首页 > 最新文献

Journal of Machine Learning Research最新文献

英文 中文
LDLE: Low Distortion Local Eigenmaps. LDLE:低失真局部特征图。
IF 4.3 3区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2021-01-01
Dhruv Kohli, Alexander Cloninger, Gal Mishne

We present Low Distortion Local Eigenmaps (LDLE), a manifold learning technique which constructs a set of low distortion local views of a data set in lower dimension and registers them to obtain a global embedding. The local views are constructed using the global eigenvectors of the graph Laplacian and are registered using Procrustes analysis. The choice of these eigenvectors may vary across the regions. In contrast to existing techniques, LDLE can embed closed and non-orientable manifolds into their intrinsic dimension by tearing them apart. It also provides gluing instruction on the boundary of the torn embedding to help identify the topology of the original manifold. Our experimental results will show that LDLE largely preserved distances up to a constant scale while other techniques produced higher distortion. We also demonstrate that LDLE produces high quality embeddings even when the data is noisy or sparse.

我们提出的低失真局部特征图(LDLE)是一种流形学习技术,它能在较低维度上构建一组数据集的低失真局部视图,并对其进行注册以获得全局嵌入。局部视图使用图拉普拉奇的全局特征向量构建,并使用 Procrustes 分析法进行注册。这些特征向量的选择可能因区域而异。与现有技术相比,LDLE 可以通过撕裂封闭流形和不可定向流形,将它们嵌入到其内在维度中。它还能在撕裂嵌入的边界上提供胶合指令,帮助识别原始流形的拓扑结构。我们的实验结果将显示,LDLE 在很大程度上保留了恒定尺度的距离,而其他技术则会产生更大的失真。我们还证明,即使数据有噪声或稀疏,LDLE 也能生成高质量的嵌入。
{"title":"LDLE: Low Distortion Local Eigenmaps.","authors":"Dhruv Kohli, Alexander Cloninger, Gal Mishne","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We present Low Distortion Local Eigenmaps (LDLE), a manifold learning technique which constructs a set of low distortion local views of a data set in lower dimension and registers them to obtain a global embedding. The local views are constructed using the global eigenvectors of the graph Laplacian and are registered using Procrustes analysis. The choice of these eigenvectors may vary across the regions. In contrast to existing techniques, LDLE can embed closed and non-orientable manifolds into their intrinsic dimension by tearing them apart. It also provides gluing instruction on the boundary of the torn embedding to help identify the topology of the original manifold. Our experimental results will show that LDLE largely preserved distances up to a constant scale while other techniques produced higher distortion. We also demonstrate that LDLE produces high quality embeddings even when the data is noisy or sparse.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307127/pdf/nihms-1762482.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40533132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible Signal Denoising via Flexible Empirical Bayes Shrinkage. 通过灵活的经验贝叶斯收缩技术实现灵活的信号去噪。
IF 6 3区 计算机科学 Q1 Mathematics Pub Date : 2021-01-01
Zhengrong Xing, Peter Carbonetto, Matthew Stephens

Signal denoising-also known as non-parametric regression-is often performed through shrinkage estimation in a transformed (e.g., wavelet) domain; shrinkage in the transformed domain corresponds to smoothing in the original domain. A key question in such applications is how much to shrink, or, equivalently, how much to smooth. Empirical Bayes shrinkage methods provide an attractive solution to this problem; they use the data to estimate a distribution of underlying "effects," hence automatically select an appropriate amount of shrinkage. However, most existing implementations of empirical Bayes shrinkage are less flexible than they could be-both in their assumptions on the underlying distribution of effects, and in their ability to handle heteroskedasticity-which limits their signal denoising applications. Here we address this by adopting a particularly flexible, stable and computationally convenient empirical Bayes shrinkage method and applying it to several signal denoising problems. These applications include smoothing of Poisson data and heteroskedastic Gaussian data. We show through empirical comparisons that the results are competitive with other methods, including both simple thresholding rules and purpose-built empirical Bayes procedures. Our methods are implemented in the R package smashr, "SMoothing by Adaptive SHrinkage in R," available at https://www.github.com/stephenslab/smashr.

