Pub Date : 2024-04-20DOI: 10.1142/s0218348x24500713
LAI JIANG
In this paper, we first present a simple lemma which allows us to estimate the box dimension of graphs of given functions by the associated oscillation sums and oscillation vectors. Then we define vertical scaling matrices of generalized affine fractal interpolation surfaces (FISs). By using these matrices, we establish relationships between oscillation vectors of different levels, which enables us to obtain the box dimension of generalized affine FISs under certain constraints.
{"title":"BOX DIMENSION OF FRACTAL INTERPOLATION SURFACES WITH VERTICAL SCALING FUNCTION","authors":"LAI JIANG","doi":"10.1142/s0218348x24500713","DOIUrl":"https://doi.org/10.1142/s0218348x24500713","url":null,"abstract":"<p>In this paper, we first present a simple lemma which allows us to estimate the box dimension of graphs of given functions by the associated oscillation sums and oscillation vectors. Then we define vertical scaling matrices of generalized affine fractal interpolation surfaces (FISs). By using these matrices, we establish relationships between oscillation vectors of different levels, which enables us to obtain the box dimension of generalized affine FISs under certain constraints.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"86 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140632335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-20DOI: 10.1142/s0218348x24500701
YI JIN, BEN ZHAO, YUNHANG YANG, JIABIN DONG, HUIBO SONG, YUNQING TIAN, JIENAN PAN
Fractal pore structure exists widely in natural reservoir and dominates its transport property. For that, more and more effort is devoted to investigate the control mechanism on mass transfer in such a complex and multi-scale system. Apparently, effective characterization of the fractal structure is of fundamental importance. Although the newly emerged concept of complexity assembly clarified the complexity types and their assembly mechanism in a fractal system, equivalent extraction of the complexity types is the key for effective characterization. For these, we proposed a deep learning-based method to extract the original and behavioral complexity assembled in bed-packing fractal porous media for simplification and without loss of generality. In detail, the UNeXt network model was trained to obtain the independent connected regions of scaling objects with different scales, the edge detection and clustering analysis algorithms were employed to extract the number-size relationship between two successive scaling objects, and the unique inversion of fractal behavior was realized by taking the number-size model and fractal topography together. Consequently, an equivalent characterization method for fractal complex pore structure was developed based on the concept of complexity assembly. Our investigation provides a theoretical guidance and method reference for the quantitative characterization of fractal porous media that will guarantee the fundamental requirement for the accurate evaluation of the transport properties of natural reservoir.
{"title":"INTELLIGENT EXTRACTION OF COMPLEXITY TYPES IN FRACTAL RESERVOIR AND ITS SIGNIFICANCE TO ESTIMATE TRANSPORT PROPERTY","authors":"YI JIN, BEN ZHAO, YUNHANG YANG, JIABIN DONG, HUIBO SONG, YUNQING TIAN, JIENAN PAN","doi":"10.1142/s0218348x24500701","DOIUrl":"https://doi.org/10.1142/s0218348x24500701","url":null,"abstract":"<p>Fractal pore structure exists widely in natural reservoir and dominates its transport property. For that, more and more effort is devoted to investigate the control mechanism on mass transfer in such a complex and multi-scale system. Apparently, effective characterization of the fractal structure is of fundamental importance. Although the newly emerged concept of complexity assembly clarified the complexity types and their assembly mechanism in a fractal system, equivalent extraction of the complexity types is the key for effective characterization. For these, we proposed a deep learning-based method to extract the original and behavioral complexity assembled in bed-packing fractal porous media for simplification and without loss of generality. In detail, the UNeXt network model was trained to obtain the independent connected regions of scaling objects with different scales, the edge detection and clustering analysis algorithms were employed to extract the number-size relationship between two successive scaling objects, and the unique inversion of fractal behavior was realized by taking the number-size model and fractal topography together. Consequently, an equivalent characterization method for fractal complex pore structure was developed based on the concept of complexity assembly. Our investigation provides a theoretical guidance and method reference for the quantitative characterization of fractal porous media that will guarantee the fundamental requirement for the accurate evaluation of the transport properties of natural reservoir.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140632312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-13DOI: 10.1142/s0218348x24500695
FEIYAN GUO, LIN QI, YING FAN
An in-depth analysis of the attack vulnerability of fractal scale-free networks is of great significance for designing robust networks. Previous studies have mainly focused on the impact of fractal property on attack vulnerability of scale-free networks under static node attacks, while we extend the study to the cases of various types of targeted attacks, and explore the relationship between the attack vulnerability of fractal scale-free networks and the fractal dimension. A hierarchical multiplicative growth model is first proposed to generate scale-free networks with the same structural properties except for the fractal dimension. Furthermore, the fractal dimension of the network is calculated using two methods, namely, the box-covering method and the cluster-growing method, to exclude the possibility of differences in conclusions caused by the methods of calculating the fractal dimension for the subsequent relationship analysis. Finally, four attack strategies are used to attack the network, and the network performance is quantitatively measured by three structural indicators. Results on model networks show that compared to non-fractal modular networks, fractal scale-free networks are more robust to both static and dynamic targeted attacks on nodes and links, and the robustness of the network increases as the fractal dimension decreases. However, there is a cost in that as the fractal dimension decreases, the network becomes less efficient and more vulnerable to random failures on links. These findings contribute to a deeper understanding of the impact of fractal property on scale-free network performance and may be useful for designing resilient infrastructures.
