首页 > 最新文献

PRX Quantum最新文献

英文 中文
Native Two-Qubit Gates in Fixed-Coupling, Fixed-Frequency Transmons Beyond Cross-Resonance Interaction 超越交叉共振相互作用的固定耦合、固定频率跨子中的原生双丘比特门
Pub Date : 2024-05-20 DOI: 10.1103/prxquantum.5.020338
Ken Xuan Wei, Isaac Lauer, Emily Pritchett, William Shanks, David C. McKay, Ali Javadi-Abhari
Fixed-frequency superconducting qubits demonstrate remarkable success as platforms for stable and scalable quantum computing. Cross-resonance gates have been the workhorse of fixed-coupling, fixed-frequency superconducting processors, leveraging the entanglement generated by driving one qubit resonantly with a neighbor’s frequency to achieve high-fidelity, universal controlled-not (cnot) gates. Here, we use on-resonant and off-resonant microwave drives to go beyond cross-resonance, realizing natively interesting two-qubit gates that are not equivalent to cnot gates. In particular, we implement and benchmark native iswap, swap, iSWAP, and bswap gates; in fact, any SU(4) unitary can be achieved using these techniques. Furthermore, we apply these techniques for an efficient construction of the B gate: a perfect entangler from which any two-qubit gate can be reached in only two applications. We show that these native two-qubit gates are better than their counterparts compiled from cross-resonance gates. We elucidate the resonance conditions required to drive each two-qubit gate and provide a novel frame tracking technique to implement them in Qiskit.
固定频率超导量子比特作为稳定和可扩展的量子计算平台取得了显著成功。交叉共振门一直是固定耦合、固定频率超导处理器的主力,它利用驱动一个量子比特与相邻频率共振产生的纠缠来实现高保真、通用的受控不(cnot)门。在这里,我们利用共振和非共振微波驱动超越了交叉共振,实现了不等同于 cnot 门的本机有趣的双量子比特门。特别是,我们实现了本机等价交换门、交换门、iSWAP 门和 bswap 门,并对其进行了基准测试;事实上,使用这些技术可以实现任何 SU(4) 单元。此外,我们还将这些技术应用于 B 门的高效构建:一个完美的纠缠器,只需两次应用就能实现任何双量子比特门。我们的研究表明,这些原生双量子比特门优于交叉共振门。我们阐明了驱动每个双量子比特门所需的共振条件,并提供了一种在 Qiskit 中实现它们的新颖帧跟踪技术。
{"title":"Native Two-Qubit Gates in Fixed-Coupling, Fixed-Frequency Transmons Beyond Cross-Resonance Interaction","authors":"Ken Xuan Wei, Isaac Lauer, Emily Pritchett, William Shanks, David C. McKay, Ali Javadi-Abhari","doi":"10.1103/prxquantum.5.020338","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020338","url":null,"abstract":"Fixed-frequency superconducting qubits demonstrate remarkable success as platforms for stable and scalable quantum computing. Cross-resonance gates have been the workhorse of fixed-coupling, fixed-frequency superconducting processors, leveraging the entanglement generated by driving one qubit resonantly with a neighbor’s frequency to achieve high-fidelity, universal controlled-<span>not</span> (<span>cnot</span>) gates. Here, we use on-resonant and off-resonant microwave drives to go beyond cross-resonance, realizing natively interesting two-qubit gates that are not equivalent to <span>cnot</span> gates. In particular, we implement and benchmark native <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>i</mi></math><span>swap</span>, <span>swap</span>, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msqrt><mi>i</mi><mrow><mstyle mathsize=\"0.85em\"><mi>SWAP</mi></mstyle></mrow></msqrt></math>, and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>b</mi></math><span>swap</span> gates; in fact, any <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>SU</mi><mo stretchy=\"false\">(</mo><mn>4</mn><mo stretchy=\"false\">)</mo></math> unitary can be achieved using these techniques. Furthermore, we apply these techniques for an efficient construction of the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>B</mi></math> gate: a perfect entangler from which any two-qubit gate can be reached in only two applications. We show that these native two-qubit gates are better than their counterparts compiled from cross-resonance gates. We elucidate the resonance conditions required to drive each two-qubit gate and provide a novel frame tracking technique to implement them in Qiskit.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141148287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sufficient Condition for Universal Quantum Computation Using Bosonic Circuits 使用玻色电路进行通用量子计算的充分条件
Pub Date : 2024-05-17 DOI: 10.1103/prxquantum.5.020337
Cameron Calcluth, Nicolas Reichel, Alessandro Ferraro, Giulia Ferrini
Continuous-variable bosonic systems stand as prominent candidates for implementing quantum computational tasks. While various necessary criteria have been established to assess their resourcefulness, sufficient conditions have remained elusive. We address this gap by focusing on promoting circuits that are otherwise simulatable to computational universality. The class of simulatable, albeit non-Gaussian, circuits that we consider is composed of Gottesman-Kitaev-Preskill (GKP) states, Gaussian operations, and homodyne measurements. Based on these circuits, we first introduce a general framework for mapping a continuous-variable state into a qubit state. Subsequently, we cast existing maps into this framework, including the modular and stabilizer subsystem decompositions. By combining these findings with established results for discrete-variable systems, we formulate a sufficient condition for achieving universal quantum computation. Leveraging this, we evaluate the computational resourcefulness of a variety of states, including Gaussian states, finite-squeezing GKP states, and cat states. Furthermore, our framework reveals that both the stabilizer subsystem decomposition and the modular subsystem decomposition (of position-symmetric states) can be constructed in terms of simulatable operations. This establishes a robust resource-theoretical foundation for employing these techniques to evaluate the logical content of a generic continuous-variable state, which can be of independent interest.
