Haotian Jiang, Qianxiao Li, Zhong Li null, Shida Wang
{"title":"A Brief Survey on the Approximation Theory for Sequence Modelling","authors":"Haotian Jiang, Qianxiao Li, Zhong Li null, Shida Wang","doi":"10.4208/jml.221221","DOIUrl":"https://doi.org/10.4208/jml.221221","url":null,"abstract":"","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135381134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reinforcement Learning with Function Approximation: From Linear to Nonlinear","authors":"Jihao Long and Jiequn Han","doi":"10.4208/jml.230105","DOIUrl":"https://doi.org/10.4208/jml.230105","url":null,"abstract":"","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135887743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Why Self-Attention is Natural for Sequence-to-Sequence Problems? A Perspective from Symmetries","authors":"Chao Ma and Lexing Ying null","doi":"10.4208/jml.221206","DOIUrl":"https://doi.org/10.4208/jml.221206","url":null,"abstract":"","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135142632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We consider the problem of testing for a difference in means between clusters of observations identified via -means clustering. In this setting, classical hypothesis tests lead to an inflated Type I error rate. In recent work, Gao et al. (2022) considered a related problem in the context of hierarchical clustering. Unfortunately, their solution is highly-tailored to the context of hierarchical clustering, and thus cannot be applied in the setting of -means clustering. In this paper, we propose a p-value that conditions on all of the intermediate clustering assignments in the -means algorithm. We show that the p-value controls the selective Type I error for a test of the difference in means between a pair of clusters obtained using -means clustering in finite samples, and can be efficiently computed. We apply our proposal on hand-written digits data and on single-cell RNA-sequencing data.
我们考虑的问题是检验通过 k-means 聚类确定的观测数据聚类之间的均值差异。在这种情况下,经典的假设检验会导致 I 类错误率上升。在最近的工作中,Gao 等人(2022 年)考虑了分层聚类背景下的相关问题。遗憾的是,他们的解决方案与分层聚类的背景高度契合,因此无法应用于 k-means 聚类。在本文中,我们提出了一个 p 值,它是 k-means 算法中所有中间聚类分配的条件。我们证明,该 p 值可以控制在有限样本中使用 k-means 聚类对一对聚类的均值差异进行检验时的选择性 I 类错误,并且可以高效计算。我们将我们的建议应用于手写数字数据和单细胞 RNA 序列数据。
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Selective inference for <ns0:math><ns0:mi>k</ns0:mi></ns0:math>-means clustering.","authors":"Yiqun T Chen, Daniela M Witten","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We consider the problem of testing for a difference in means between clusters of observations identified via <math><mi>k</mi></math>-means clustering. In this setting, classical hypothesis tests lead to an inflated Type I error rate. In recent work, Gao et al. (2022) considered a related problem in the context of hierarchical clustering. Unfortunately, their solution is highly-tailored to the context of hierarchical clustering, and thus cannot be applied in the setting of <math><mi>k</mi></math>-means clustering. In this paper, we propose a p-value that conditions on all of the intermediate clustering assignments in the <math><mi>k</mi></math>-means algorithm. We show that the p-value controls the selective Type I error for a test of the difference in means between a pair of clusters obtained using <math><mi>k</mi></math>-means clustering in finite samples, and can be efficiently computed. We apply our proposal on hand-written digits data and on single-cell RNA-sequencing data.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"24 ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10805457/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139543526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noirrit Kiran Chandra, Antonio Canale, David B Dunson
Bayesian mixture models are widely used for clustering of high-dimensional data with appropriate uncertainty quantification. However, as the dimension of the observations increases, posterior inference often tends to favor too many or too few clusters. This article explains this behavior by studying the random partition posterior in a non-standard setting with a fixed sample size and increasing data dimensionality. We provide conditions under which the finite sample posterior tends to either assign every observation to a different cluster or all observations to the same cluster as the dimension grows. Interestingly, the conditions do not depend on the choice of clustering prior, as long as all possible partitions of observations into clusters have positive prior probabilities, and hold irrespective of the true data-generating model. We then propose a class of latent mixtures for Bayesian clustering (Lamb) on a set of low-dimensional latent variables inducing a partition on the observed data. The model is amenable to scalable posterior inference and we show that it can avoid the pitfalls of high-dimensionality under mild assumptions. The proposed approach is shown to have good performance in simulation studies and an application to inferring cell types based on scRNAseq.