{"title":"ATTACK VULNERABILITY OF FRACTAL SCALE-FREE NETWORK","authors":"FEIYAN GUO, LIN QI, YING FAN","doi":"10.1142/s0218348x24500695","DOIUrl":"https://doi.org/10.1142/s0218348x24500695","url":null,"abstract":"<p>An in-depth analysis of the attack vulnerability of fractal scale-free networks is of great significance for designing robust networks. Previous studies have mainly focused on the impact of fractal property on attack vulnerability of scale-free networks under static node attacks, while we extend the study to the cases of various types of targeted attacks, and explore the relationship between the attack vulnerability of fractal scale-free networks and the fractal dimension. A hierarchical multiplicative growth model is first proposed to generate scale-free networks with the same structural properties except for the fractal dimension. Furthermore, the fractal dimension of the network is calculated using two methods, namely, the box-covering method and the cluster-growing method, to exclude the possibility of differences in conclusions caused by the methods of calculating the fractal dimension for the subsequent relationship analysis. Finally, four attack strategies are used to attack the network, and the network performance is quantitatively measured by three structural indicators. Results on model networks show that compared to non-fractal modular networks, fractal scale-free networks are more robust to both static and dynamic targeted attacks on nodes and links, and the robustness of the network increases as the fractal dimension decreases. However, there is a cost in that as the fractal dimension decreases, the network becomes less efficient and more vulnerable to random failures on links. These findings contribute to a deeper understanding of the impact of fractal property on scale-free network performance and may be useful for designing resilient infrastructures.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"91 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140553609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-12DOI: 10.1142/s0218348x2450066x
JIANSHE SUN
In this paper, we first created a fractal Date–Jimbo–Kashiwara–Miwa (FDJKM) long ripple wave model in a non-smooth boundary or microgravity space recorded. Using fractal semi-inverse skill (FSIS) and fractal traveling wave transformation (FTWT), the fractal variational principle (FVP) was derived, and the strong minimum necessary circumstance was attested with the He Wierstrass function. We have discovered two distinct solitary wave solutions, the square form of the hyperbolic secant function and the hyperbolic secant function form. Then, soliton solutions are cultivated through FVP and the minimum steady state condition. Finally, the influences of non-smooth boundaries on solitons were tackled, and the properties of the solution were demonstrated through three-dimensional contour lines. Fractal dimension can impact waveforms, but cannot affect their vertex values. The presentation of soliton solutions (SWS) using techniques is not only laudable but also noteworthy. The technique employed can also be used to investigate solitary wave solutions of other local fractional calculus partial differential equations.
