaying tau leptons 重构强子衰变头轻子的统一机器学习方法
Pub Date : 2024-07-09 DOI: arxiv-2407.06788
Laurits Tani, Nalong-Norman Seeba, Hardi Vanaveski, Joosep Pata, Torben Lange
Tau leptons serve as an important tool for studying the production of Higgsand electroweak bosons, both within and beyond the Standard Model of particlephysics. Accurate reconstruction and identification of hadronically decayingtau leptons is a crucial task for current and future high energy physicsexperiments. Given the advances in jet tagging, we demonstrate how tau leptonreconstruction can be decomposed into tau identification, kinematicreconstruction, and decay mode classification in a multi-task machine learningsetup.Based on an electron-positron collision dataset with full detectorsimulation and reconstruction, we show that common jet tagging architecturescan be effectively used for these subtasks. We achieve comparable momentumresolutions of 2-3% with all the tested models, while the precision ofreconstructing individual decay modes is between 80-95%. This paper also servesas an introduction to a new publicly available Fu{tau}ure dataset and providesrecipes for the development and training of tau reconstruction algorithms,while allowing to study resilience to domain shifts and the use of foundationmodels for such tasks.
头轻子是研究希格斯玻色子和电弱玻色子产生的重要工具,无论是在粒子物理学标准模型之内还是之外。精确重建和识别强子衰变的头轻子是当前和未来高能物理实验的一项关键任务。鉴于射流标签技术的进步,我们展示了如何在多任务机器学习设置中将头轻子重构分解为头识别、运动学重构和衰变模式分类。基于具有完整探测器模拟和重构的电子-正电子碰撞数据集,我们展示了常见的射流标签架构可以有效地用于这些子任务。在所有测试模型中,我们实现了2-3%的可比动量分辨率,而重建单个衰变模式的精度在80-95%之间。本文还介绍了一个新的可公开获取的Fu{tau}ure数据集,并为tau重建算法的开发和训练提供了参考,同时允许研究对域偏移的弹性以及基础模型在此类任务中的使用。
{"title":"A unified machine learning approach for reconstructing hadronically decaying tau leptons","authors":"Laurits Tani, Nalong-Norman Seeba, Hardi Vanaveski, Joosep Pata, Torben Lange","doi":"arxiv-2407.06788","DOIUrl":"https://doi.org/arxiv-2407.06788","url":null,"abstract":"Tau leptons serve as an important tool for studying the production of Higgs\u0000and electroweak bosons, both within and beyond the Standard Model of particle\u0000physics. Accurate reconstruction and identification of hadronically decaying\u0000tau leptons is a crucial task for current and future high energy physics\u0000experiments. Given the advances in jet tagging, we demonstrate how tau lepton\u0000reconstruction can be decomposed into tau identification, kinematic\u0000reconstruction, and decay mode classification in a multi-task machine learning\u0000setup.Based on an electron-positron collision dataset with full detector\u0000simulation and reconstruction, we show that common jet tagging architectures\u0000can be effectively used for these subtasks. We achieve comparable momentum\u0000resolutions of 2-3% with all the tested models, while the precision of\u0000reconstructing individual decay modes is between 80-95%. This paper also serves\u0000as an introduction to a new publicly available Fu{tau}ure dataset and provides\u0000recipes for the development and training of tau reconstruction algorithms,\u0000while allowing to study resilience to domain shifts and the use of foundation\u0000models for such tasks.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination of operational modal analysis algorithms to identify modal parameters of an actual centrifugal compressor 结合运行模态分析算法确定实际离心压缩机的模态参数
Pub Date : 2024-07-09 DOI: arxiv-2407.07273
Leandro O. Zague, Daniel A. Castello, Carlos F. T. Matt
The novelty of the current work is precisely to propose a statisticalprocedure to combine estimates of the modal parameters provided by any set ofOperational Modal Analysis (OMA) algorithms so as to avoid preference for aparticular one and also to derive an approximate joint probability distributionof the modal parameters, from which engineering statistics of interest such asmean value and variance are readily provided. The effectiveness of the proposedstrategy is assessed considering measured data from an actual centrifugalcompressor. The statistics obtained for both forward and backward modalparameters are finally compared against modal parameters identified duringstandard stability verification testing (SVT) of centrifugal compressors priorto shipment, using classical Experimental Modal Analysis (EMA) algorithms. Thecurrent work demonstrates that combination of OMA algorithms can provide quiteaccurate estimates for both the modal parameters and the associateduncertainties with low computational costs.
