首页 > 最新文献

arXiv - CS - Computational Geometry最新文献

英文 中文
Constrained and Ordered Level Planarity Parameterized by the Number of Levels 以层级数为参数的受限和有序层级平面性
Pub Date : 2024-03-20 DOI: arxiv-2403.13702
Václav Blažej, Boris Klemz, Felix Klesen, Marie Diana Sieper, Alexander Wolff, Johannes Zink
The problem Level Planarity asks for a crossing-free drawing of a graph inthe plane such that vertices are placed at prescribed y-coordinates (calledlevels) and such that every edge is realized as a y-monotone curve. In thevariant Constrained Level Planarity (CLP), each level $y$ is equipped with apartial order $prec_y$ on its vertices and in the desired drawing theleft-to-right order of vertices on level $y$ has to be a linear extension of$prec_y$. Ordered Level Planarity (OLP) corresponds to the special case of CLPwhere the given partial orders $prec_y$ are total orders. Previous results byBr"uckner and Rutter [SODA 2017] and Klemz and Rote [ACM Trans. Alg. 2019]state that both CLP and OLP are NP-hard even in severely restricted cases. Inparticular, they remain NP-hard even when restricted to instances whose width(the maximum number of vertices that may share a common level) is at most two.In this paper, we focus on the other dimension: we study the parameterizedcomplexity of CLP and OLP with respect to the height (the number of levels). We show that OLP parameterized by the height is complete with respect to thecomplexity class XNLP, which was first studied by Elberfeld et al.[Algorithmica 2015] (under a different name) and recently made more prominentby Bodlaender et al. [FOCS 2021]. It contains all parameterized problems thatcan be solved nondeterministically in time $f(k) n^{O(1)}$ and space $f(k) logn$ (where $f$ is a computable function, $n$ is the input size, and $k$ is theparameter). If a problem is XNLP-complete, it lies in XP, but is W[$t$]-hardfor every $t$. In contrast to the fact that OLP parameterized by the height lies in XP, itturns out that CLP is NP-hard even when restricted to instances of height 4. Wecomplement this result by showing that CLP can be solved in polynomial time forinstances of height at most 3.
水平平面性问题要求在平面内绘制无交叉的图形,使顶点位于规定的 y 坐标(称为水平)上,并使每条边都是一条 y 单调曲线。在变量受限水平平面图(CLP)中,每个水平 $y$ 的顶点都有一个单独的阶 $prec_y$,在所需的绘图中,水平 $y$ 上的顶点从左到右的阶必须是 $prec_y$ 的线性扩展。有序层平面性(OLP)对应于CLP的特例,其中给定的部分阶$prec_y$是总阶。Br"uckner 和 Rutter [SODA 2017] 以及 Klemz 和 Rote [ACM Trans. Alg. 2019]之前的结果表明,即使在严格限制的情况下,CLP 和 OLP 都是 NP-hard。在本文中,我们将重点放在另一个维度上:我们研究 CLP 和 OLP 关于高度(层数)的参数化复杂性。我们证明,以高度为参数的 OLP 在复杂度类别 XNLP 方面是完整的,该类别由 Elberfeld 等人[Algorithmica 2015](以不同的名称)首次研究,最近由 Bodlaender 等人[FOCS 2021]变得更加突出。它包含所有可在时间 $f(k) n^{O(1)}$ 和空间 $f(k) logn$(其中 $f$ 是可计算函数,$n$ 是输入大小,$k$ 是参数)内非确定求解的参数化问题。如果一个问题是 XNLP-complete,那么它位于 XP 中,但对于每个 $t$ 都是 W[$t$]-hard 的。与以高度为参数的 OLP 位于 XP 中这一事实相反,事实证明,即使只限于高度为 4 的实例,CLP 也是 NP-困难的。我们补充这一结果,证明对于高度最多为 3 的实例,CLP 可以在多项式时间内求解。
{"title":"Constrained and Ordered Level Planarity Parameterized by the Number of Levels","authors":"Václav Blažej, Boris Klemz, Felix Klesen, Marie Diana Sieper, Alexander Wolff, Johannes Zink","doi":"arxiv-2403.13702","DOIUrl":"https://doi.org/arxiv-2403.13702","url":null,"abstract":"The problem Level Planarity asks for a crossing-free drawing of a graph in\u0000the plane such that vertices are placed at prescribed y-coordinates (called\u0000levels) and such that every edge is realized as a y-monotone curve. In the\u0000variant Constrained Level Planarity (CLP), each level $y$ is equipped with a\u0000partial order $prec_y$ on its vertices and in the desired drawing the\u0000left-to-right order of vertices on level $y$ has to be a linear extension of\u0000$prec_y$. Ordered Level Planarity (OLP) corresponds to the special case of CLP\u0000where the given partial orders $prec_y$ are total orders. Previous results by\u0000Br\"uckner and Rutter [SODA 2017] and Klemz and Rote [ACM Trans. Alg. 2019]\u0000state that both CLP and OLP are NP-hard even in severely restricted cases. In\u0000particular, they remain NP-hard even when restricted to instances whose width\u0000(the maximum number of vertices that may share a common level) is at most two.\u0000In this paper, we focus on the other dimension: we study the parameterized\u0000complexity of CLP and OLP with respect to the height (the number of levels). We show that OLP parameterized by the height is complete with respect to the\u0000complexity class XNLP, which was first studied by Elberfeld et al.\u0000[Algorithmica 2015] (under a different name) and recently made more prominent\u0000by Bodlaender et al. [FOCS 2021]. It contains all parameterized problems that\u0000can be solved nondeterministically in time $f(k) n^{O(1)}$ and space $f(k) log\u0000n$ (where $f$ is a computable function, $n$ is the input size, and $k$ is the\u0000parameter). If a problem is XNLP-complete, it lies in XP, but is W[$t$]-hard\u0000for every $t$. In contrast to the fact that OLP parameterized by the height lies in XP, it\u0000turns out that CLP is NP-hard even when restricted to instances of height 4. We\u0000complement this result by showing that CLP can be solved in polynomial time for\u0000instances of height at most 3.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fréchet Edit Distance 弗雷谢特编辑距离