本文首先创建了非光滑边界或微重力空间记录的分形Date-Jimbo-Kashiwara-Miwa(FDJKM)长波纹模型。利用分形半逆技术(FSIS)和分形行波变换(FTWT),我们得出了分形变分原理(FVP),并用 He Wierstrass 函数证明了强最小必要条件。我们发现了两种不同的孤波解,即双曲正割函数的平方形式和双曲正割函数形式。然后,通过 FVP 和最小稳态条件培育出孤子解。最后,解决了非光滑边界对孤子的影响,并通过三维等高线展示了解的特性。分形维度会影响波形,但不会影响其顶点值。利用技术展示孤子解(SWS)不仅值得称赞,而且值得关注。所采用的技术还可用于研究其他局部分数微积分偏微分方程的孤波解。
{"title":"A NEW PERSPECTIVE ON THE NONLINEAR DATE–JIMBO–KASHIWARA–MIWA EQUATION IN FRACTAL MEDIA","authors":"JIANSHE SUN","doi":"10.1142/s0218348x2450066x","DOIUrl":"https://doi.org/10.1142/s0218348x2450066x","url":null,"abstract":"<p>In this paper, we first created a fractal Date–Jimbo–Kashiwara–Miwa (FDJKM) long ripple wave model in a non-smooth boundary or microgravity space recorded. Using fractal semi-inverse skill (FSIS) and fractal traveling wave transformation (FTWT), the fractal variational principle (FVP) was derived, and the strong minimum necessary circumstance was attested with the He Wierstrass function. We have discovered two distinct solitary wave solutions, the square form of the hyperbolic secant function and the hyperbolic secant function form. Then, soliton solutions are cultivated through FVP and the minimum steady state condition. Finally, the influences of non-smooth boundaries on solitons were tackled, and the properties of the solution were demonstrated through three-dimensional contour lines. Fractal dimension can impact waveforms, but cannot affect their vertex values. The presentation of soliton solutions (SWS) using techniques is not only laudable but also noteworthy. The technique employed can also be used to investigate solitary wave solutions of other local fractional calculus partial differential equations.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140553624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The challenges of modeling shale oil transport are numerous and include strong solid-fluid interactions, fluid rheology, the multi-scale nature of the pore structure problem, and the different pore types involved. Until now, theoretical studies have not fully considered shale oil transport mechanisms and multi-scale pore structure properties. In this study, we propose a fractal-based oil transport model with uncertainty reduction for a multi-scale shale pore system. The fractal properties of the shale pore system are obtained using high-resolution scanning electron microscope (SEM) imaging combined with laboratory core sample gas permeability measurements to reduce the model uncertainty. This fractal-based oil transport model accounts for boundary slippage, fluid rheology, the adsorption layer, and different pore types. We further pinpoint the effects of the fractal properties (pore fractal dimension, tortuosity fractal dimension), the shale pore properties (pore type, pore size, total organic carbon in volume), and the fluid properties (yield stress, liquid slippage, adsorption layer) on the shale oil permeability and mobile oil saturation using the proposed model. The results reveal that the size of the inorganic pores has the largest influence on the shale oil transport properties, followed by the yield stress, tortuosity fractal dimension, and the fractal dimension of the inorganic pores.
{"title":"A FRACTAL-BASED OIL TRANSPORT MODEL WITH UNCERTAINTY REDUCTION FOR A MULTI-SCALE SHALE PORE SYSTEM","authors":"WENHUI SONG, YUNHU LU, YIHUA GAO, BOWEN YAO, YAN JIN, MIAN CHEN","doi":"10.1142/s0218348x24500531","DOIUrl":"https://doi.org/10.1142/s0218348x24500531","url":null,"abstract":"<p>The challenges of modeling shale oil transport are numerous and include strong solid-fluid interactions, fluid rheology, the multi-scale nature of the pore structure problem, and the different pore types involved. Until now, theoretical studies have not fully considered shale oil transport mechanisms and multi-scale pore structure properties. In this study, we propose a fractal-based oil transport model with uncertainty reduction for a multi-scale shale pore system. The fractal properties of the shale pore system are obtained using high-resolution scanning electron microscope (SEM) imaging combined with laboratory core sample gas permeability measurements to reduce the model uncertainty. This fractal-based oil transport model accounts for boundary slippage, fluid rheology, the adsorption layer, and different pore types. We further pinpoint the effects of the fractal properties (pore fractal dimension, tortuosity fractal dimension), the shale pore properties (pore type, pore size, total organic carbon in volume), and the fluid properties (yield stress, liquid slippage, adsorption layer) on the shale oil permeability and mobile oil saturation using the proposed model. The results reveal that the size of the inorganic pores has the largest influence on the shale oil transport properties, followed by the yield stress, tortuosity fractal dimension, and the fractal dimension of the inorganic pores.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140545189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09DOI: 10.1142/s0218348x24500622
B. Q. WANG, W. XIAO
The research object of this paper is the mixed -Riemann–Liouville fractional integral of bivariate functions on rectangular regions, which is a natural generalization of the fractional integral of univariate functions. This paper first indicates that the mixed integral still maintains the validity of the classical properties, such as boundedness, continuity and bounded variation. Furthermore, we investigate fractal dimensions of bivariate functions under the mixed integral, including the Hausdorff dimension and the Box dimension. The main results indicate that fractal dimensions of the graph of the mixed -Riemann–Liouville integral of continuous functions with bounded variation are still two. The Box dimension of the mixed integral of two-dimensional continuous functions has also been calculated. Besides, we prove that the upper bound of the Box dimension of bivariate continuous functions under order of the mixed integral is where .