当前工作的新颖之处恰恰在于提出了一种统计程序,将任意一组运行模态分析(OMA)算法提供的模态参数估计结合起来,以避免偏好特定的算法,同时得出模态参数的近似联合概率分布,并从中轻松提供平均值和方差等相关工程统计数据。根据实际离心压缩机的测量数据,对所提策略的有效性进行了评估。最后,利用经典的实验模态分析 (EMA) 算法,将获得的前向和后向模态参数统计数据与离心式压缩机出厂前的标准稳定性验证测试 (SVT) 中确定的模态参数进行比较。目前的工作表明,OMA 算法的组合可以以较低的计算成本提供相当精确的模态参数和相关不确定性估计值。
{"title":"Combination of operational modal analysis algorithms to identify modal parameters of an actual centrifugal compressor","authors":"Leandro O. Zague, Daniel A. Castello, Carlos F. T. Matt","doi":"arxiv-2407.07273","DOIUrl":"https://doi.org/arxiv-2407.07273","url":null,"abstract":"The novelty of the current work is precisely to propose a statistical\u0000procedure to combine estimates of the modal parameters provided by any set of\u0000Operational Modal Analysis (OMA) algorithms so as to avoid preference for a\u0000particular one and also to derive an approximate joint probability distribution\u0000of the modal parameters, from which engineering statistics of interest such as\u0000mean value and variance are readily provided. The effectiveness of the proposed\u0000strategy is assessed considering measured data from an actual centrifugal\u0000compressor. The statistics obtained for both forward and backward modal\u0000parameters are finally compared against modal parameters identified during\u0000standard stability verification testing (SVT) of centrifugal compressors prior\u0000to shipment, using classical Experimental Modal Analysis (EMA) algorithms. The\u0000current work demonstrates that combination of OMA algorithms can provide quite\u0000accurate estimates for both the modal parameters and the associated\u0000uncertainties with low computational costs.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Deep Learning Approach for Modeling and Hindcasting Lake Michigan Ice Cover 密歇根湖冰盖建模和后报的深度学习方法
Pub Date : 2024-07-06 DOI: arxiv-2407.04937
Hazem Abdelhady, Cary Troy
In large lakes, ice cover plays an important role in shipping and navigation,coastal erosion, regional weather and climate, and aquatic ecosystem function.In this study, a novel deep learning model for ice cover concentrationprediction in Lake Michigan is introduced. The model uses hindcastedmeteorological variables, water depth, and shoreline proximity as inputs, andNOAA ice charts for training, validation, and testing. The proposed frameworkleverages Convolution Long Short-Term Memory (ConvLSTM) and Convolution NeuralNetwork (CNN) to capture both spatial and temporal dependencies between modelinput and output to simulate daily ice cover at 0.1{deg} resolution. The modelperformance was assessed through lake-wide average metrics and local errormetrics, with detailed evaluations conducted at six distinct locations in LakeMichigan. The results demonstrated a high degree of agreement between themodel's predictions and ice charts, with an average RMSE of 0.029 for the dailylake-wide average ice concentration. Local daily prediction errors weregreater, with an average RMSE of 0.102. Lake-wide and local errors for weeklyand monthly averaged ice concentrations were reduced by almost 50% from dailyvalues. The accuracy of the proposed model surpasses currently availablephysics-based models in the lake-wide ice concentration prediction, offering apromising avenue for enhancing ice prediction and hindcasting in large lakes.