Pub Date : 2024-03-19 DOI: arxiv-2403.12878
Emily Fox, Amir Nayyeri, Jonathan James Perry, Benjamin Raichel
We define and investigate the Fr'{e}chet edit distance problem. Given twopolygonal curves $pi$ and $sigma$ and a threshhold value $delta>0$, we seekthe minimum number of edits to $sigma$ such that the Fr'{e}chet distancebetween the edited $sigma$ and $pi$ is at most $delta$. For the editoperations we consider three cases, namely, deletion of vertices, insertion ofvertices, or both. For this basic problem we consider a number of variants.Specifically, we provide polynomial time algorithms for both discrete andcontinuous Fr'{e}chet edit distance variants, as well as hardness results forweak Fr'{e}chet edit distance variants.
我们定义并研究了弗雷谢特编辑距离问题。给定两条多边形曲线 $pi$ 和 $sigma$ 以及一个阈值 $delta>0$, 我们寻求对 $sigma$ 的最小编辑次数,使得编辑后的 $sigma$ 和 $pi$ 之间的 Fr'{e}chet 距离最多为 $delta$.对于编辑操作,我们考虑三种情况,即删除顶点、插入顶点或两者兼而有之。具体来说,我们提供了离散和连续 Fr'{e}chet 编辑距离变体的多项式时间算法,以及弱 Fr'{e}chet 编辑距离变体的硬度结果。
{"title":"Fréchet Edit Distance","authors":"Emily Fox, Amir Nayyeri, Jonathan James Perry, Benjamin Raichel","doi":"arxiv-2403.12878","DOIUrl":"https://doi.org/arxiv-2403.12878","url":null,"abstract":"We define and investigate the Fr'{e}chet edit distance problem. Given two\u0000polygonal curves $pi$ and $sigma$ and a threshhold value $delta>0$, we seek\u0000the minimum number of edits to $sigma$ such that the Fr'{e}chet distance\u0000between the edited $sigma$ and $pi$ is at most $delta$. For the edit\u0000operations we consider three cases, namely, deletion of vertices, insertion of\u0000vertices, or both. For this basic problem we consider a number of variants.\u0000Specifically, we provide polynomial time algorithms for both discrete and\u0000continuous Fr'{e}chet edit distance variants, as well as hardness results for\u0000weak Fr'{e}chet edit distance variants.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140165761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semi-Algebraic Off-line Range Searching and Biclique Partitions in the Plane 半代数离线范围搜索和平面上的双斜分区
Pub Date : 2024-03-18 DOI: arxiv-2403.12276
Pankaj K. Agarwal, Esther Ezra, Micha Sharir
Let $P$ be a set of $m$ points in ${mathbb R}^2$, let $Sigma$ be a set of$n$ semi-algebraic sets of constant complexity in ${mathbb R}^2$, let $(S,+)$be a semigroup, and let $w: P rightarrow S$ be a weight function on the pointsof $P$. We describe a randomized algorithm for computing $w(Pcapsigma)$ forevery $sigmainSigma$ in overall expected time $O^*bigl(m^{frac{2s}{5s-4}}n^{frac{5s-6}{5s-4}} + m^{2/3}n^{2/3} + m + n bigr)$,where $s>0$ is a constant that bounds the maximum complexity of the regions of$Sigma$, and where the $O^*(cdot)$ notation hides subpolynomial factors. For$sge 3$, surprisingly, this bound is smaller than the best-known bound foranswering $m$ such queries in an on-line manner. The latter takes$O^*(m^{frac{s}{2s-1}}n^{frac{2s-2}{2s-1}}+m+n)$ time. Let $Phi: Sigma times P rightarrow {0,1}$ be the Boolean predicate (ofconstant complexity) such that $Phi(sigma,p) = 1$ if $pinsigma$ and $0$otherwise, and let $Sigmamathop{Phi} P = { (sigma,p) in Sigmatimes Pmid Phi(sigma,p)=1}$. Our algorithm actually computes a partition${mathcal B}_Phi$ of $Sigmamathop{Phi} P$ into bipartite cliques(bicliques) of size (i.e., sum of the sizes of the vertex sets of itsbicliques) $O^*bigl( m^{frac{2s}{5s-4}}n^{frac{5s-6}{5s-4}} + m^{2/3}n^{2/3}+ m + n bigr)$. It is straightforward to compute $w(Pcapsigma)$ for all$sigmain Sigma$ from ${mathcal B}_Phi$. Similarly, if $eta: Sigmarightarrow S$ is a weight function on the regions of $Sigma$,$sum_{sigmain Sigma: p in sigma} eta(sigma)$, for every point $pin P$,can be computed from ${mathcal B}_Phi$ in a straightforward manner. A recentwork of Chan et al. solves the online version of this dual point enclosureproblem within the same performance bound as our off-line solution. We alsomention a few other applications of computing ${mathcal B}_Phi$.