{"title":"FRACTAL DIMENSIONS FOR THE MIXED (κ,s)-RIEMANN–LIOUVILLE FRACTIONAL INTEGRAL OF BIVARIATE FUNCTIONS","authors":"B. Q. WANG, W. XIAO","doi":"10.1142/s0218348x24500622","DOIUrl":"https://doi.org/10.1142/s0218348x24500622","url":null,"abstract":"<p>The research object of this paper is the mixed <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>κ</mi><mo>,</mo><mi>s</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-Riemann–Liouville fractional integral of bivariate functions on rectangular regions, which is a natural generalization of the fractional integral of univariate functions. This paper first indicates that the mixed integral still maintains the validity of the classical properties, such as boundedness, continuity and bounded variation. Furthermore, we investigate fractal dimensions of bivariate functions under the mixed integral, including the Hausdorff dimension and the Box dimension. The main results indicate that fractal dimensions of the graph of the mixed <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>κ</mi><mo>,</mo><mi>s</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-Riemann–Liouville integral of continuous functions with bounded variation are still two. The Box dimension of the mixed integral of two-dimensional continuous functions has also been calculated. Besides, we prove that the upper bound of the Box dimension of bivariate continuous functions under <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi><mo>=</mo><mo stretchy=\"false\">(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> order of the mixed integral is <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn><mo stretchy=\"false\">−</mo><mo>min</mo><mo stretchy=\"false\">{</mo><mfrac><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mi>κ</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mi>κ</mi></mrow></mfrac><mo stretchy=\"false\">}</mo></math></span><span></span> where <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi><mo>></mo><mn>0</mn></math></span><span></span>.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The temperature effect on the permeability of porous rocks continues to be a considerable controversy in the area of reservoirs since the thermal expansion of mineral grains exhibits complicated influence on pore geometries in them. To investigate the degree of effect of pore structures on the hydro-thermal coupling process, a study of the thermal evolution of permeability and porosity of porous rocks is performed based on fractal theory and on thermal as well as stress effects. This work can provide a general physical explanation on some arguments in this area. The proposed models for permeability and porosity can be associated with temperature and the pore-structural parameters as well as physical parameters of porous rocks, such as the initial porosity (, the initial fractal dimension (, the fractal dimension for tortuosity ( and the thermal expansion coefficient of pore volume (. The validity of the proposed models for temperature-dependent permeability and temperature-dependent porosity is validated by comparing them with the available experimental results. The investigations are performed in detail considering the essential effects of pore-structural parameters and physical parameters of porous rock on the dimensionless temperature-dependent permeability and temperature-dependent porosity as well as the fractal dimensions for pore areas and tortuosity. It is found that the pore distribution scale range ratio (, and pore thermal expansion coefficient ( have significant effects on the dimensionless temperature-dependent permeability and temperature-dependent porosity of porous rock as well as the fractal dimensions for pore areas and tortuosity. The proposed models may provide a fundamental understandi
{"title":"A STUDY OF THE THERMAL EVOLUTION OF PERMEABILITY AND POROSITY OF POROUS ROCKS BASED ON FRACTAL GEOMETRY THEORY","authors":"TONGJUN MIAO, AIMIN CHEN, RICHENG LIU, PENG XU, BOMING YU","doi":"10.1142/s0218348x24500518","DOIUrl":"https://doi.org/10.1142/s0218348x24500518","url":null,"abstract":"<p>The temperature effect on the permeability of porous rocks continues to be a considerable controversy in the area of reservoirs since the thermal expansion of mineral grains exhibits complicated influence on pore geometries in them. To investigate the degree of effect of pore structures on the hydro-thermal coupling process, a study of the thermal evolution of permeability and porosity of porous rocks is performed based on fractal theory and on thermal as well as stress effects. This work can provide a general physical explanation on some arguments in this area. The proposed models for permeability and porosity can be associated with temperature and the pore-structural parameters as well as physical parameters of porous rocks, such as the initial porosity (<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span>, the initial fractal dimension (<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>D</mi></mrow><mrow><mi>f</mi><mo>,</mo><mn>0</mn></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span>, the fractal dimension for tortuosity (<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>D</mi></mrow><mrow><mi>T</mi><mo>,</mo><mi>T</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> and the thermal expansion coefficient of pore volume (<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>α</mi></mrow><mrow><mi>T</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span>. The validity of the proposed models for temperature-dependent permeability and temperature-dependent porosity is validated by comparing them with the available experimental results. The investigations are performed in detail considering the essential effects of pore-structural parameters and physical parameters of porous rock on the dimensionless temperature-dependent permeability and temperature-dependent porosity as well as the fractal dimensions for pore areas and tortuosity. It is found that the pore distribution scale range ratio (<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo><mo>,</mo><mi>T</mi></mrow></msub><mo stretchy=\"false\">/</mo><msub><mrow><mi>λ</mi></mrow><mrow><mo>max</mo><mo>,</mo><mi>T</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span>, and pore thermal expansion coefficient (<span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>α</mi></mrow><mrow><mi>T</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> have significant effects on the dimensionless temperature-dependent permeability and temperature-dependent porosity of porous rock as well as the fractal dimensions for pore areas and tortuosity. The proposed models may provide a fundamental understandi","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09DOI: 10.1142/s0218348x24500683
NAJMEH PAKNIYAT, ONDREJ KREJCAR, PETRA MARESOVA, JAMALUDDIN ABDULLAH, HAMIDREZA NAMAZI
Analysis of the brain activity in different mental tasks is an important area of research. We used complexity-based analysis to study the changes in brain activity in four mental tasks: relaxation, Stroop color-word, mirror image recognition, and arithmetic tasks. We used fractal theory, sample entropy, and approximate entropy to analyze the changes in electroencephalogram (EEG) signals between different tasks. Our analysis showed that by moving from relaxation to the Stroop color-word, arithmetic, and mirror image recognition tasks, the complexity of EEG signals increases, respectively, reflecting rising brain activity between these conditions. Furthermore, only the fractal theory could decode the significant changes in brain activity between different conditions. Similar analyses can be done to decode the brain activity in case of other conditions.
{"title":"ANALYSIS OF THE EFFECT OF VARIOUS MENTAL TASKS ON THE EEG SIGNALS’ COMPLEXITY","authors":"NAJMEH PAKNIYAT, ONDREJ KREJCAR, PETRA MARESOVA, JAMALUDDIN ABDULLAH, HAMIDREZA NAMAZI","doi":"10.1142/s0218348x24500683","DOIUrl":"https://doi.org/10.1142/s0218348x24500683","url":null,"abstract":"<p>Analysis of the brain activity in different mental tasks is an important area of research. We used complexity-based analysis to study the changes in brain activity in four mental tasks: relaxation, Stroop color-word, mirror image recognition, and arithmetic tasks. We used fractal theory, sample entropy, and approximate entropy to analyze the changes in electroencephalogram (EEG) signals between different tasks. Our analysis showed that by moving from relaxation to the Stroop color-word, arithmetic, and mirror image recognition tasks, the complexity of EEG signals increases, respectively, reflecting rising brain activity between these conditions. Furthermore, only the fractal theory could decode the significant changes in brain activity between different conditions. Similar analyses can be done to decode the brain activity in case of other conditions.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09DOI: 10.1142/s0218348x24500506
HUAI YANG, LULU REN, QIAN ZHENG
In this paper, we explore upper box dimension of continuous functions on and their Riemann–Liouville fractional integral. Firstly, by comparing function limits, we prove that the upper box dimension of the Riemann–Liouville fractional order integral image of a continuous function will not exceed , the result similar to [Y. S. Liang and W. Y. Su, Fractal dimensions of fractional integral of continuous functions, Acta Math. Appl. Sin. E32 (2016) 1494–1508]. Secondly, we prove that upper box dimension of multiple algebraic sums of continuous functions does not exceed the largest box dimension among them, backing up our conclusion with an appropriate example. Finally, we draw the same conclusions for the product of multiple continuous functions.