在大型湖泊中,冰盖对航运和航行、海岸侵蚀、区域天气和气候以及水生生态系统功能起着重要作用。本研究介绍了一种用于密歇根湖冰盖浓度预测的新型深度学习模型。该模型使用后报气象变量、水深和海岸线距离作为输入,并使用美国国家海洋和大气管理局的冰图进行训练、验证和测试。所提出的框架利用卷积长短期记忆(ConvLSTM)和卷积神经网络(CNN)捕捉模型输入和输出之间的空间和时间依赖关系,以 0.1{deg} 的分辨率模拟每日冰盖。通过全湖平均指标和局部误差指标对模型性能进行了评估,并在密歇根湖的六个不同地点进行了详细评估。结果表明,该模式的预测结果与冰图高度一致,全湖日平均冰浓度的平均 RMSE 为 0.029。局部地区的日预测误差更大,平均均方根误差为 0.102。全湖和局部每周和每月平均冰浓度的误差比每日值减少了近 50%。拟议模型在全湖冰浓度预测方面的准确性超过了目前可用的基于物理学的模型,为加强大型湖泊的冰预测和后向预报提供了一条新的途径。
{"title":"A Deep Learning Approach for Modeling and Hindcasting Lake Michigan Ice Cover","authors":"Hazem Abdelhady, Cary Troy","doi":"arxiv-2407.04937","DOIUrl":"https://doi.org/arxiv-2407.04937","url":null,"abstract":"In large lakes, ice cover plays an important role in shipping and navigation,\u0000coastal erosion, regional weather and climate, and aquatic ecosystem function.\u0000In this study, a novel deep learning model for ice cover concentration\u0000prediction in Lake Michigan is introduced. The model uses hindcasted\u0000meteorological variables, water depth, and shoreline proximity as inputs, and\u0000NOAA ice charts for training, validation, and testing. The proposed framework\u0000leverages Convolution Long Short-Term Memory (ConvLSTM) and Convolution Neural\u0000Network (CNN) to capture both spatial and temporal dependencies between model\u0000input and output to simulate daily ice cover at 0.1{deg} resolution. The model\u0000performance was assessed through lake-wide average metrics and local error\u0000metrics, with detailed evaluations conducted at six distinct locations in Lake\u0000Michigan. The results demonstrated a high degree of agreement between the\u0000model's predictions and ice charts, with an average RMSE of 0.029 for the daily\u0000lake-wide average ice concentration. Local daily prediction errors were\u0000greater, with an average RMSE of 0.102. Lake-wide and local errors for weekly\u0000and monthly averaged ice concentrations were reduced by almost 50% from daily\u0000values. The accuracy of the proposed model surpasses currently available\u0000physics-based models in the lake-wide ice concentration prediction, offering a\u0000promising avenue for enhancing ice prediction and hindcasting in large lakes.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-driven modeling from biased small training data using periodic orbits 利用周期轨道从有偏差的小型训练数据中进行数据驱动建模
Pub Date : 2024-07-06 DOI: arxiv-2407.06229
Kengo Nakai, Yoshitaka Saiki
In this study, we investigate the effect of reservoir computing training dataon the reconstruction of chaotic dynamics. Our findings indicate that atraining time series comprising a few periodic orbits of low periods cansuccessfully reconstruct the Lorenz attractor. We also demonstrate that biasedtraining data does not negatively impact reconstruction success. Our method'sability to reconstruct a physical measure is much better than the so-calledcycle expansion approach, which relies on weighted averaging. Additionally, wedemonstrate that fixed point attractors and chaotic transients can beaccurately reconstructed by a model trained from a few periodic orbits, evenwhen using different parameters.
在本研究中,我们研究了水库计算训练数据对混沌动力学重建的影响。我们的研究结果表明,由几个低周期的周期轨道组成的训练时间序列可以成功重构洛伦兹吸引子。我们还证明,有偏差的训练数据不会对重建成功率产生负面影响。我们的方法重构物理量的能力远远优于依赖加权平均的所谓周期扩展方法。此外,我们还证明了定点吸引子和混沌瞬态可以通过由几个周期轨道训练出来的模型准确地重建,即使使用不同的参数也是如此。
{"title":"Data-driven modeling from biased small training data using periodic orbits","authors":"Kengo Nakai, Yoshitaka Saiki","doi":"arxiv-2407.06229","DOIUrl":"https://doi.org/arxiv-2407.06229","url":null,"abstract":"In this study, we investigate the effect of reservoir computing training data\u0000on the reconstruction of chaotic dynamics. Our findings indicate that a\u0000training time series comprising a few periodic orbits of low periods can\u0000successfully reconstruct the Lorenz attractor. We also demonstrate that biased\u0000training data does not negatively impact reconstruction success. Our method's\u0000ability to reconstruct a physical measure is much better than the so-called\u0000cycle expansion approach, which relies on weighted averaging. Additionally, we\u0000demonstrate that fixed point attractors and chaotic transients can be\u0000accurately reconstructed by a model trained from a few periodic orbits, even\u0000when using different parameters.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Materials Informatics between Rockets and Electrons 火箭与电子之间的高效材料信息学
Pub Date : 2024-07-05 DOI: arxiv-2407.04648
Adam M. Krajewski