让 $P$ 是 ${mathbb R}^2$ 中 $m$ 点的集合,让 $Sigma$ 是 ${mathbb R}^2$ 中具有恒定复杂性的 $n$ 半代数集合,让 $(S,+)$ 是一个半群,让 $w:P rightarrow S$ 是 $P$ 的点上的权重函数。我们描述了一种随机算法,可以在总体预期时间 $O^*bigl(m^{frac{2s}{5s-4}}n^{frac{5s-6}{5s-4}} + m^{2/3}n^{2/3} + m + n bigr)$ 内计算 $w(P/cap/sigma)$、其中,$s>0$ 是一个常数,它限定了$Sigma$ 区域的最大复杂度,$O^*(cdot)$ 符号隐藏了次多项式因子。对于$sge 3$,令人惊讶的是,这个界限小于以在线方式回答 $m$ 此类查询的最著名界限。后者需要花费$O^*(m^{frac{s}{2s-1}}n^{frac{2s-2}{2s-1}}+m+n)$时间。让 $Phi:P 是布尔谓词(复杂度恒定),当 $pinsigma$ 时,$Phi(sigma,p) = 1$,否则为 $0$;让 $Sigmamathop{Phi} P ={ (sigma,p) = 1$,否则为 $0$;让 $Sigmamathop{Phi} P ={ (sigma,p) = 1$,否则为 $0$。P = { (sigma,p) in Sigmatimes Pmid Phi(sigma,p)=1/}$。我们的算法实际上是计算 $Sigmamathcal B}_Phi$ 的一个分区。P$ 分成大小(即其双簇顶点集大小之和)为 $O^*bigl( m^{frac{2s}{5s-4}}n^{frac{5s-6}{5s-4}} + m^{2/3}n^{2/3}+ m + n bigr)$ 的双簇群(双簇)。从 ${mathcal B}_Phi$ 计算所有 $sigmain Sigma$ 的 $w(Pcapsigma)$ 非常简单。同样,如果 $eta:S$ 是 $Sigma$ 区域上的权重函数,那么对于 P$ 中的每个点 $p 可以直接从 ${mathcal B}_Phi$ 计算出 $sum_{sigmain Sigma: p in sigma} eta(sigma)$ 。Chan 等人最近的一项研究解决了在线版本的对偶点封闭问题,其性能与我们的离线解决方案相同。我们还提到了计算 ${mathcal B}_Phi$ 的一些其他应用。
{"title":"Semi-Algebraic Off-line Range Searching and Biclique Partitions in the Plane","authors":"Pankaj K. Agarwal, Esther Ezra, Micha Sharir","doi":"arxiv-2403.12276","DOIUrl":"https://doi.org/arxiv-2403.12276","url":null,"abstract":"Let $P$ be a set of $m$ points in ${mathbb R}^2$, let $Sigma$ be a set of\u0000$n$ semi-algebraic sets of constant complexity in ${mathbb R}^2$, let $(S,+)$\u0000be a semigroup, and let $w: P rightarrow S$ be a weight function on the points\u0000of $P$. We describe a randomized algorithm for computing $w(Pcapsigma)$ for\u0000every $sigmainSigma$ in overall expected time $O^*bigl(\u0000m^{frac{2s}{5s-4}}n^{frac{5s-6}{5s-4}} + m^{2/3}n^{2/3} + m + n bigr)$,\u0000where $s>0$ is a constant that bounds the maximum complexity of the regions of\u0000$Sigma$, and where the $O^*(cdot)$ notation hides subpolynomial factors. For\u0000$sge 3$, surprisingly, this bound is smaller than the best-known bound for\u0000answering $m$ such queries in an on-line manner. The latter takes\u0000$O^*(m^{frac{s}{2s-1}}n^{frac{2s-2}{2s-1}}+m+n)$ time. Let $Phi: Sigma times P rightarrow {0,1}$ be the Boolean predicate (of\u0000constant complexity) such that $Phi(sigma,p) = 1$ if $pinsigma$ and $0$\u0000otherwise, and let $Sigmamathop{Phi} P = { (sigma,p) in Sigmatimes P\u0000mid Phi(sigma,p)=1}$. Our algorithm actually computes a partition\u0000${mathcal B}_Phi$ of $Sigmamathop{Phi} P$ into bipartite cliques\u0000(bicliques) of size (i.e., sum of the sizes of the vertex sets of its\u0000bicliques) $O^*bigl( m^{frac{2s}{5s-4}}n^{frac{5s-6}{5s-4}} + m^{2/3}n^{2/3}\u0000+ m + n bigr)$. It is straightforward to compute $w(Pcapsigma)$ for all\u0000$sigmain Sigma$ from ${mathcal B}_Phi$. Similarly, if $eta: Sigma\u0000rightarrow S$ is a weight function on the regions of $Sigma$,\u0000$sum_{sigmain Sigma: p in sigma} eta(sigma)$, for every point $pin P$,\u0000can be computed from ${mathcal B}_Phi$ in a straightforward manner. A recent\u0000work of Chan et al. solves the online version of this dual point enclosure\u0000problem within the same performance bound as our off-line solution. We also\u0000mention a few other applications of computing ${mathcal B}_Phi$.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140165877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robustly Guarding Polygons 稳健地保护多边形
Pub Date : 2024-03-18 DOI: arxiv-2403.11861
Rathish Das, Omrit Filtser, Matthew J. Katz, Joseph S. B. Mitchell
We propose precise notions of what it means to guard a domain "robustly",under a variety of models. While approximation algorithms for minimizing thenumber of (precise) point guards in a polygon is a notoriously challenging areaof investigation, we show that imposing various degrees of robustness on thenotion of visibility coverage leads to a more tractable (and realistic) problemfor which we can provide approximation algorithms with constant factorguarantees.
