Pub Date : 2024-06-24DOI: 10.1103/prxquantum.5.020365
Hadi Yarloo, Hua-Chen Zhang, Anne E. B. Nielsen
Adiabatic time evolution of quantum systems is a widely used tool with applications ranging from state preparation through simplifications of computations and topological transformations to optimization and quantum computing. Adiabatic time evolution generally works well for gapped ground states, but not for thermal states in the middle of the spectrum that lack a protecting energy gap. Here we show that quantum many-body scars—a particular type of highly excited states—are suitable for adiabatic time evolution despite the absence of a protecting energy gap. Considering two rather different models, namely a one-dimensional model constructed from tensor networks and a two-dimensional fractional quantum Hall model with anyons, we find that the quantum scars perform similarly to gapped ground states with respect to adiabatic dynamics when the required final adiabatic fidelity is around 0.99. The maximum speed at which the scar state of the one-dimensional model can be adiabatically transformed decreases as a power law with system size, as opposed to exponentially for both generic thermal and disorder-driven localized states. At constant and very low ramp speed, we find that the deviation of the fidelity from unity scales linearly with ramp speed for scar states, but quadratically for gapped ground states. The gapped ground states hence perform better when the required adiabatic fidelities are very high, such as 0.9999 and above. We identify two mechanisms for leakage out of the scar state and use them to explain our results. While manipulating a single, isolated ground state is common in quantum applications, adiabatic evolution of scar states provides the flexibility to manipulate an entire tower of ground-state-like states simultaneously in a single system.
{"title":"Adiabatic Time Evolution of Highly Excited States","authors":"Hadi Yarloo, Hua-Chen Zhang, Anne E. B. Nielsen","doi":"10.1103/prxquantum.5.020365","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020365","url":null,"abstract":"Adiabatic time evolution of quantum systems is a widely used tool with applications ranging from state preparation through simplifications of computations and topological transformations to optimization and quantum computing. Adiabatic time evolution generally works well for gapped ground states, but not for thermal states in the middle of the spectrum that lack a protecting energy gap. Here we show that quantum many-body scars—a particular type of highly excited states—are suitable for adiabatic time evolution despite the absence of a protecting energy gap. Considering two rather different models, namely a one-dimensional model constructed from tensor networks and a two-dimensional fractional quantum Hall model with anyons, we find that the quantum scars perform similarly to gapped ground states with respect to adiabatic dynamics when the required final adiabatic fidelity is around 0.99. The maximum speed at which the scar state of the one-dimensional model can be adiabatically transformed decreases as a power law with system size, as opposed to exponentially for both generic thermal and disorder-driven localized states. At constant and very low ramp speed, we find that the deviation of the fidelity from unity scales linearly with ramp speed for scar states, but quadratically for gapped ground states. The gapped ground states hence perform better when the required adiabatic fidelities are very high, such as 0.9999 and above. We identify two mechanisms for leakage out of the scar state and use them to explain our results. While manipulating a single, isolated ground state is common in quantum applications, adiabatic evolution of scar states provides the flexibility to manipulate an entire tower of ground-state-like states simultaneously in a single system.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"137 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141551327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1103/prxquantum.5.020364
Saeed A. Khan, Ryan Kaufman, Boris Mesits, Michael Hatridge, Hakan E. Türeci
We develop and demonstrate a trainable temporal postprocessor (TPP) harnessing a simple but versatile machine learning algorithm to provide optimal processing of quantum measurement data subject to arbitrary noise processes for the readout of an arbitrary number of quantum states. We demonstrate the TPP on the essential task of qubit state readout, which has historically relied on temporal processing via matched filters in spite of their applicability for only specific noise conditions. Our results show that the TPP can reliably outperform standard filtering approaches under complex readout conditions, such as high-power readout. Using simulations of quantum measurement noise sources, we show that this advantage relies on the TPP’s ability to learn optimal linear filters that account for general quantum noise correlations in data, such as those due to quantum jumps, or correlated noise added by a phase-preserving quantum amplifier. Furthermore, we derive an exact analytic form for the optimal TPP weights: this positions the TPP as a linearly scaling generalization of matched filtering, valid for an arbitrary number of states under the most general readout noise conditions, all while preserving a training complexity that is essentially negligible in comparison with that of training neural networks for processing temporal quantum measurement data. The TPP can be autonomously and reliably trained on measurement data and requires only linear operations, making it ideal for field-programmable gate array implementations in circuit QED for real-time processing of measurement data from general quantum systems.