The true power of computational research typically can lay in either what itaccomplishes or what it enables others to accomplish. In this work, bothavenues are simultaneously embraced across several distinct efforts existing atthree general scales of abstractions of what a material is - atomistic,physical, and design. At each, an efficient materials informaticsinfrastructure is being built from the ground up based on (1) the fundamentalunderstanding of the underlying prior knowledge, including the data, (2)deployment routes that take advantage of it, and (3) pathways to extend it inan autonomous or semi-autonomous fashion, while heavily relying on artificialintelligence (AI) to guide well-established DFT-based ab initio andCALPHAD-based thermodynamic methods. The resulting multi-level discovery infrastructure is highly generalizable asit focuses on encoding problems to solve them easily rather than looking for anexisting solution. To showcase it, this dissertation discusses the design ofmulti-alloy functionally graded materials (FGMs) incorporating ultra-hightemperature refractory high entropy alloys (RHEAs) towards gas turbine and jetengine efficiency increase reducing CO2 emissions, as well as hypersonicvehicles. It leverages a new graph representation of underlying mathematicalspace using a newly developed algorithm based on combinatorics, not subject tomany problems troubling the community. Underneath, property models and phaserelations are learned from optimized samplings of the largest and highestquality dataset of HEA in the world, called ULTERA. At the atomistic level, adata ecosystem optimized for machine learning (ML) from over 4.5 millionrelaxed structures, called MPDD, is used to inform experimental observationsand improve thermodynamic models by providing stability data enabled by a newefficient featurization framework.
计算研究的真正威力通常在于它所完成的工作或它能帮助他人完成的工作。在这项工作中,这两个方面同时贯穿于几项不同的工作中,这些工作存在于对材料的原子、物理和设计这三个一般抽象尺度上。每一项工作都从头开始构建高效的材料信息学基础设施,其基础是:(1) 对包括数据在内的先验知识的基本理解;(2) 利用先验知识的部署路线;(3) 以自主或半自主方式扩展先验知识的途径,同时在很大程度上依赖人工智能(AI)来指导成熟的基于 DFT 的 ab initio 和基于 CALPHAD 的热力学方法。由此产生的多层次发现基础架构具有很强的通用性,因为它侧重于对问题进行编码以轻松解决问题,而不是寻找已有的解决方案。为了展示这一点,本论文讨论了结合超高温难熔高熵合金(RHEAs)的多合金功能分级材料(FGMs)的设计,以提高燃气轮机和喷气发动机的效率,减少二氧化碳排放,以及高超音速飞行器。它利用新开发的基于组合学的算法,对底层数学空间进行了全新的图形表示,从而避免了许多困扰业界的问题。在此基础上,通过对世界上最大、质量最高的 HEA 数据集(ULTERA)进行优化采样,学习属性模型和相位关系。在原子水平上,从 450 多万个松弛结构中优化出的机器学习(ML)数据生态系统(称为 MPDD)被用来为实验观察提供信息,并通过新的高效特征化框架提供稳定性数据来改进热力学模型。
{"title":"Efficient Materials Informatics between Rockets and Electrons","authors":"Adam M. Krajewski","doi":"arxiv-2407.04648","DOIUrl":"https://doi.org/arxiv-2407.04648","url":null,"abstract":"The true power of computational research typically can lay in either what it\u0000accomplishes or what it enables others to accomplish. In this work, both\u0000avenues are simultaneously embraced across several distinct efforts existing at\u0000three general scales of abstractions of what a material is - atomistic,\u0000physical, and design. At each, an efficient materials informatics\u0000infrastructure is being built from the ground up based on (1) the fundamental\u0000understanding of the underlying prior knowledge, including the data, (2)\u0000deployment routes that take advantage of it, and (3) pathways to extend it in\u0000an autonomous or semi-autonomous fashion, while heavily relying on artificial\u0000intelligence (AI) to guide well-established DFT-based ab initio and\u0000CALPHAD-based thermodynamic methods. The resulting multi-level discovery infrastructure is highly generalizable as\u0000it focuses on encoding problems to solve them easily rather than looking for an\u0000existing solution. To showcase it, this dissertation discusses the design of\u0000multi-alloy functionally graded materials (FGMs) incorporating ultra-high\u0000temperature refractory high entropy alloys (RHEAs) towards gas turbine and jet\u0000engine efficiency increase reducing CO2 emissions, as well as hypersonic\u0000vehicles. It leverages a new graph representation of underlying mathematical\u0000space using a newly developed algorithm based on combinatorics, not subject to\u0000many problems troubling the community. Underneath, property models and phase\u0000relations are learned from optimized samplings of the largest and highest\u0000quality dataset of HEA in the world, called ULTERA. At the atomistic level, a\u0000data ecosystem optimized for machine learning (ML) from over 4.5 million\u0000relaxed structures, called MPDD, is used to inform experimental observations\u0000and improve thermodynamic models by providing stability data enabled by a new\u0000efficient featurization framework.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exotic and physics-informed support vector machines for high energy physics 用于高能物理的奇异物理信息支持向量机
Pub Date : 2024-07-03 DOI: arxiv-2407.03538