我们提出了在各种模型下 "稳健地 "保护一个域的精确概念。虽然最小化多边形中(精确)点防护数量的近似算法是一个众所周知的具有挑战性的研究领域,但我们表明,对可见度覆盖范围的运动施加不同程度的鲁棒性,会带来一个更容易解决(也更现实)的问题,我们可以为其提供具有恒定系数保证的近似算法。
{"title":"Robustly Guarding Polygons","authors":"Rathish Das, Omrit Filtser, Matthew J. Katz, Joseph S. B. Mitchell","doi":"arxiv-2403.11861","DOIUrl":"https://doi.org/arxiv-2403.11861","url":null,"abstract":"We propose precise notions of what it means to guard a domain \"robustly\",\u0000under a variety of models. While approximation algorithms for minimizing the\u0000number of (precise) point guards in a polygon is a notoriously challenging area\u0000of investigation, we show that imposing various degrees of robustness on the\u0000notion of visibility coverage leads to a more tractable (and realistic) problem\u0000for which we can provide approximation algorithms with constant factor\u0000guarantees.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140165875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semialgebraic Range Stabbing, Ray Shooting, and Intersection Counting in the Plane 半代数平面范围刺击、射线射击和交点计数
Pub Date : 2024-03-18 DOI: arxiv-2403.12303
Timothy M. Chan, Pingan Cheng, Da Wei Zheng
Polynomial partitioning techniques have recently led to improved geometricdata structures for a variety of fundamental problems related to semialgebraicrange searching and intersection searching in 3D and higher dimensions (e.g.,see [Agarwal, Aronov, Ezra, and Zahl, SoCG 2019; Ezra and Sharir, SoCG 2021;Agarwal, Aronov, Ezra, Katz, and Sharir, SoCG 2022]). They have also led toimproved algorithms for offline versions of semialgebraic range searching in2D, via lens-cutting [Sharir and Zahl (2017)]. In this paper, we show thatthese techniques can yield new data structures for a number of other 2Dproblems even for online queries: 1. Semialgebraic range stabbing. We present a data structure for $n$semialgebraic ranges in 2D of constant description complexity with$O(n^{3/2+varepsilon})$ preprocessing time and space, so that we can count thenumber of ranges containing a query point in $O(n^{1/4+varepsilon})$ time, foran arbitrarily small constant $varepsilon>0$. 2. Ray shooting amid algebraic arcs. We present a data structure for $n$algebraic arcs in 2D of constant description complexity with$O(n^{3/2+varepsilon})$ preprocessing time and space, so that we can find thefirst arc hit by a query (straight-line) ray in $O(n^{1/4+varepsilon})$ time. 3. Intersection counting amid algebraic arcs. We present a data structure for$n$ algebraic arcs in 2D of constant description complexity with$O(n^{3/2+varepsilon})$ preprocessing time and space, so that we can count thenumber of intersection points with a query algebraic arc of constantdescription complexity in $O(n^{1/2+varepsilon})$ time. In particular, thisimplies an $O(n^{3/2+varepsilon})$-time algorithm for counting intersectionsbetween two sets of $n$ algebraic arcs in 2D.