{"title":"Practical Trainable Temporal Postprocessor for Multistate Quantum Measurement","authors":"Saeed A. Khan, Ryan Kaufman, Boris Mesits, Michael Hatridge, Hakan E. Türeci","doi":"10.1103/prxquantum.5.020364","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020364","url":null,"abstract":"We develop and demonstrate a trainable temporal postprocessor (TPP) harnessing a simple but versatile machine learning algorithm to provide optimal processing of quantum measurement data subject to arbitrary noise processes for the readout of an arbitrary number of quantum states. We demonstrate the TPP on the essential task of qubit state readout, which has historically relied on temporal processing via matched filters in spite of their applicability for only specific noise conditions. Our results show that the TPP can reliably outperform standard filtering approaches under complex readout conditions, such as high-power readout. Using simulations of quantum measurement noise sources, we show that this advantage relies on the TPP’s ability to learn optimal linear filters that account for general quantum noise correlations in data, such as those due to quantum jumps, or correlated noise added by a phase-preserving quantum amplifier. Furthermore, we derive an exact analytic form for the optimal TPP weights: this positions the TPP as a linearly scaling generalization of matched filtering, valid for an arbitrary number of states under the most general readout noise conditions, all while preserving a training complexity that is essentially negligible in comparison with that of training neural networks for processing temporal quantum measurement data. The TPP can be autonomously and reliably trained on measurement data and requires only linear operations, making it ideal for field-programmable gate array implementations in circuit QED for real-time processing of measurement data from general quantum systems.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141551328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1103/prxquantum.5.020363
Yiyi Li, Jeff D. Thompson
Quantum links between physically separated modules are important for scaling many quantum computing technologies. The key metrics are the generation rate and fidelity of remote Bell pairs. In this work, we propose an experimental protocol for generating remote entanglement between neutral ytterbium atom qubits using an optical cavity. By loading a large number of atoms into a single cavity, and controlling their coupling using only local light shifts, we amortize the cost of transporting and initializing atoms over many entanglement attempts, maximizing the entanglement generation rate. A twisted ring cavity geometry suppresses many sources of error, allowing high-fidelity entanglement generation. We estimate a spin-photon entanglement rate of , and a Bell pair rate approaching , with an average fidelity near . Furthermore, we show that the photon detection times provide a significant amount of soft information about the location of errors, which may be used to improve the logical qubit performance. This approach provides a practical path to scalable modular quantum computing using neutral ytterbium atoms.