连续可变玻色系统是实现量子计算任务的重要候选系统。虽然已经建立了各种必要标准来评估它们的资源性,但充分条件仍然难以捉摸。为了弥补这一不足,我们重点研究了可模拟计算普遍性的电路。我们考虑的这一类可模拟电路(尽管不是高斯电路)由戈特斯曼-基塔埃夫-普雷斯基尔(GKP)状态、高斯运算和同调测量组成。基于这些电路,我们首先介绍了将连续可变状态映射为量子比特状态的一般框架。随后,我们将现有的映射(包括模块化和稳定器子系统分解)纳入这一框架。通过将这些发现与离散变量系统的既定结果相结合,我们提出了实现通用量子计算的充分条件。利用这一点,我们评估了各种状态的计算资源性,包括高斯状态、精细挤压 GKP 状态和猫状态。此外,我们的框架揭示了稳定子系统分解和模块子系统分解(位置对称态)都可以用可模拟运算来构建。这就为运用这些技术评估通用连续变量状态的逻辑内容奠定了坚实的资源理论基础,而这些技术可能具有独立的意义。
{"title":"Sufficient Condition for Universal Quantum Computation Using Bosonic Circuits","authors":"Cameron Calcluth, Nicolas Reichel, Alessandro Ferraro, Giulia Ferrini","doi":"10.1103/prxquantum.5.020337","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020337","url":null,"abstract":"Continuous-variable bosonic systems stand as prominent candidates for implementing quantum computational tasks. While various necessary criteria have been established to assess their resourcefulness, sufficient conditions have remained elusive. We address this gap by focusing on promoting circuits that are otherwise simulatable to computational universality. The class of simulatable, albeit non-Gaussian, circuits that we consider is composed of Gottesman-Kitaev-Preskill (GKP) states, Gaussian operations, and homodyne measurements. Based on these circuits, we first introduce a general framework for mapping a continuous-variable state into a qubit state. Subsequently, we cast existing maps into this framework, including the modular and stabilizer subsystem decompositions. By combining these findings with established results for discrete-variable systems, we formulate a sufficient condition for achieving universal quantum computation. Leveraging this, we evaluate the computational resourcefulness of a variety of states, including Gaussian states, finite-squeezing GKP states, and cat states. Furthermore, our framework reveals that both the stabilizer subsystem decomposition and the modular subsystem decomposition (of position-symmetric states) can be constructed in terms of simulatable operations. This establishes a robust resource-theoretical foundation for employing these techniques to evaluate the logical content of a generic continuous-variable state, which can be of independent interest.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization Tools for Distance-Preserving Flag Fault-Tolerant Error Correction 保距旗语容错纠错优化工具
Pub Date : 2024-05-16 DOI: 10.1103/prxquantum.5.020336
Balint Pato, Theerapat Tansuwannont, Shilin Huang, Kenneth R. Brown
Lookup-table decoding is fast and distance preserving, making it attractive for near-term quantum computer architectures with small-distance quantum error-correcting codes. In this work, we develop several optimization tools that can potentially reduce the space and time overhead required for flag fault-tolerant quantum error correction (FTQEC) with lookup-table decoding on Calderbank-Shor-Steane (CSS) codes. Our techniques include the compact lookup-table construction, the meet-in-the-middle technique, the adaptive time decoding for flag FTQEC, the classical processing technique for flag information, and the separate X- and Z-counting technique. We evaluate the performance of our tools using numerical simulation of hexagonal color codes of distances 3, 5, 7, and 9 under circuit-level noise. Combining all tools can result in an increase of more than an order of magnitude in the pseudothreshold for the hexagonal color code of distance 9, from (1.34±0.01)×104 to (1.43±0.07)×103.