多项式分割技术最近为三维和更高维度中与半代数范围搜索和交集搜索相关的各种基本问题带来了改进的几何数据结构(例如,参见[Agarwal、Aronov、Ezra 和 Zahl,SoCG 2019;Ezra 和 Sharir,SoCG 2021;Agarwal、Aronov、Ezra、Katz 和 Sharir,SoCG 2022])。他们还通过透镜切分[Sharir and Zahl (2017)],改进了 2D 半代数范围搜索的离线版本算法。在本文中,我们将展示这些技术可以为其他一些二维问题产生新的数据结构,甚至可以用于在线查询:1.半代数范围刺探。我们提出了一种描述复杂度恒定、预处理时间和空间均为$O(n^{3/2+varepsilon})$的二维中$n$半代数范围的数据结构,因此,对于任意小的常数$varepsilon>0$,我们可以在$O(n^{1/4+varepsilon})$时间内计算包含查询点的范围数量。2.代数弧中的光线射击我们提出了一种描述复杂度恒定、预处理时间和空间均为 $O(n^{3/2+varepsilon})$的 2D 中 $n$ 代数弧的数据结构,因此我们可以在 $O(n^{1/4+varepsilon})$时间内找到查询(直线)射线命中的第一个弧。3.代数弧中的交点计数。我们为二维中具有恒定描述复杂度的$n$代数弧提出了一种数据结构,其预处理时间和空间为$O(n^{3/2+varepsilon})$,因此我们可以在$O(n^{1/2+varepsilon})$时间内计算与具有恒定描述复杂度的查询代数弧的交点数量。特别是,这意味着可以用 $O(n^{3/2+varepsilon})$ 时间的算法来计算二维中两组 $n$ 代数弧之间的交点。
{"title":"Semialgebraic Range Stabbing, Ray Shooting, and Intersection Counting in the Plane","authors":"Timothy M. Chan, Pingan Cheng, Da Wei Zheng","doi":"arxiv-2403.12303","DOIUrl":"https://doi.org/arxiv-2403.12303","url":null,"abstract":"Polynomial partitioning techniques have recently led to improved geometric\u0000data structures for a variety of fundamental problems related to semialgebraic\u0000range searching and intersection searching in 3D and higher dimensions (e.g.,\u0000see [Agarwal, Aronov, Ezra, and Zahl, SoCG 2019; Ezra and Sharir, SoCG 2021;\u0000Agarwal, Aronov, Ezra, Katz, and Sharir, SoCG 2022]). They have also led to\u0000improved algorithms for offline versions of semialgebraic range searching in\u00002D, via lens-cutting [Sharir and Zahl (2017)]. In this paper, we show that\u0000these techniques can yield new data structures for a number of other 2D\u0000problems even for online queries: 1. Semialgebraic range stabbing. We present a data structure for $n$\u0000semialgebraic ranges in 2D of constant description complexity with\u0000$O(n^{3/2+varepsilon})$ preprocessing time and space, so that we can count the\u0000number of ranges containing a query point in $O(n^{1/4+varepsilon})$ time, for\u0000an arbitrarily small constant $varepsilon>0$. 2. Ray shooting amid algebraic arcs. We present a data structure for $n$\u0000algebraic arcs in 2D of constant description complexity with\u0000$O(n^{3/2+varepsilon})$ preprocessing time and space, so that we can find the\u0000first arc hit by a query (straight-line) ray in $O(n^{1/4+varepsilon})$ time. 3. Intersection counting amid algebraic arcs. We present a data structure for\u0000$n$ algebraic arcs in 2D of constant description complexity with\u0000$O(n^{3/2+varepsilon})$ preprocessing time and space, so that we can count the\u0000number of intersection points with a query algebraic arc of constant\u0000description complexity in $O(n^{1/2+varepsilon})$ time. In particular, this\u0000implies an $O(n^{3/2+varepsilon})$-time algorithm for counting intersections\u0000between two sets of $n$ algebraic arcs in 2D.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140166128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ipelets for the Convex Polygonal Geometry 凸多边形几何的插梢
Pub Date : 2024-03-15 DOI: arxiv-2403.10033
Nithin Parepally, Ainesh Chatterjee, Auguste Gezalyan, Hongyang Du, Sukrit Mangla, Kenny Wu, Sarah Hwang, David Mount
There are many structures, both classical and modern, involving convexpolygonal geometries whose deeper understanding would be facilitated throughinteractive visualizations. The Ipe extensible drawing editor, developed byOtfried Cheong, is a widely used software system for generating geometricfigures. One of its features is the capability to extend its functionalitythrough programs called Ipelets. In this media submission, we showcase acollection of new Ipelets that construct a variety of geometric objects basedon polygonal geometries. These include Macbeath regions, metric balls in theforward and reverse Funk distance, metric balls in the Hilbert metric, polarbodies, the minimum enclosing ball of a point set, and minimum spanning treesin both the Funk and Hilbert metrics. We also include a number of utilities onconvex polygons, including union, intersection, subtraction, and Minkowski sum(previously implemented as a CGAL Ipelet). All of our Ipelets are programmed inLua and are freely available.