{"title":"High-Rate and High-Fidelity Modular Interconnects between Neutral Atom Quantum Processors","authors":"Yiyi Li, Jeff D. Thompson","doi":"10.1103/prxquantum.5.020363","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020363","url":null,"abstract":"Quantum links between physically separated modules are important for scaling many quantum computing technologies. The key metrics are the generation rate and fidelity of remote Bell pairs. In this work, we propose an experimental protocol for generating remote entanglement between neutral ytterbium atom qubits using an optical cavity. By loading a large number of atoms into a single cavity, and controlling their coupling using only local light shifts, we amortize the cost of transporting and initializing atoms over many entanglement attempts, maximizing the entanglement generation rate. A twisted ring cavity geometry suppresses many sources of error, allowing high-fidelity entanglement generation. We estimate a spin-photon entanglement rate of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>5</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mspace width=\"0.2em\"></mspace><msup><mrow><mi mathvariant=\"normal\">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>, and a Bell pair rate approaching <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>5</mn></msup><mspace width=\"0.2em\"></mspace><msup><mrow><mi mathvariant=\"normal\">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>, with an average fidelity near <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0.999</mn></math>. Furthermore, we show that the photon detection times provide a significant amount of soft information about the location of errors, which may be used to improve the logical qubit performance. This approach provides a practical path to scalable modular quantum computing using neutral ytterbium atoms.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"168 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1103/prxquantum.5.020101
Amara Katabarwa, Katerina Gratsea, Athena Caesura, Peter D. Johnson
In recent years, research in quantum computing has largely focused on two approaches: near-term intermediate-scale quantum (NISQ) computing and future fault-tolerant quantum computing (FTQC). A growing body of research into early fault-tolerant quantum computing (EFTQC) is exploring how to utilize quantum computers during the transition between these two eras. However, without agreed-upon characterizations of this transition, it is unclear how best to utilize EFTQC architectures. We argue for the perspective that this transition period will be characterized by a law of diminishing returns in quantum error correction (QEC), where the ability of the architecture to maintain quality operations at scale determines the point of diminishing returns. Two challenges emerge from this picture: how to model this phenomenon of diminishing return of QEC as the performance of devices is continually improving and how to design algorithms to make the most use of these devices. To address these challenges, we present models for the performance of EFTQC architectures, capturing the diminishing returns of QEC. We then use these models to elucidate the regimes in which algorithms suited to such architectures are advantageous. As a concrete example, we show that for the canonical task of phase estimation, in a regime of moderate scalability and using just over one million physical qubits, the “reach” of the quantum computer can be extended (compared to the standard approach) from 90-qubit instances to over 130-qubit instances using a simple early fault-tolerant quantum algorithm, which reduces the number of operations per circuit by a factor of 100 and increases the number of circuit repetitions by a factor of 10 000. This clarifies the role that such algorithms might play in the era of limited-scalability quantum computing.
{"title":"Early Fault-Tolerant Quantum Computing","authors":"Amara Katabarwa, Katerina Gratsea, Athena Caesura, Peter D. Johnson","doi":"10.1103/prxquantum.5.020101","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020101","url":null,"abstract":"In recent years, research in quantum computing has largely focused on two approaches: near-term intermediate-scale quantum (NISQ) computing and future fault-tolerant quantum computing (FTQC). A growing body of research into early fault-tolerant quantum computing (EFTQC) is exploring how to utilize quantum computers during the transition between these two eras. However, without agreed-upon characterizations of this transition, it is unclear how best to utilize EFTQC architectures. We argue for the perspective that this transition period will be characterized by a law of diminishing returns in quantum error correction (QEC), where the ability of the architecture to maintain quality operations at scale determines the point of diminishing returns. Two challenges emerge from this picture: how to model this phenomenon of diminishing return of QEC as the performance of devices is continually improving and how to design algorithms to make the most use of these devices. To address these challenges, we present models for the performance of EFTQC architectures, capturing the diminishing returns of QEC. We then use these models to elucidate the regimes in which algorithms suited to such architectures are advantageous. As a concrete example, we show that for the canonical task of phase estimation, in a regime of moderate scalability and using just over one million physical qubits, the “reach” of the quantum computer can be extended (compared to the standard approach) from 90-qubit instances to over 130-qubit instances using a simple early fault-tolerant quantum algorithm, which reduces the number of operations per circuit by a factor of 100 and increases the number of circuit repetitions by a factor of 10 000. This clarifies the role that such algorithms might play in the era of limited-scalability quantum computing.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141551329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1103/prxquantum.5.020361
Hyeongjin Kim, Matthew Fishman, Dries Sels
We discuss a tensor network method for constructing the adiabatic gauge potential—the generator of adiabatic transformations—as a matrix product operator, which allows us to adiabatically transport matrix product states. Adiabatic evolution of tensor networks offers a wide range of applications, of which two are explored in this paper: improving tensor network optimization and scanning phase diagrams. By efficiently transporting eigenstates to quantum criticality and performing intermediary density-matrix renormalization group (DMRG) optimizations along the way, we demonstrate that we can compute ground and low-lying excited states faster and more reliably than a standard DMRG method at or near quantum criticality. We demonstrate a simple automated step size adjustment and detection of the critical point based on the norm of the adiabatic gauge potential. Remarkably, we are able to reliably transport states through the critical point of the models we study.