{"title":"Escaping The Curse of Dimensionality in Bayesian Model-Based Clustering.","authors":"Noirrit Kiran Chandra, Antonio Canale, David B Dunson","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Bayesian mixture models are widely used for clustering of high-dimensional data with appropriate uncertainty quantification. However, as the dimension of the observations increases, posterior inference often tends to favor too many or too few clusters. This article explains this behavior by studying the random partition posterior in a non-standard setting with a fixed sample size and increasing data dimensionality. We provide conditions under which the finite sample posterior tends to either assign every observation to a different cluster or all observations to the same cluster as the dimension grows. Interestingly, the conditions do not depend on the choice of clustering prior, as long as all possible partitions of observations into clusters have positive prior probabilities, and hold irrespective of the true data-generating model. We then propose a class of latent mixtures for Bayesian clustering (Lamb) on a set of low-dimensional latent variables inducing a partition on the observed data. The model is amenable to scalable posterior inference and we show that it can avoid the pitfalls of high-dimensionality under mild assumptions. The proposed approach is shown to have good performance in simulation studies and an application to inferring cell types based on scRNAseq.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"24 ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11999651/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144054439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Di Zhao, Weiming Li, Wengu Chen, Peng Song, and Han Wang null
. Radiative transfer, described by the radiative transfer equation (RTE), is one of the dominant energy exchange processes in the inertial confinement fusion (ICF) experiments. The Marshak wave problem is an important benchmark for time-dependent RTE. In this work, we present a neural network architecture termed RNN-attention deep learning (RADL) as a surrogate model to solve the inverse boundary problem of the nonlinear Marshak wave in a data-driven fashion. We train the surrogate model by numerical simulation data of the forward problem, and then solve the inverse problem by minimizing the distance between the target solution and the surrogate predicted solution concerning the boundary condition. This minimization is made efficient because the surrogate model by-passes the expensive numerical solution, and the model is differentiable so the gradient-based optimization algorithms are adopted. The effectiveness of our approach is demonstrated by solving the inverse boundary problems of the Marshak wave benchmark in two case studies: where the transport process is modeled by RTE and where it is modeled by its nonlinear diffusion approximation (DA). Last but not least, the importance of using both the RNN and the factor-attention blocks in the RADL model is illustrated, and the data efficiency of our model is investigated in this work.
{"title":"RNN-Attention Based Deep Learning for Solving Inverse Boundary Problems in Nonlinear Marshak Waves","authors":"Di Zhao, Weiming Li, Wengu Chen, Peng Song, and Han Wang null","doi":"10.4208/jml.221209","DOIUrl":"https://doi.org/10.4208/jml.221209","url":null,"abstract":". Radiative transfer, described by the radiative transfer equation (RTE), is one of the dominant energy exchange processes in the inertial confinement fusion (ICF) experiments. The Marshak wave problem is an important benchmark for time-dependent RTE. In this work, we present a neural network architecture termed RNN-attention deep learning (RADL) as a surrogate model to solve the inverse boundary problem of the nonlinear Marshak wave in a data-driven fashion. We train the surrogate model by numerical simulation data of the forward problem, and then solve the inverse problem by minimizing the distance between the target solution and the surrogate predicted solution concerning the boundary condition. This minimization is made efficient because the surrogate model by-passes the expensive numerical solution, and the model is differentiable so the gradient-based optimization algorithms are adopted. The effectiveness of our approach is demonstrated by solving the inverse boundary problems of the Marshak wave benchmark in two case studies: where the transport process is modeled by RTE and where it is modeled by its nonlinear diffusion approximation (DA). Last but not least, the importance of using both the RNN and the factor-attention blocks in the RADL model is illustrated, and the data efficiency of our model is investigated in this work.","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"75 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74640699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaussian processes are widely employed as versatile modelling and predictive tools in spatial statistics, functional data analysis, computer modelling and diverse applications of machine learning. They have been widely studied over Euclidean spaces, where they are specified using covariance functions or covariograms for modelling complex dependencies. There is a growing literature on Gaussian processes over Riemannian manifolds in order to develop richer and more flexible inferential frameworks for non-Euclidean data. While numerical approximations through graph representations have been well studied for the Matérn covariogram and heat kernel, the behaviour of asymptotic inference on the parameters of the covariogram has received relatively scant attention. We focus on asymptotic behaviour for Gaussian processes constructed over compact Riemannian manifolds. Building upon a recently introduced Matérn covariogram on a compact Riemannian manifold, we employ formal notions and conditions for the equivalence of two Matérn Gaussian random measures on compact manifolds to derive the parameter that is identifiable, also known as the microergodic parameter, and formally establish the consistency of the maximum likelihood estimate and the asymptotic optimality of the best linear unbiased predictor. The circle is studied as a specific example of compact Riemannian manifolds with numerical experiments to illustrate and corroborate the theory.