古典和现代的许多结构都涉及凸多边形几何图形,通过交互式可视化可以加深对这些结构的理解。Otfried Cheong 开发的 Ipe 可扩展绘图编辑器是一种广泛使用的生成几何图形的软件系统。其特点之一是可以通过名为 Ipelets 的程序扩展其功能。在本次媒体投稿中,我们展示了一系列新的 Ipelets,它们可以根据多边形几何图形构建各种几何对象。这些对象包括 Macbeath 区域、正向和反向 Funk 距离中的度量球、Hilbert 度量中的度量球、极体、点集的最小包围球,以及 Funk 和 Hilbert 度量中的最小生成树。我们还提供了一些关于凸多边形的实用程序,包括联合、相交、相减和闵科夫斯基和(以前作为 CGAL Ipelet 实现)。我们所有的 Ipelet 都用 Lua 编程,可以免费获取。
{"title":"Ipelets for the Convex Polygonal Geometry","authors":"Nithin Parepally, Ainesh Chatterjee, Auguste Gezalyan, Hongyang Du, Sukrit Mangla, Kenny Wu, Sarah Hwang, David Mount","doi":"arxiv-2403.10033","DOIUrl":"https://doi.org/arxiv-2403.10033","url":null,"abstract":"There are many structures, both classical and modern, involving convex\u0000polygonal geometries whose deeper understanding would be facilitated through\u0000interactive visualizations. The Ipe extensible drawing editor, developed by\u0000Otfried Cheong, is a widely used software system for generating geometric\u0000figures. One of its features is the capability to extend its functionality\u0000through programs called Ipelets. In this media submission, we showcase a\u0000collection of new Ipelets that construct a variety of geometric objects based\u0000on polygonal geometries. These include Macbeath regions, metric balls in the\u0000forward and reverse Funk distance, metric balls in the Hilbert metric, polar\u0000bodies, the minimum enclosing ball of a point set, and minimum spanning trees\u0000in both the Funk and Hilbert metrics. We also include a number of utilities on\u0000convex polygons, including union, intersection, subtraction, and Minkowski sum\u0000(previously implemented as a CGAL Ipelet). All of our Ipelets are programmed in\u0000Lua and are freely available.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solution-Hashing Search Based on Layout-Graph Transformation for Unequal Circle Packing 基于布局图变换的不等边圆打包的解-散列搜索
Pub Date : 2024-03-10 DOI: arxiv-2403.06211
Jianrong Zhou, Jiyao He, Kun He
The problem of packing unequal circles into a circular container stands as aclassic and challenging optimization problem in computational geometry. Thisstudy introduces a suite of innovative and efficient methods to tackle thisproblem. Firstly, we present a novel layout-graph transformation method thatrepresents configurations as graphs, together with an inexact hash methodfacilitating fast comparison of configurations for isomorphism or similarity.Leveraging these advancements, we propose an Iterative Solution-Hashing Searchalgorithm adept at circumventing redundant exploration through efficientconfiguration recording. Additionally, we introduce several enhancements torefine the optimization and search processes, including an adaptive adjacencymaintenance method, an efficient vacancy detection technique, and aVoronoi-based locating method. Through comprehensive computational experimentsacross various benchmark instances, our algorithm demonstrates superiorperformance over existing state-of-the-art methods, showcasing remarkableapplicability and versatility. Notably, our algorithm surpasses the best-knownresults for 56 out of 179 benchmark instances while achieving parity with theremaining instances.
将不相等的圆装入圆形容器是计算几何中一个经典而又极具挑战性的优化问题。本研究引入了一套创新而高效的方法来解决这一问题。首先,我们提出了一种新颖的布局-图转换方法,该方法将配置表示为图,同时还提出了一种非精确哈希方法,便于快速比较配置的同构性或相似性。利用这些进步,我们提出了一种迭代解决方案-哈希搜索算法,该算法善于通过高效的配置记录来避免冗余探索。此外,我们还引入了一些增强功能来完善优化和搜索过程,包括自适应邻接维护方法、高效的空缺检测技术和基于沃罗诺的定位方法。通过对各种基准实例的综合计算实验,我们的算法展示了优于现有先进方法的性能,显示了显著的适用性和多功能性。值得注意的是,在 179 个基准实例中,我们的算法在 56 个实例上超越了最著名的结果,同时与其他实例的结果相当。
{"title":"Solution-Hashing Search Based on Layout-Graph Transformation for Unequal Circle Packing","authors":"Jianrong Zhou, Jiyao He, Kun He","doi":"arxiv-2403.06211","DOIUrl":"https://doi.org/arxiv-2403.06211","url":null,"abstract":"The problem of packing unequal circles into a circular container stands as a\u0000classic and challenging optimization problem in computational geometry. This\u0000study introduces a suite of innovative and efficient methods to tackle this\u0000problem. Firstly, we present a novel layout-graph transformation method that\u0000represents configurations as graphs, together with an inexact hash method\u0000facilitating fast comparison of configurations for isomorphism or similarity.\u0000Leveraging these advancements, we propose an Iterative Solution-Hashing Search\u0000algorithm adept at circumventing redundant exploration through efficient\u0000configuration recording. Additionally, we introduce several enhancements to\u0000refine the optimization and search processes, including an adaptive adjacency\u0000maintenance method, an efficient vacancy detection technique, and a\u0000Voronoi-based locating method. Through comprehensive computational experiments\u0000across various benchmark instances, our algorithm demonstrates superior\u0000performance over existing state-of-the-art methods, showcasing remarkable\u0000applicability and versatility. Notably, our algorithm surpasses the best-known\u0000results for 56 out of 179 benchmark instances while achieving parity with the\u0000remaining instances.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140106160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Clique-Based Separator for Intersection Graphs of Geodesic Disks in $mathbb{R}^2$ $mathbb{R}^2$中大地圆盘相交图的基于簇的分离器
Pub Date : 2024-03-07 DOI: arxiv-2403.04905
Boris Aronov, Mark de Berg, Leonidas Theocharous
Let $d$ be a (well-behaved) shortest-path metric defined on a path-connectedsubset of $mathbb{R}^2$ and let $mathcal{D}={D_1,ldots,D_n}$ be a set ofgeodesic disks with respect to the metric $d$. We prove that$mathcal{G}^{times}(mathcal{D})$, the intersection graph of the disks in$mathcal{D}$, has a clique-based separator consisting of$O(n^{3/4+varepsilon})$ cliques. This significantly extends the class ofobjects whose intersection graphs have small clique-based separators. Our clique-based separator yields an algorithm for $q$-COLORING that runs intime $2^{O(n^{3/4+varepsilon})}$, assuming the boundaries of the disks $D_i$can be computed in polynomial time. We also use our clique-based separator toobtain a simple, efficient, and almost exact distance oracle for intersectiongraphs of geodesic disks. Our distance oracle uses $O(n^{7/4+varepsilon})$storage and can report the hop distance between any two nodes in$mathcal{G}^{times}(mathcal{D})$ in $O(n^{3/4+varepsilon})$ time, up to anadditive error of one. So far, distance oracles with an additive error of onethat use subquadratic storage and sublinear query time were not known for suchgeneral graph classes.