A. Ramirez-Morales, A. Gutiérrez-Rodríguez, T. Cisneros-Pérez, H. Garcia-Tecocoatzi, A. Dávila-Rivera
In this article, we explore machine learning techniques using support vectormachines with two novel approaches: exotic and physics-informed support vectormachines. Exotic support vector machines employ unconventional techniques suchas genetic algorithms and boosting. Physics-informed support vector machinesintegrate the physics dynamics of a given high-energy physics process in astraightforward manner. The goal is to efficiently distinguish signal andbackground events in high-energy physics collision data. To test ouralgorithms, we perform computational experiments with simulated Drell-Yanevents in proton-proton collisions. Our results highlight the superiority ofthe physics-informed support vector machines, emphasizing their potential inhigh-energy physics and promoting the inclusion of physics information inmachine learning algorithms for future research.
在本文中,我们通过两种新方法探索了使用支持向量机的机器学习技术:异域支持向量机和物理信息支持向量机。外来支持向量机采用非常规技术,如遗传算法和提升技术。物理信息支持向量机以直观的方式整合了给定高能物理过程的物理动态。我们的目标是有效区分高能物理碰撞数据中的信号和背景事件。为了测试我们的算法,我们对质子-质子碰撞中的模拟德雷尔-扬事件进行了计算实验。我们的结果凸显了物理信息支持向量机的优越性,强调了其在高能物理领域的潜力,并促进了将物理信息纳入机器学习算法的未来研究。
{"title":"Exotic and physics-informed support vector machines for high energy physics","authors":"A. Ramirez-Morales, A. Gutiérrez-Rodríguez, T. Cisneros-Pérez, H. Garcia-Tecocoatzi, A. Dávila-Rivera","doi":"arxiv-2407.03538","DOIUrl":"https://doi.org/arxiv-2407.03538","url":null,"abstract":"In this article, we explore machine learning techniques using support vector\u0000machines with two novel approaches: exotic and physics-informed support vector\u0000machines. Exotic support vector machines employ unconventional techniques such\u0000as genetic algorithms and boosting. Physics-informed support vector machines\u0000integrate the physics dynamics of a given high-energy physics process in a\u0000straightforward manner. The goal is to efficiently distinguish signal and\u0000background events in high-energy physics collision data. To test our\u0000algorithms, we perform computational experiments with simulated Drell-Yan\u0000events in proton-proton collisions. Our results highlight the superiority of\u0000the physics-informed support vector machines, emphasizing their potential in\u0000high-energy physics and promoting the inclusion of physics information in\u0000machine learning algorithms for future research.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of the Digital Annealer Unit in Optimizing Chemical Reaction Conditions for Enhanced Production Yields 数字退火装置在优化化学反应条件以提高产量中的应用
Pub Date : 2024-07-03 DOI: arxiv-2407.17485
Shih-Cheng Li, Pei-Hwa Wang, Jheng-Wei Su, Wei-Yin Chiang, Shih-Hsien Huang, Yen-Chu Lin, Chia-Ho Ou, Chih-Yu Chen
Finding appropriate reaction conditions that yield high product rates inchemical synthesis is crucial for the chemical and pharmaceutical industries.However, due to the vast chemical space, conducting experiments for eachpossible reaction condition is impractical. Consequently, models such as QSAR(Quantitative Structure-Activity Relationship) or ML (Machine Learning) havebeen developed to predict the outcomes of reactions and illustrate how reactionconditions affect product yield. Despite these advancements, inferring allpossible combinations remains computationally prohibitive when using aconventional CPU. In this work, we explore using a Digital Annealing Unit (DAU)to tackle these large-scale optimization problems more efficiently by solvingQuadratic Unconstrained Binary Optimization (QUBO). Two types of QUBO modelsare constructed in this work: one using quantum annealing and the other usingML. Both models are built and tested on four high-throughput experimentation(HTE) datasets and selected Reaxys datasets. Our results suggest that theperformance of models is comparable to classical ML methods (i.e., RandomForest and Multilayer Perceptron (MLP)), while the inference time of our modelsrequires only seconds with a DAU. Additionally, in campaigns involving activelearning and autonomous design of reaction conditions to achieve higherreaction yield, our model demonstrates significant improvements by adding newdata, showing promise of adopting our method in the iterative nature of suchproblem settings. Our method can also accelerate the screening of billions ofreaction conditions, achieving speeds millions of times faster than traditionalcomputing units in identifying superior conditions. Therefore, leveraging theDAU with our developed QUBO models has the potential to be a valuable tool forinnovative chemical synthesis.