查找表解码速度快且能保持距离,因此对采用小距离量子纠错码的近期量子计算机体系结构很有吸引力。在这项工作中,我们开发了几种优化工具,它们有可能减少在 Calderbank-Shor-Steane (CSS)代码上使用查找表解码的旗帜容错量子纠错(FTQEC)所需的空间和时间开销。我们的技术包括紧凑型查找表结构、中间相遇技术、用于旗帜 FTQEC 的自适应时间解码、旗帜信息的经典处理技术以及单独的 X 和 Z 计数技术。我们通过对距离为 3、5、7 和 9 的六边形色码进行数值模拟,评估了这些工具在电路级噪声下的性能。综合所有工具,距离为 9 的六边形色码的伪阈值提高了一个数量级以上,从 (1.34±0.01)×10-4 提高到 (1.43±0.07)×10-3。
{"title":"Optimization Tools for Distance-Preserving Flag Fault-Tolerant Error Correction","authors":"Balint Pato, Theerapat Tansuwannont, Shilin Huang, Kenneth R. Brown","doi":"10.1103/prxquantum.5.020336","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020336","url":null,"abstract":"Lookup-table decoding is fast and distance preserving, making it attractive for near-term quantum computer architectures with small-distance quantum error-correcting codes. In this work, we develop several optimization tools that can potentially reduce the space and time overhead required for flag fault-tolerant quantum error correction (FTQEC) with lookup-table decoding on Calderbank-Shor-Steane (CSS) codes. Our techniques include the compact lookup-table construction, the meet-in-the-middle technique, the adaptive time decoding for flag FTQEC, the classical processing technique for flag information, and the separate <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math>- and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Z</mi></math>-counting technique. We evaluate the performance of our tools using numerical simulation of hexagonal color codes of distances 3, 5, 7, and 9 under circuit-level noise. Combining all tools can result in an increase of more than an order of magnitude in the pseudothreshold for the hexagonal color code of distance 9, from <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>1.34</mn><mo>±</mo><mn>0.01</mn><mo stretchy=\"false\">)</mo><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></math> to <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>1.43</mn><mo>±</mo><mn>0.07</mn><mo stretchy=\"false\">)</mo><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></math>.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Dichotomies and Coherent Thermodynamics beyond First-Order Asymptotics 超越一阶渐近的量子二分法和相干热力学
Pub Date : 2024-05-15 DOI: 10.1103/prxquantum.5.020335
Patryk Lipka-Bartosik, Christopher T. Chubb, Joseph M. Renes, Marco Tomamichel, Kamil Korzekwa
We address the problem of exact and approximate transformation of quantum dichotomies in the asymptotic regime, i.e., the existence of a quantum channel E mapping ρ1n into ρ2Rnn with an error ϵn (measured by trace distance) and σ1n into σ2Rnn exactly, for a large number n. We derive second-order asymptotic expressions for the optimal transformation rate Rn in the small-, moderate-, and large-deviation error regimes, as well as the zero-error regime, for an arbitrary pair (ρ1,σ1) of initial states and a commuting pair (ρ2,σ2) of final states. We also prove that for σ1 and σ2 given by thermal Gibbs states, the derived optimal transformation rates in the first three regimes can be attained by thermal operations. This allows us, for the first time, to study the second-order asymptotics of thermodynamic state interconversion with fully general initial states that may have coherence between different energy eigenspaces. Thus, we discuss the optimal performance of thermodynamic protocols with coherent inputs and describe three novel resonance phenomena allowing one to significantly reduce transformation errors induced by fin
我们要解决量子二分法在渐近机制下的精确和近似转换问题,即存在一个量子通道 E,它能将 ρ1⊗n 映射到 ρ2⊗Rnn,且误差为 ϵn(用痕量距离测量),并能将 σ1⊗n 精确地映射到 σ2⊗Rnn。对于任意一对初始状态 (ρ1,σ1)和一对最终状态 (ρ2,σ2),我们推导出小偏差、中偏差和大偏差误差机制以及零误差机制下最佳转换率 Rn 的二阶渐近表达式。我们还证明,对于热吉布斯态给出的 σ1 和 σ2,通过热操作可以获得前三种状态下的最优转化率。这让我们第一次研究了热力学状态相互转换的二阶渐近学,其初始状态完全一般,可能在不同能量特征空间之间具有一致性。因此,我们讨论了具有相干输入的热力学协议的最佳性能,并描述了三种新的共振现象,使人们能够显著减少由有限尺寸效应引起的转换误差。更重要的是,我们关于量子二分法的结果还可用于获得在局部操作和经典通信条件下纯二分纠缠态之间的最佳转换率,直至二阶渐近项。