{"title":"Variational Adiabatic Transport of Tensor Networks","authors":"Hyeongjin Kim, Matthew Fishman, Dries Sels","doi":"10.1103/prxquantum.5.020361","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020361","url":null,"abstract":"We discuss a tensor network method for constructing the adiabatic gauge potential—the generator of adiabatic transformations—as a matrix product operator, which allows us to adiabatically transport matrix product states. Adiabatic evolution of tensor networks offers a wide range of applications, of which two are explored in this paper: improving tensor network optimization and scanning phase diagrams. By efficiently transporting eigenstates to quantum criticality and performing intermediary density-matrix renormalization group (DMRG) optimizations along the way, we demonstrate that we can compute ground and low-lying excited states faster and more reliably than a standard DMRG method at or near quantum criticality. We demonstrate a simple automated step size adjustment and detection of the critical point based on the norm of the adiabatic gauge potential. Remarkably, we are able to reliably transport states through the critical point of the models we study.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1103/prxquantum.5.020362
Conor Mc Keever, Michael Lubasch
We describe tensor network algorithms to optimize quantum circuits for adiabatic quantum computing. To suppress diabatic transitions, we include counterdiabatic driving in the optimization and utilize variational matrix product operators to represent adiabatic gauge potentials. Traditionally, Trotter product formulas are used to turn adiabatic time evolution into quantum circuits and the addition of counterdiabatic driving increases the circuit depth per time step. Instead, we classically optimize a parameterized quantum circuit of fixed depth to simultaneously capture adiabatic evolution together with counterdiabatic driving over many time steps. The methods are applied to the ground-state preparation of quantum Ising chains with transverse and longitudinal fields. We show that the classically optimized circuits can significantly outperform Trotter product formulas. Additionally, we discuss how the approach can be used for combinatorial optimization.
{"title":"Towards Adiabatic Quantum Computing Using Compressed Quantum Circuits","authors":"Conor Mc Keever, Michael Lubasch","doi":"10.1103/prxquantum.5.020362","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020362","url":null,"abstract":"We describe tensor network algorithms to optimize quantum circuits for adiabatic quantum computing. To suppress diabatic transitions, we include counterdiabatic driving in the optimization and utilize variational matrix product operators to represent adiabatic gauge potentials. Traditionally, Trotter product formulas are used to turn adiabatic time evolution into quantum circuits and the addition of counterdiabatic driving increases the circuit depth per time step. Instead, we classically optimize a parameterized quantum circuit of fixed depth to simultaneously capture adiabatic evolution together with counterdiabatic driving over many time steps. The methods are applied to the ground-state preparation of quantum Ising chains with transverse and longitudinal fields. We show that the classically optimized circuits can significantly outperform Trotter product formulas. Additionally, we discuss how the approach can be used for combinatorial optimization.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"63 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1103/prxquantum.5.020360
Ryohei Kobayashi, Guanyu Zhu
We consider the toric code, surface code, and Floquet code defined on a nonorientable surface, which can be considered as families of codes extending Shor’s nine-qubit code. We investigate the fault-tolerant logical gates of the toric code in this setup, which corresponds to exchanging symmetry of the underlying gauge theory. We find that nonorientable geometry provides a new way for the emergent symmetry to act on the code space, and discover the new realization of the fault-tolerant Hadamard gate of the two-dimensional surface code with a single cross cap connecting the vertices nonlocally along a slit, dubbed a nonorientable surface code. This Hadamard gate can be realized by a constant-depth local unitary circuit modulo nonlocality caused by a cross cap. Via folding, the nonorientable surface code can be turned into a bilayer local quantum code, where the folded cross cap is equivalent to a bilayer twist terminated on a gapped boundary and the logical Hadamard only contains local gates with intralayer couplings when being away from the cross cap, as opposed to the interlayer couplings on each site needed in the case of the folded surface code. We further obtain the complete logical Clifford gate set for a stack of nonorientable surface codes and similarly for codes defined on Klein-bottle geometries. We then construct the honeycomb Floquet code in the presence of a single cross cap, and find that the period of the sequential Pauli measurements acts as a logical gate on the single logical qubit, where the cross cap enriches the dynamics compared with the orientable case. We find that the dynamics of the honeycomb Floquet code is precisely described by a condensation operator of the gauge theory, and illustrate the exotic dynamics of our code in terms of a condensation operator supported at a nonorientable surface.