{"title":"Inference for Gaussian Processes with Matérn Covariogram on Compact Riemannian Manifolds.","authors":"Didong Li, Wenpin Tang, Sudipto Banerjee","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Gaussian processes are widely employed as versatile modelling and predictive tools in spatial statistics, functional data analysis, computer modelling and diverse applications of machine learning. They have been widely studied over Euclidean spaces, where they are specified using covariance functions or covariograms for modelling complex dependencies. There is a growing literature on Gaussian processes over Riemannian manifolds in order to develop richer and more flexible inferential frameworks for non-Euclidean data. While numerical approximations through graph representations have been well studied for the Matérn covariogram and heat kernel, the behaviour of asymptotic inference on the parameters of the covariogram has received relatively scant attention. We focus on asymptotic behaviour for Gaussian processes constructed over compact Riemannian manifolds. Building upon a recently introduced Matérn covariogram on a compact Riemannian manifold, we employ formal notions and conditions for the equivalence of two Matérn Gaussian random measures on compact manifolds to derive the parameter that is identifiable, also known as the microergodic parameter, and formally establish the consistency of the maximum likelihood estimate and the asymptotic optimality of the best linear unbiased predictor. The circle is studied as a specific example of compact Riemannian manifolds with numerical experiments to illustrate and corroborate the theory.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"24 ","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9876354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuqi Gu, Elena A Erosheva, Gongjun Xu, David B Dunson
Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying, estimating, and interpreting the parameters. In this article, we propose a new class of Dimension-Grouped MMMs ( ) for multivariate categorical data, which improve parsimony and interpretability. In , observed variables are partitioned into groups such that the latent membership is constant for variables within a group but can differ across groups. Traditional latent class models are obtained when all variables are in one group, while traditional MMMs are obtained when each variable is in its own group. The new model corresponds to a novel decomposition of probability tensors. Theoretically, we derive transparent identifiability conditions for both the unknown grouping structure and model parameters in general settings. Methodologically, we propose a Bayesian approach for Dirichlet to inferring the variable grouping structure and estimating model parameters. Simulation results demonstrate good computational performance and empirically confirm the identifiability results. We illustrate the new methodology through applications to a functional disability survey dataset and a personality test dataset.
{"title":"Dimension-Grouped Mixed Membership Models for Multivariate Categorical Data.","authors":"Yuqi Gu, Elena A Erosheva, Gongjun Xu, David B Dunson","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying, estimating, and interpreting the parameters. In this article, we propose a new class of <i>Dimension-Grouped</i> MMMs ( <math><mrow><mtext>Gro-</mtext> <msup><mtext>M</mtext> <mn>3</mn></msup> <mtext>s</mtext></mrow> </math> ) for multivariate categorical data, which improve parsimony and interpretability. In <math><mrow><mtext>Gro-</mtext> <msup><mtext>M</mtext> <mn>3</mn></msup> <mtext>s</mtext></mrow> </math> , observed variables are partitioned into groups such that the latent membership is constant for variables within a group but can differ across groups. Traditional latent class models are obtained when all variables are in one group, while traditional MMMs are obtained when each variable is in its own group. The new model corresponds to a novel decomposition of probability tensors. Theoretically, we derive transparent identifiability conditions for both the unknown grouping structure and model parameters in general settings. Methodologically, we propose a Bayesian approach for Dirichlet <math><mrow><mtext>Gro-</mtext> <msup><mtext>M</mtext> <mn>3</mn></msup> <mtext>s</mtext></mrow> </math> to inferring the variable grouping structure and estimating model parameters. Simulation results demonstrate good computational performance and empirically confirm the identifiability results. We illustrate the new methodology through applications to a functional disability survey dataset and a personality test dataset.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"24 ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12000818/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143992849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Insights into complex, high-dimensional data can be obtained by discovering features of the data that match or do not match a model of interest. To formalize this task, we introduce the "data selection" problem: finding a lower-dimensional statistic-such as a subset of variables-that is well fit by a given parametric model of interest. A fully Bayesian approach to data selection would be to parametrically model the value of the statistic, nonparametrically model the remaining "background" components of the data, and perform standard Bayesian model selection for the choice of statistic. However, fitting a nonparametric model to high-dimensional data tends to be highly inefficient, statistically and computationally. We propose a novel score for performing data selection, the "Stein volume criterion (SVC)", that does not require fitting a nonparametric model. The SVC takes the form of a generalized marginal likelihood with a kernelized Stein discrepancy in place of the Kullback-Leibler divergence. We prove that the SVC is consistent for data selection, and establish consistency and asymptotic normality of the corresponding generalized posterior on parameters. We apply the SVC to the analysis of single-cell RNA sequencing data sets using probabilistic principal components analysis and a spin glass model of gene regulation.