让 $d$ 是定义在 $mathbb{R}^2$ 的路径连接子集上的(良好的)最短路径度量,让 $mathcal{D}={D_1,ldots,D_n}$ 是关于度量 $d$ 的大地圆盘集合。我们证明$mathcal{G}^{times}(mathcal{D})$,即$mathcal{D}$中的磁盘的交集图,有一个由$O(n^{3/4+varepsilon})$ 小块组成的基于小块的分离器。这极大地扩展了交集图具有小的基于小块的分离器的对象类别。我们的基于小块的分离器产生了一种 $q$-COLORING 算法,该算法的运行时间为 $2^{O(n^{3/4+varepsilon})}$ ,前提是磁盘 $D_i$ 的边界可以在多项式时间内计算出来。我们还利用基于clique的分离器为大地圆盘的交集图提供了一个简单、高效、几乎精确的距离算法。我们的距离算法使用 $O(n^{7/4+varepsilon})$ 存储空间,可以在 $O(n^{3/4+varepsilon})$ 时间内报告任意两个节点在$mathcal{G}^{times}(mathcal{D})$ 中的跳跃距离,误差不超过 1。迄今为止,还不知道在这样的通用图类中,使用亚二次存储和亚线性查询时间、加法误差为 1 的距离算例。
{"title":"A Clique-Based Separator for Intersection Graphs of Geodesic Disks in $mathbb{R}^2$","authors":"Boris Aronov, Mark de Berg, Leonidas Theocharous","doi":"arxiv-2403.04905","DOIUrl":"https://doi.org/arxiv-2403.04905","url":null,"abstract":"Let $d$ be a (well-behaved) shortest-path metric defined on a path-connected\u0000subset of $mathbb{R}^2$ and let $mathcal{D}={D_1,ldots,D_n}$ be a set of\u0000geodesic disks with respect to the metric $d$. We prove that\u0000$mathcal{G}^{times}(mathcal{D})$, the intersection graph of the disks in\u0000$mathcal{D}$, has a clique-based separator consisting of\u0000$O(n^{3/4+varepsilon})$ cliques. This significantly extends the class of\u0000objects whose intersection graphs have small clique-based separators. Our clique-based separator yields an algorithm for $q$-COLORING that runs in\u0000time $2^{O(n^{3/4+varepsilon})}$, assuming the boundaries of the disks $D_i$\u0000can be computed in polynomial time. We also use our clique-based separator to\u0000obtain a simple, efficient, and almost exact distance oracle for intersection\u0000graphs of geodesic disks. Our distance oracle uses $O(n^{7/4+varepsilon})$\u0000storage and can report the hop distance between any two nodes in\u0000$mathcal{G}^{times}(mathcal{D})$ in $O(n^{3/4+varepsilon})$ time, up to an\u0000additive error of one. So far, distance oracles with an additive error of one\u0000that use subquadratic storage and sublinear query time were not known for such\u0000general graph classes.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140097727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine-Grained Complexity of Earth Mover's Distance under Translation 平移条件下地球移动距离的精细复杂性
Pub Date : 2024-03-07 DOI: arxiv-2403.04356
Karl Bringmann, Frank Staals, Karol Węgrzycki, Geert van Wordragen
The Earth Mover's Distance is a popular similarity measure in severalbranches of computer science. It measures the minimum total edge length of aperfect matching between two point sets. The Earth Mover's Distance underTranslation ($mathrm{EMDuT}$) is a translation-invariant version thereof. Itminimizes the Earth Mover's Distance over all translations of one point set. For $mathrm{EMDuT}$ in $mathbb{R}^1$, we present an$widetilde{mathcal{O}}(n^2)$-time algorithm. We also show that this algorithmis nearly optimal by presenting a matching conditional lower bound based on theOrthogonal Vectors Hypothesis. For $mathrm{EMDuT}$ in $mathbb{R}^d$, wepresent an $widetilde{mathcal{O}}(n^{2d+2})$-time algorithm for the $L_1$ and$L_infty$ metric. We show that this dependence on $d$ is asymptotically tight,as an $n^{o(d)}$-time algorithm for $L_1$ or $L_infty$ would contradict theExponential Time Hypothesis (ETH). Prior to our work, only approximationalgorithms were known for these problems.