{"title":"Quantum Dichotomies and Coherent Thermodynamics beyond First-Order Asymptotics","authors":"Patryk Lipka-Bartosik, Christopher T. Chubb, Joseph M. Renes, Marco Tomamichel, Kamil Korzekwa","doi":"10.1103/prxquantum.5.020335","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020335","url":null,"abstract":"We address the problem of exact and approximate transformation of quantum dichotomies in the asymptotic regime, i.e., the existence of a quantum channel <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"script\">E</mi></mrow></mrow></math> mapping <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>ρ</mi><mn>1</mn><mrow><mo>⊗</mo><mi>n</mi></mrow></msubsup></math> into <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>ρ</mi><mn>2</mn><mrow><mo>⊗</mo><msub><mi>R</mi><mi>n</mi></msub><mi>n</mi></mrow></msubsup></math> with an error <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>ϵ</mi><mi>n</mi></msub></math> (measured by trace distance) and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>σ</mi><mn>1</mn><mrow><mo>⊗</mo><mi>n</mi></mrow></msubsup></math> into <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>σ</mi><mn>2</mn><mrow><mo>⊗</mo><msub><mi>R</mi><mi>n</mi></msub><mi>n</mi></mrow></msubsup></math> exactly, for a large number <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math>. We derive second-order asymptotic expressions for the optimal transformation rate <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>R</mi><mi>n</mi></msub></math> in the small-, moderate-, and large-deviation error regimes, as well as the zero-error regime, for an arbitrary pair <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msub><mi>ρ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>σ</mi><mn>1</mn></msub><mo stretchy=\"false\">)</mo></math> of initial states and a commuting pair <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msub><mi>ρ</mi><mn>2</mn></msub><mo>,</mo><msub><mi>σ</mi><mn>2</mn></msub><mo stretchy=\"false\">)</mo></math> of final states. We also prove that for <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>σ</mi><mn>1</mn></msub></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>σ</mi><mn>2</mn></msub></math> given by thermal Gibbs states, the derived optimal transformation rates in the first three regimes can be attained by thermal operations. This allows us, for the first time, to study the second-order asymptotics of thermodynamic state interconversion with fully general initial states that may have coherence between different energy eigenspaces. Thus, we discuss the optimal performance of thermodynamic protocols with coherent inputs and describe three novel resonance phenomena allowing one to significantly reduce transformation errors induced by fin","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensing Coherent Nuclear Spin Dynamics with an Ensemble of Paramagnetic Nitrogen Spins 用顺磁氮自旋组合感知相干核自旋动态
Pub Date : 2024-05-14 DOI: 10.1103/prxquantum.5.020334
R.M. Goldblatt, A.M. Martin, A.A. Wood
The unpolarized spin environment surrounding a central spin qubit is typically considered as an incoherent source of dephasing, however, precise characterization and control of the spin bath can yield a resource for storing and sensing with quantum states. In this work, we use nitrogen-vacancy (NV) centers in diamond to measure the coherence of optically dark paramagnetic nitrogen defects (P1 centers) and detect coherent interactions between the P1 centers and a local bath of 13C nuclear spins. The dipolar coupling between the P1 centers and 13C nuclear spins is identified by signature periodic collapses and revivals in the P1 spin coherence signal. We then demonstrate, using a range of dynamical decoupling protocols, that the probing NV centers and the P1 spins are coupled to independent ensembles of 13C nuclear spins. Our work illustrates how the optically dark P1 spins can be used to extract information from their local environment and offers new insight into the interactions within a many-body system.