寻找合适的反应条件,在化学合成中获得高产率,对于化学和制药行业至关重要。然而,由于化学空间巨大,对每种可能的反应条件进行实验是不切实际的。因此,人们开发了 QSAR(定量结构-活性关系)或 ML(机器学习)等模型来预测反应结果,并说明反应条件如何影响产物产量。尽管取得了这些进步,但在使用传统 CPU 时,推断所有可能的组合仍然耗费大量计算资源。在这项工作中,我们探索使用数字退火单元(DAU),通过求解二次无约束二元优化(QUBO),更高效地解决这些大规模优化问题。本文构建了两种 QUBO 模型:一种使用量子退火,另一种使用ML。我们在四个高通量实验(HTE)数据集和选定的 Reaxys 数据集上构建并测试了这两种模型。我们的结果表明,模型的性能可与经典的 ML 方法(即随机森林和多层感知器 (MLP))相媲美,而我们模型的推理时间只需要 DAU 的几秒钟。此外,在涉及主动学习和自主设计反应条件以获得更高的反应产率的活动中,我们的模型通过添加新数据实现了显著的改进,这表明在此类问题设置的迭代性质中采用我们的方法大有可为。我们的方法还能加速筛选数十亿个反应条件,在识别优越条件方面的速度比传统计算单元快数百万倍。因此,利用 DAU 和我们开发的 QUBO 模型有可能成为创新化学合成的重要工具。
{"title":"Application of the Digital Annealer Unit in Optimizing Chemical Reaction Conditions for Enhanced Production Yields","authors":"Shih-Cheng Li, Pei-Hwa Wang, Jheng-Wei Su, Wei-Yin Chiang, Shih-Hsien Huang, Yen-Chu Lin, Chia-Ho Ou, Chih-Yu Chen","doi":"arxiv-2407.17485","DOIUrl":"https://doi.org/arxiv-2407.17485","url":null,"abstract":"Finding appropriate reaction conditions that yield high product rates in\u0000chemical synthesis is crucial for the chemical and pharmaceutical industries.\u0000However, due to the vast chemical space, conducting experiments for each\u0000possible reaction condition is impractical. Consequently, models such as QSAR\u0000(Quantitative Structure-Activity Relationship) or ML (Machine Learning) have\u0000been developed to predict the outcomes of reactions and illustrate how reaction\u0000conditions affect product yield. Despite these advancements, inferring all\u0000possible combinations remains computationally prohibitive when using a\u0000conventional CPU. In this work, we explore using a Digital Annealing Unit (DAU)\u0000to tackle these large-scale optimization problems more efficiently by solving\u0000Quadratic Unconstrained Binary Optimization (QUBO). Two types of QUBO models\u0000are constructed in this work: one using quantum annealing and the other using\u0000ML. Both models are built and tested on four high-throughput experimentation\u0000(HTE) datasets and selected Reaxys datasets. Our results suggest that the\u0000performance of models is comparable to classical ML methods (i.e., Random\u0000Forest and Multilayer Perceptron (MLP)), while the inference time of our models\u0000requires only seconds with a DAU. Additionally, in campaigns involving active\u0000learning and autonomous design of reaction conditions to achieve higher\u0000reaction yield, our model demonstrates significant improvements by adding new\u0000data, showing promise of adopting our method in the iterative nature of such\u0000problem settings. Our method can also accelerate the screening of billions of\u0000reaction conditions, achieving speeds millions of times faster than traditional\u0000computing units in identifying superior conditions. Therefore, leveraging the\u0000DAU with our developed QUBO models has the potential to be a valuable tool for\u0000innovative chemical synthesis.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"140 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141784372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
arXiv - PHYS - Data Analysis, Statistics and Probability
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1