{"title":"Bayesian Data Selection.","authors":"Eli N Weinstein, Jeffrey W Miller","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Insights into complex, high-dimensional data can be obtained by discovering features of the data that match or do not match a model of interest. To formalize this task, we introduce the \"data selection\" problem: finding a lower-dimensional statistic-such as a subset of variables-that is well fit by a given parametric model of interest. A fully Bayesian approach to data selection would be to parametrically model the value of the statistic, nonparametrically model the remaining \"background\" components of the data, and perform standard Bayesian model selection for the choice of statistic. However, fitting a nonparametric model to high-dimensional data tends to be highly inefficient, statistically and computationally. We propose a novel score for performing data selection, the \"Stein volume criterion (SVC)\", that does not require fitting a nonparametric model. The SVC takes the form of a generalized marginal likelihood with a kernelized Stein discrepancy in place of the Kullback-Leibler divergence. We prove that the SVC is consistent for data selection, and establish consistency and asymptotic normality of the corresponding generalized posterior on parameters. We apply the SVC to the analysis of single-cell RNA sequencing data sets using probabilistic principal components analysis and a spin glass model of gene regulation.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"24 23","pages":""},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10194814/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9574086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zero-inflated count data arise in a wide range of scientific areas such as social science, biology, and genomics. Very few causal discovery approaches can adequately account for excessive zeros as well as various features of multivariate count data such as overdispersion. In this paper, we propose a new zero-inflated generalized hypergeometric directed acyclic graph (ZiG-DAG) model for inference of causal structure from purely observational zero-inflated count data. The proposed ZiG-DAGs exploit a broad family of generalized hypergeometric probability distributions and are useful for modeling various types of zero-inflated count data with great flexibility. In addition, ZiG-DAGs allow for both linear and nonlinear causal relationships. We prove that the causal structure is identifiable for the proposed ZiG-DAGs via a general proof technique for count data, which is applicable beyond the proposed model for investigating causal identifiability. Score-based algorithms are developed for causal structure learning. Extensive synthetic experiments as well as a real dataset with known ground truth demonstrate the superior performance of the proposed method against state-of-the-art alternative methods in discovering causal structure from observational zero-inflated count data. An application of reverse-engineering a gene regulatory network from a single-cell RNA-sequencing dataset illustrates the utility of ZiG-DAGs in practice.
{"title":"Model-Based Causal Discovery for Zero-Inflated Count Data.","authors":"Junsouk Choi, Yang Ni","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Zero-inflated count data arise in a wide range of scientific areas such as social science, biology, and genomics. Very few causal discovery approaches can adequately account for excessive zeros as well as various features of multivariate count data such as overdispersion. In this paper, we propose a new zero-inflated generalized hypergeometric directed acyclic graph (ZiG-DAG) model for inference of causal structure from purely observational zero-inflated count data. The proposed ZiG-DAGs exploit a broad family of generalized hypergeometric probability distributions and are useful for modeling various types of zero-inflated count data with great flexibility. In addition, ZiG-DAGs allow for both linear and nonlinear causal relationships. We prove that the causal structure is identifiable for the proposed ZiG-DAGs via a general proof technique for count data, which is applicable beyond the proposed model for investigating causal identifiability. Score-based algorithms are developed for causal structure learning. Extensive synthetic experiments as well as a real dataset with known ground truth demonstrate the superior performance of the proposed method against state-of-the-art alternative methods in discovering causal structure from observational zero-inflated count data. An application of reverse-engineering a gene regulatory network from a single-cell RNA-sequencing dataset illustrates the utility of ZiG-DAGs in practice.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"24 ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337821/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144823118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}