中心自旋量子比特周围的非极化自旋环境通常被视为非相干的去相干源,然而,对自旋浴的精确表征和控制可以为量子态的存储和传感提供资源。在这项工作中,我们利用金刚石中的氮空位(NV)中心来测量光暗顺磁氮缺陷(P1 中心)的相干性,并探测 P1 中心与 13C 核自旋局部浴之间的相干相互作用。P1 中心和 13C 核自旋之间的双极耦合是通过 P1 自旋相干信号中的周期性坍缩和恢复特征来识别的。然后,我们利用一系列动态解耦协议证明,探测 NV 中心和 P1 自旋与独立的 13C 核自旋集合耦合。我们的工作说明了如何利用光暗 P1 自旋从其局部环境中提取信息,并为多体系统内的相互作用提供了新的见解。
{"title":"Sensing Coherent Nuclear Spin Dynamics with an Ensemble of Paramagnetic Nitrogen Spins","authors":"R.M. Goldblatt, A.M. Martin, A.A. Wood","doi":"10.1103/prxquantum.5.020334","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020334","url":null,"abstract":"The unpolarized spin environment surrounding a central spin qubit is typically considered as an incoherent source of dephasing, however, precise characterization and control of the spin bath can yield a resource for storing and sensing with quantum states. In this work, we use nitrogen-vacancy (NV) centers in diamond to measure the coherence of optically dark paramagnetic nitrogen defects (P1 centers) and detect coherent interactions between the P1 centers and a local bath of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi></mi><mn>13</mn></msup><mrow><mi mathvariant=\"normal\">C</mi></mrow></math> nuclear spins. The dipolar coupling between the P1 centers and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi></mi><mn>13</mn></msup><mrow><mi mathvariant=\"normal\">C</mi></mrow></math> nuclear spins is identified by signature periodic collapses and revivals in the P1 spin coherence signal. We then demonstrate, using a range of dynamical decoupling protocols, that the probing NV centers and the P1 spins are coupled to independent ensembles of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi></mi><mn>13</mn></msup><mrow><mi mathvariant=\"normal\">C</mi></mrow></math> nuclear spins. Our work illustrates how the optically dark P1 spins can be used to extract information from their local environment and offers new insight into the interactions within a many-body system.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140928993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Quantum Control of Individual Ultracold Molecules Using Optical Tweezer Arrays 利用光镊阵列增强对单个超冷分子的量子控制
Pub Date : 2024-05-13 DOI: 10.1103/prxquantum.5.020333
Daniel K. Ruttley, Alexander Guttridge, Tom R. Hepworth, Simon L. Cornish
Control over the quantum states of individual molecules is crucial in the quest to harness their rich internal structure and dipolar interactions for applications in quantum science. In this paper, we develop a toolbox of techniques for the control and readout of individually trapped polar molecules in an array of optical tweezers. Starting with arrays of up to eight Rb and eight Cs atoms, we assemble arrays of RbCs molecules in their rovibrational and hyperfine ground state with an overall efficiency of 48(2)%. We demonstrate global microwave control of multiple rotational states of the molecules and use an auxiliary tweezer array to implement site-resolved addressing and state control. We show how the rotational state of the molecule can be mapped onto the position of Rb atoms and use this capability to readout multiple rotational states in a single experimental run. Further, using a scheme for the midsequence detection of molecule formation errors, we perform rearrangement of assembled molecules to prepare small defect-free arrays. Finally, we discuss a feasible route to scaling to larger arrays of molecules.
控制单个分子的量子态对于利用其丰富的内部结构和偶极相互作用在量子科学中的应用至关重要。在本文中,我们开发了一个技术工具箱,用于控制和读出光学镊子阵列中单独捕获的极性分子。从最多八个铷原子和八个铯原子的阵列开始,我们在铷铯分子的振荡态和超频基态下组装了铷铯分子阵列,总效率达到 48(2)%。我们展示了分子多种旋转态的全局微波控制,并使用辅助镊子阵列实现了位点分辨寻址和状态控制。我们展示了如何将分子的旋转状态映射到铷原子的位置上,并利用这种能力在一次实验运行中读出多个旋转状态。此外,我们还利用中序检测分子形成错误的方案,对组装好的分子进行重新排列,以制备无缺陷的小阵列。最后,我们讨论了扩展到更大分子阵列的可行途径。