本文探讨了[0,1]上连续函数的上盒维及其黎曼-黎奥维尔分阶积分。首先,通过比较函数极限,我们证明了连续函数的黎曼-黎奥维尔分数阶积分图像的上盒维不会超过 2-υ,这一结果与 [Y. S. Liang and W. Y. Su, Fractal dimensions of fractional integral image of a continuous function] 类似。S. Liang and W. Y. Su, Fractal dimensions of fractional integral of continuous function, Acta Math.Appl.E32 (2016) 1494-1508].其次,我们证明连续函数的多个代数和的上盒维不超过其中最大的盒维,并用一个适当的例子来支持我们的结论。最后,我们对多个连续函数的乘积得出了同样的结论。
{"title":"SOME RESULTS ON BOX DIMENSION ESTIMATION OF FRACTAL CONTINUOUS FUNCTIONS","authors":"HUAI YANG, LULU REN, QIAN ZHENG","doi":"10.1142/s0218348x24500506","DOIUrl":"https://doi.org/10.1142/s0218348x24500506","url":null,"abstract":"<p>In this paper, we explore upper box dimension of continuous functions on <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">]</mo></math></span><span></span> and their Riemann–Liouville fractional integral. Firstly, by comparing function limits, we prove that the upper box dimension of the Riemann–Liouville fractional order integral image of a continuous function will not exceed <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mo stretchy=\"false\">−</mo><mi>υ</mi></math></span><span></span>, the result similar to [Y. S. Liang and W. Y. Su, Fractal dimensions of fractional integral of continuous functions, <i>Acta Math. Appl. Sin. E</i><b>32</b> (2016) 1494–1508]. Secondly, we prove that upper box dimension of multiple algebraic sums of continuous functions does not exceed the largest box dimension among them, backing up our conclusion with an appropriate example. Finally, we draw the same conclusions for the product of multiple continuous functions.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, a novel unified stability criterion is first proposed for general fractional-order systems with time delay when the fractional order is from 0 to 1. Such a new unified criterion has the advantage of having an initiative link with the fractional orders. A further advantage is that the corresponding asymptotic stability theorem, derived from the proposed criterion used to analyze the asymptotic stability, is only slightly affected by the change of the fractional order. In addition, the unified stability criterion is applied to general multi-dimensional nonlinear fractional-order systems with time delays, the corresponding asymptotic stability criterion is applied by combining the vector Lyapunov function with the M-matrix method. Compared with the traditional stability criterion, the unified stability criterion is slightly influenced by the changing fractional order and large time delays. The reliability and effectiveness of the novel uniform stability criterion were verified through three representative examples.
本研究首次提出了一种新的统一稳定性准则,适用于分数阶从 0 到 1 时具有时延的一般分数阶系统。 这种新的统一准则的优点是与分数阶具有主动联系。它的另一个优点是,由用于分析渐近稳定性的拟议准则推导出的相应渐近稳定性定理仅受分数阶变化的轻微影响。此外,统一稳定性准则适用于具有时间延迟的一般多维非线性分数阶系统,相应的渐近稳定性准则是通过将矢量 Lyapunov 函数与 M 矩阵方法相结合而应用的。与传统的稳定性准则相比,统一稳定性准则受分数阶变化和大时间延迟的影响较小。通过三个有代表性的例子验证了新的统一稳定性准则的可靠性和有效性。
{"title":"NOVEL UNIFIED STABILITY CRITERION FOR FRACTIONAL-ORDER TIME DELAY SYSTEMS WITH STRONG RESISTANCE TO FRACTIONAL ORDERS","authors":"ZHE ZHANG, CHENGHAO XU, YAONAN WANG, JIANQIAO LUO, XU XIAO","doi":"10.1142/s0218348x24500452","DOIUrl":"https://doi.org/10.1142/s0218348x24500452","url":null,"abstract":"<p>In this study, a novel unified stability criterion is first proposed for general fractional-order systems with time delay when the fractional order is from 0 to 1. Such a new unified criterion has the advantage of having an initiative link with the fractional orders. A further advantage is that the corresponding asymptotic stability theorem, derived from the proposed criterion used to analyze the asymptotic stability, is only slightly affected by the change of the fractional order. In addition, the unified stability criterion is applied to general multi-dimensional nonlinear fractional-order systems with time delays, the corresponding asymptotic stability criterion is applied by combining the vector Lyapunov function with the M-matrix method. Compared with the traditional stability criterion, the unified stability criterion is slightly influenced by the changing fractional order and large time delays. The reliability and effectiveness of the novel uniform stability criterion were verified through three representative examples.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"55 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}