{"title":"Cross-Cap Defects and Fault-Tolerant Logical Gates in the Surface Code and the Honeycomb Floquet Code","authors":"Ryohei Kobayashi, Guanyu Zhu","doi":"10.1103/prxquantum.5.020360","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020360","url":null,"abstract":"We consider the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mn>2</mn></msub></math> toric code, surface code, and Floquet code defined on a nonorientable surface, which can be considered as families of codes extending Shor’s nine-qubit code. We investigate the fault-tolerant logical gates of the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mn>2</mn></msub></math> toric code in this setup, which corresponds to <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>e</mi><mo stretchy=\"false\">↔</mo><mi>m</mi></math> exchanging symmetry of the underlying <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mn>2</mn></msub></math> gauge theory. We find that nonorientable geometry provides a new way for the emergent symmetry to act on the code space, and discover the new realization of the fault-tolerant Hadamard gate of the two-dimensional surface code with a single cross cap connecting the vertices nonlocally along a slit, dubbed a nonorientable surface code. This Hadamard gate can be realized by a constant-depth local unitary circuit modulo nonlocality caused by a cross cap. Via folding, the nonorientable surface code can be turned into a bilayer local quantum code, where the folded cross cap is equivalent to a bilayer twist terminated on a gapped boundary and the logical Hadamard only contains local gates with intralayer couplings when being away from the cross cap, as opposed to the interlayer couplings on each site needed in the case of the folded surface code. We further obtain the complete logical Clifford gate set for a stack of nonorientable surface codes and similarly for codes defined on Klein-bottle geometries. We then construct the honeycomb Floquet code in the presence of a single cross cap, and find that the period of the sequential Pauli measurements acts as a <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>H</mi><mi>Z</mi></math> logical gate on the single logical qubit, where the cross cap enriches the dynamics compared with the orientable case. We find that the dynamics of the honeycomb Floquet code is precisely described by a condensation operator of the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">Z</mi></mrow><mn>2</mn></msub></math> gauge theory, and illustrate the exotic dynamics of our code in terms of a condensation operator supported at a nonorientable surface.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1103/prxquantum.5.020359
Joshua J. Guanzon, Matthew S. Winnel, Deepesh Singh, Austin P. Lund, Timothy C. Ralph
A noiseless linear amplifier (NLA) performs the highest-quality amplification allowable under the rules of quantum physics. Unfortunately, these same rules conspire against us via the no-cloning theorem, which constrains NLA operations to the domain of probabilistic processes. Nevertheless, they are useful for a wide variety of quantum protocols, with numerous proposals assuming access to an optimal NLA device that performs with the maximum possible success probability. Here we propose the first linear-optics NLA protocol that asymptotically achieves this success probability bound by modifying the Knill-Laflamme-Milburn near-deterministic teleporter into an amplifier.
{"title":"Saturating the Maximum Success Probability Bound for Noiseless Linear Amplification Using Linear Optics","authors":"Joshua J. Guanzon, Matthew S. Winnel, Deepesh Singh, Austin P. Lund, Timothy C. Ralph","doi":"10.1103/prxquantum.5.020359","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020359","url":null,"abstract":"A noiseless linear amplifier (NLA) performs the highest-quality amplification allowable under the rules of quantum physics. Unfortunately, these same rules conspire against us via the no-cloning theorem, which constrains NLA operations to the domain of probabilistic processes. Nevertheless, they are useful for a wide variety of quantum protocols, with numerous proposals assuming access to an optimal NLA device that performs with the maximum possible success probability. Here we propose the first linear-optics NLA protocol that asymptotically achieves this success probability bound by modifying the Knill-Laflamme-Milburn near-deterministic teleporter into an amplifier.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"186 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}