{"title":"Enhanced Quantum Control of Individual Ultracold Molecules Using Optical Tweezer Arrays","authors":"Daniel K. Ruttley, Alexander Guttridge, Tom R. Hepworth, Simon L. Cornish","doi":"10.1103/prxquantum.5.020333","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020333","url":null,"abstract":"Control over the quantum states of individual molecules is crucial in the quest to harness their rich internal structure and dipolar interactions for applications in quantum science. In this paper, we develop a toolbox of techniques for the control and readout of individually trapped polar molecules in an array of optical tweezers. Starting with arrays of up to eight Rb and eight Cs atoms, we assemble arrays of RbCs molecules in their rovibrational and hyperfine ground state with an overall efficiency of 48(2)%. We demonstrate global microwave control of multiple rotational states of the molecules and use an auxiliary tweezer array to implement site-resolved addressing and state control. We show how the rotational state of the molecule can be mapped onto the position of Rb atoms and use this capability to readout multiple rotational states in a single experimental run. Further, using a scheme for the midsequence detection of molecule formation errors, we perform rearrangement of assembled molecules to prepare small defect-free arrays. Finally, we discuss a feasible route to scaling to larger arrays of molecules.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140928659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulating Open Quantum Systems Using Hamiltonian Simulations 利用哈密顿模拟仿真开放量子系统
Pub Date : 2024-05-10 DOI: 10.1103/prxquantum.5.020332
Zhiyan Ding, Xiantao Li, Lin Lin
We present a novel method to simulate the Lindblad equation, drawing on the relationship between Lindblad dynamics, stochastic differential equations, and Hamiltonian simulations. We derive a sequence of unitary dynamics in an enlarged Hilbert space that can approximate the Lindblad dynamics up to an arbitrarily high order. This unitary representation can then be simulated using a quantum circuit that involves only Hamiltonian simulation and tracing out the ancilla qubits. There is no need for additional postselection in measurement outcomes, ensuring a success probability of one at each stage. Our method can be directly generalized to the time-dependent setting. We provide numerical examples that simulate both time-independent and time-dependent Lindbladian dynamics with accuracy up to the third order.
我们利用林德布拉德动力学、随机微分方程和汉密尔顿模拟之间的关系,提出了一种模拟林德布拉德方程的新方法。我们在一个扩大的希尔伯特空间中推导出了一个单元动力学序列,它可以逼近林德布拉德动力学到任意高阶。然后,就可以使用量子电路来模拟这种单元表示法,这种电路只涉及哈密尔顿模拟和溯源量子比特。测量结果不需要额外的后选择,确保每个阶段的成功概率都是 1。我们的方法可以直接推广到随时间变化的环境中。我们提供了数值示例,模拟了与时间无关和与时间有关的林德布拉迪恩动力学,精度高达三阶。
{"title":"Simulating Open Quantum Systems Using Hamiltonian Simulations","authors":"Zhiyan Ding, Xiantao Li, Lin Lin","doi":"10.1103/prxquantum.5.020332","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020332","url":null,"abstract":"We present a novel method to simulate the Lindblad equation, drawing on the relationship between Lindblad dynamics, stochastic differential equations, and Hamiltonian simulations. We derive a sequence of unitary dynamics in an enlarged Hilbert space that can approximate the Lindblad dynamics up to an arbitrarily high order. This unitary representation can then be simulated using a quantum circuit that involves only Hamiltonian simulation and tracing out the ancilla qubits. There is no need for additional postselection in measurement outcomes, ensuring a success probability of one at each stage. Our method can be directly generalized to the time-dependent setting. We provide numerical examples that simulate both time-independent and time-dependent Lindbladian dynamics with accuracy up to the third order.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140928729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Classical-Quantum Limit 经典-量子极限
Pub Date : 2024-05-09 DOI: 10.1103/prxquantum.5.020331
Isaac Layton, Jonathan Oppenheim
The standard notion of a classical limit, represented schematically by 0, provides a method for approximating a quantum system by a classical one. In this work, we explain why the standard classical limit fails when applied to subsystems, and show how one may resolve this by explicitly modeling the decoherence of a subsystem by its environment. Denoting the decoherence time by τ, we demonstrate that a double scaling limit in which 0 and τ0 such that the ratio Ef=/τ remains fixed leads to an irreversible open-system evolution with well-defined classical and quantum subsystems. The main technical result is showing that, for arbitrary Hamiltonians, the generators of partial versions of the Wigner, Husimi, and Glauber-Sudarshan quasiprobability distributions may all be mapped in the above-mentioned double scaling limit to the same completely positive classical-quantum generator. This provides a regime in which one can study effective and consistent classical-quantum dynamics.