地球移动距离(Earth Mover's Distance)是计算机科学多个分支中的一种常用相似度量。它测量两个点集之间完全匹配的最小总边长。平移下的地球移动距离($mathrm{EMDuT}$)是其平移不变的版本。它在一个点集的所有平移中最小化了地球移动距离。对于 $mathbb{R}^1$ 中的 $mathrm{EMDuT}$,我们提出了一种$widetilde{mathcal{O}}(n^2)$-time算法。我们还基于全交向量假说,提出了一个匹配的条件下限,从而证明这个算法几乎是最优的。对于$mathbb{R}^d$中的$mathrm{EMDuT}$,我们为$L_1$和$L_infty$度量提出了一种$widetilde{mathcal{O}}(n^{2d+2})$-time算法。我们证明了这种对 $d$ 的依赖是渐近紧密的,因为针对 $L_1$ 或 $L_infty$ 的 $n^{o(d)}$ 时算法将与指数时间假说(ETH)相矛盾。在我们的工作之前,人们只知道这些问题的近似计算法。
{"title":"Fine-Grained Complexity of Earth Mover's Distance under Translation","authors":"Karl Bringmann, Frank Staals, Karol Węgrzycki, Geert van Wordragen","doi":"arxiv-2403.04356","DOIUrl":"https://doi.org/arxiv-2403.04356","url":null,"abstract":"The Earth Mover's Distance is a popular similarity measure in several\u0000branches of computer science. It measures the minimum total edge length of a\u0000perfect matching between two point sets. The Earth Mover's Distance under\u0000Translation ($mathrm{EMDuT}$) is a translation-invariant version thereof. It\u0000minimizes the Earth Mover's Distance over all translations of one point set. For $mathrm{EMDuT}$ in $mathbb{R}^1$, we present an\u0000$widetilde{mathcal{O}}(n^2)$-time algorithm. We also show that this algorithm\u0000is nearly optimal by presenting a matching conditional lower bound based on the\u0000Orthogonal Vectors Hypothesis. For $mathrm{EMDuT}$ in $mathbb{R}^d$, we\u0000present an $widetilde{mathcal{O}}(n^{2d+2})$-time algorithm for the $L_1$ and\u0000$L_infty$ metric. We show that this dependence on $d$ is asymptotically tight,\u0000as an $n^{o(d)}$-time algorithm for $L_1$ or $L_infty$ would contradict the\u0000Exponential Time Hypothesis (ETH). Prior to our work, only approximation\u0000algorithms were known for these problems.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140072094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Coreset for Approximate Furthest-Neighbor Queries in a Simple Polygon 简单多边形中近似最远邻查询的核心集
Pub Date : 2024-03-07 DOI: arxiv-2403.04513
Mark de Berg, Leonidas Theocharous
Let $mathcal{P}$ be a simple polygon with $m$ vertices and let $P$ be a setof $n$ points inside $mathcal{P}$. We prove that there exists, for any$varepsilon>0$, a set $mathcal{C} subset P$ of size $O(1/varepsilon^2)$such that the following holds: for any query point $q$ inside the polygon$mathcal{P}$, the geodesic distance from $q$ to its furthest neighbor in$mathcal{C}$ is at least $1-varepsilon$ times the geodesic distance to itsfurther neighbor in $P$. Thus the set $mathcal{C}$ can be used for answering$varepsilon$-approximate furthest-neighbor queries with a data structure whosestorage requirement is independent of the size of $P$. The coreset can beconstructed in $Oleft(frac{1}{varepsilon} left( nlog(1/varepsilon) +(n+m)log(n+m)right) right)$ time.
让 $mathcal{P}$ 是一个有 $m$ 顶点的简单多边形,让 $P$ 是 $mathcal{P}$ 内的一组 $n$ 点。我们证明,对于任意$varepsilon>0$,都存在一个集合$mathcal{C}。子集 P$,其大小为 $O(1/varepsilon^2)$,使得以下条件成立:对于多边形$mathcal{P}$内的任何查询点 $q$,从 $q$ 到其mathcal{C}$中最远邻居的大地距离至少是 $P$ 中其更远邻居的大地距离的 1-varepsilon$ 倍。因此,$mathcal{C}$集可用于回答$varepsilon$近似最远邻域查询,其数据结构的存储需求与$P$的大小无关。核集可以在 $Oleft(frac{1}{varepsilon} 中构建left( nlog(1/varepsilon) +(n+m)log(n+m)right) right)$时间。
{"title":"A Coreset for Approximate Furthest-Neighbor Queries in a Simple Polygon","authors":"Mark de Berg, Leonidas Theocharous","doi":"arxiv-2403.04513","DOIUrl":"https://doi.org/arxiv-2403.04513","url":null,"abstract":"Let $mathcal{P}$ be a simple polygon with $m$ vertices and let $P$ be a set\u0000of $n$ points inside $mathcal{P}$. We prove that there exists, for any\u0000$varepsilon>0$, a set $mathcal{C} subset P$ of size $O(1/varepsilon^2)$\u0000such that the following holds: for any query point $q$ inside the polygon\u0000$mathcal{P}$, the geodesic distance from $q$ to its furthest neighbor in\u0000$mathcal{C}$ is at least $1-varepsilon$ times the geodesic distance to its\u0000further neighbor in $P$. Thus the set $mathcal{C}$ can be used for answering\u0000$varepsilon$-approximate furthest-neighbor queries with a data structure whose\u0000storage requirement is independent of the size of $P$. The coreset can be\u0000constructed in $Oleft(frac{1}{varepsilon} left( nlog(1/varepsilon) +\u0000(n+m)log(n+m)right) right)$ time.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140072371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
arXiv - CS - Computational Geometry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1