经典极限的标准概念以ℏ→0 为示意图,提供了一种用经典系统逼近量子系统的方法。在这项研究中,我们解释了为什么标准经典极限在应用于子系统时会失效,并展示了如何通过明确模拟子系统的退相干环境来解决这个问题。我们用τ表示退相干时间,证明了在ℏ→0 和 τ→0 的双重缩放极限下,Ef=ℏ/τ 之比保持固定,会导致具有定义明确的经典和量子子系统的不可逆开放系统演化。主要技术结果表明,对于任意汉密尔顿,维格纳、胡西米和格劳伯-苏达山准概率分布的部分版本的生成器都可以在上述双缩放极限中映射到同一个完全正的经典-量子生成器。这就提供了一个可以研究有效而一致的经典量子动力学的机制。
{"title":"The Classical-Quantum Limit","authors":"Isaac Layton, Jonathan Oppenheim","doi":"10.1103/prxquantum.5.020331","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020331","url":null,"abstract":"The standard notion of a classical limit, represented schematically by <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℏ</mi><mo stretchy=\"false\">→</mo><mn>0</mn></math>, provides a method for approximating a quantum system by a classical one. In this work, we explain why the standard classical limit fails when applied to subsystems, and show how one may resolve this by explicitly modeling the decoherence of a subsystem by its environment. Denoting the decoherence time by <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>τ</mi></math>, we demonstrate that a double scaling limit in which <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℏ</mi><mo stretchy=\"false\">→</mo><mn>0</mn></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>τ</mi><mo stretchy=\"false\">→</mo><mn>0</mn></math> such that the ratio <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>E</mi><mi>f</mi></msub><mo>=</mo><mi>ℏ</mi><mo>/</mo><mi>τ</mi></math> remains fixed leads to an irreversible open-system evolution with well-defined classical and quantum subsystems. The main technical result is showing that, for arbitrary Hamiltonians, the generators of partial versions of the Wigner, Husimi, and Glauber-Sudarshan quasiprobability distributions may all be mapped in the above-mentioned double scaling limit to the same completely positive classical-quantum generator. This provides a regime in which one can study effective and consistent classical-quantum dynamics.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140928813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Order Randomized Compiler for Hamiltonian Simulation 用于哈密尔顿模拟的高阶随机编译器
Pub Date : 2024-05-08 DOI: 10.1103/prxquantum.5.020330
Kouhei Nakaji, Mohsen Bagherimehrab, Alán Aspuru-Guzik
Hamiltonian simulation is known to be one of the fundamental building blocks of a variety of quantum algorithms such as its most immediate application, that of simulating many-body systems to extract their physical properties. In this work, we present qSWIFT, a high-order randomized algorithm for Hamiltonian simulation. In qSWIFT, the required number of gates for a given precision is independent of the number of terms in the Hamiltonian, while the systematic error is exponentially reduced with regard to the order parameter. In this respect, our qSWIFT is a higher-order counterpart of the previously proposed quantum stochastic drift protocol (qDRIFT), the number of gates in which scales linearly with the inverse of the precision required. We construct the qSWIFT channel and establish a rigorous bound for the systematic error quantified by the diamond norm. qSWIFT provides an algorithm to estimate given physical quantities by using a system with one ancilla qubit, which is as simple as other product-formula-based approaches such as regular Trotter-Suzuki decompositions and qDRIFT. Our numerical experiment reveals that the required number of gates in qSWIFT is significantly reduced compared to qDRIFT. In particular, the advantage is significant for problems where high precision is required; e.g., to achieve a systematic relative propagation error of 106, the required number of gates in third-order qSWIFT is 1000 times smaller than that of qDRIFT.
众所周知,哈密顿模拟是各种量子算法的基本组成部分之一,其最直接的应用就是模拟多体系统以提取其物理特性。在这项工作中,我们提出了用于哈密顿模拟的高阶随机算法 qSWIFT。在 qSWIFT 中,给定精度所需的门数量与哈密顿项的数量无关,而系统误差则随着阶数参数的增加呈指数级减少。在这方面,我们的 qSWIFT 是之前提出的量子随机漂移协议(qDRIFT)的高阶对应物,其门的数量与所需精度的倒数成线性比例。我们构建了 qSWIFT 通道,并为用钻石规范量化的系统误差建立了严格的约束。qSWIFT 提供了一种算法,通过使用一个辅助量子比特系统来估计给定的物理量,它与其他基于乘积公式的方法(如常规特罗特-铃木分解和 qDRIFT)一样简单。我们的数值实验表明,与 qDRIFT 相比,qSWIFT 所需的门数大大减少。特别是在需要高精度的问题上,这种优势更为明显;例如,要达到 10-6 的系统相对传播误差,三阶 qSWIFT 所需的门数比 qDRIFT 少 1000 倍。
{"title":"High-Order Randomized Compiler for Hamiltonian Simulation","authors":"Kouhei Nakaji, Mohsen Bagherimehrab, Alán Aspuru-Guzik","doi":"10.1103/prxquantum.5.020330","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020330","url":null,"abstract":"Hamiltonian simulation is known to be one of the fundamental building blocks of a variety of quantum algorithms such as its most immediate application, that of simulating many-body systems to extract their physical properties. In this work, we present qSWIFT, a high-order randomized algorithm for Hamiltonian simulation. In qSWIFT, the required number of gates for a given precision is independent of the number of terms in the Hamiltonian, while the systematic error is exponentially reduced with regard to the order parameter. In this respect, our qSWIFT is a higher-order counterpart of the previously proposed quantum stochastic drift protocol (qDRIFT), the number of gates in which scales linearly with the inverse of the precision required. We construct the qSWIFT channel and establish a rigorous bound for the systematic error quantified by the diamond norm. qSWIFT provides an algorithm to estimate given physical quantities by using a system with one ancilla qubit, which is as simple as other product-formula-based approaches such as regular Trotter-Suzuki decompositions and qDRIFT. Our numerical experiment reveals that the required number of gates in qSWIFT is significantly reduced compared to qDRIFT. In particular, the advantage is significant for problems where high precision is required; e.g., to achieve a systematic relative propagation error of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math>, the required number of gates in third-order qSWIFT is 1000 times smaller than that of qDRIFT.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140928816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal Approach for Quantum Interfaces with Atomic Arrays 原子阵列量子界面的通用方法
Pub Date : 2024-05-07 DOI: 10.1103/prxquantum.5.020329
Yakov Solomons, Roni Ben-Maimon, Ephraim Shahmoon
We develop a general framework for the analysis of two-sided quantum interfaces, composed of collections of atoms interacting with paraxial light. Accounting for photon-mediated dipole-dipole interactions, our approach is based on the mapping of collective atom-photon interfaces onto a generic one-dimensional model of light scattering, characterized by a reflectivity parameter r0. This entails two key practical advantages: (i) the efficiency of the quantum interface in performing various quantum tasks, such as quantum memory or entanglement generation, is universally given by r0 and is hence reduced to a measurement or classical calculation of a reflectivity; (ii) the efficiency can be greatly enhanced by a properly designed photon mode that spatially matches a collective-dipole eigenmode of the atoms. We demonstrate our approach for realistic cases of finite-size atomic arrays, partially filled arrays, and circular arrays. This provides a unified approach for treating collective light-matter coupling in various platforms, such as optical lattices and optical tweezers.
我们开发了一个分析双面量子界面的通用框架,该界面由与同轴光相互作用的原子集合组成。考虑到光子介导的偶极-偶极相互作用,我们的方法基于将原子-光子集合界面映射到通用的一维光散射模型上,该模型以反射率参数 r0 为特征。这带来了两个关键的实际优势:(i) 量子界面在执行各种量子任务(如量子记忆或纠缠生成)时的效率普遍由 r0 给定,因此可简化为反射率的测量或经典计算;(ii) 通过适当设计光子模式,使其在空间上与原子的集体偶极子特征模式相匹配,可大大提高效率。我们针对有限尺寸原子阵列、部分填充阵列和圆形阵列的实际情况演示了我们的方法。这为处理光晶格和光镊子等各种平台中的集体光物质耦合提供了统一的方法。
{"title":"Universal Approach for Quantum Interfaces with Atomic Arrays","authors":"Yakov Solomons, Roni Ben-Maimon, Ephraim Shahmoon","doi":"10.1103/prxquantum.5.020329","DOIUrl":"https://doi.org/10.1103/prxquantum.5.020329","url":null,"abstract":"We develop a general framework for the analysis of two-sided quantum interfaces, composed of collections of atoms interacting with paraxial light. Accounting for photon-mediated dipole-dipole interactions, our approach is based on the mapping of collective atom-photon interfaces onto a generic one-dimensional model of light scattering, characterized by a reflectivity parameter <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>r</mi><mn>0</mn></msub></math>. This entails two key practical advantages: (i) the efficiency of the quantum interface in performing various quantum tasks, such as quantum memory or entanglement generation, is universally given by <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>r</mi><mn>0</mn></msub></math> and is hence reduced to a measurement or classical calculation of a reflectivity; (ii) the efficiency can be greatly enhanced by a properly designed photon mode that spatially matches a collective-dipole eigenmode of the atoms. We demonstrate our approach for realistic cases of finite-size atomic arrays, partially filled arrays, and circular arrays. This provides a unified approach for treating collective light-matter coupling in various platforms, such as optical lattices and optical tweezers.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140885368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
PRX Quantum
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1