信号去噪--也称为非参数回归--通常是通过在变换(如小波)域中进行收缩估计来实现的;变换域中的收缩相当于原始域中的平滑。此类应用中的一个关键问题是缩小多少,或者说,平滑多少。经验贝叶斯收缩方法为这一问题提供了一个极具吸引力的解决方案;它们利用数据来估计潜在 "效应 "的分布,从而自动选择适当的收缩量。然而,大多数现有的经验贝叶斯收缩法的实现都不够灵活,无论是在对基本效应分布的假设上,还是在处理异方差的能力上,都限制了它们在信号去噪方面的应用。为了解决这个问题,我们采用了一种特别灵活、稳定且计算方便的经验贝叶斯收缩方法,并将其应用于几个信号去噪问题。这些应用包括平滑泊松数据和异方差高斯数据。通过经验比较,我们发现该方法的结果与其他方法(包括简单的阈值规则和专门设计的经验贝叶斯程序)相比具有竞争力。我们的方法在 R 软件包 smashr("SMoothing by Adaptive SHrinkage in R")中实现,请访问 https://www.github.com/stephenslab/smashr。
{"title":"Flexible Signal Denoising via Flexible Empirical Bayes Shrinkage.","authors":"Zhengrong Xing, Peter Carbonetto, Matthew Stephens","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Signal denoising-also known as non-parametric regression-is often performed through shrinkage estimation in a transformed (e.g., wavelet) domain; shrinkage in the transformed domain corresponds to smoothing in the original domain. A key question in such applications is how much to shrink, or, equivalently, how much to smooth. Empirical Bayes shrinkage methods provide an attractive solution to this problem; they use the data to estimate a distribution of underlying \"effects,\" hence automatically select an appropriate amount of shrinkage. However, most existing implementations of empirical Bayes shrinkage are less flexible than they could be-both in their assumptions on the underlying distribution of effects, and in their ability to handle heteroskedasticity-which limits their signal denoising applications. Here we address this by adopting a particularly flexible, stable and computationally convenient empirical Bayes shrinkage method and applying it to several signal denoising problems. These applications include smoothing of Poisson data and heteroskedastic Gaussian data. We show through empirical comparisons that the results are competitive with other methods, including both simple thresholding rules and purpose-built empirical Bayes procedures. Our methods are implemented in the R package smashr, \"SMoothing by Adaptive SHrinkage in R,\" available at https://www.github.com/stephenslab/smashr.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751020/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139040830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning and Planning for Time-Varying MDPs Using Maximum Likelihood Estimation. 使用最大似然估计的时变mdp学习和规划。
IF 6 3区 计算机科学 Q1 Mathematics Pub Date : 2021-01-01 Epub Date: 2021-02-01
Melkior Ornik, Ufuk Topcu

This paper proposes a formal approach to online learning and planning for agents operating in a priori unknown, time-varying environments. The proposed method computes the maximally likely model of the environment, given the observations about the environment made by an agent earlier in the system run and assuming knowledge of a bound on the maximal rate of change of system dynamics. Such an approach generalizes the estimation method commonly used in learning algorithms for unknown Markov decision processes with time-invariant transition probabilities, but is also able to quickly and correctly identify the system dynamics following a change. Based on the proposed method, we generalize the exploration bonuses used in learning for time-invariant Markov decision processes by introducing a notion of uncertainty in a learned time-varying model, and develop a control policy for time-varying Markov decision processes based on the exploitation and exploration trade-off. We demonstrate the proposed methods on four numerical examples: a patrolling task with a change in system dynamics, a two-state MDP with periodically changing outcomes of actions, a wind flow estimation task, and a multi-armed bandit problem with periodically changing probabilities of different rewards.

本文提出了一种正式的方法,用于在先验未知的时变环境中运行的智能体的在线学习和规划。提出的方法计算环境的最大可能模型,给定一个代理在系统运行早期对环境的观察,并假设系统动力学的最大变化率有一个界的知识。该方法不仅推广了具有定常转移概率的未知马尔可夫决策过程学习算法中常用的估计方法,而且能够快速正确地识别变化后的系统动力学。在此基础上,通过在学习的时变模型中引入不确定性的概念,推广了时变马尔可夫决策过程学习中使用的探索奖励,并基于开发和探索权衡制定了时变马尔可夫决策过程的控制策略。我们通过四个数值例子证明了所提出的方法:一个具有系统动力学变化的巡逻任务,一个具有周期性变化的行动结果的两状态MDP,一个风流量估计任务,以及一个具有周期性变化的不同奖励概率的多武装强盗问题。
{"title":"Learning and Planning for Time-Varying MDPs Using Maximum Likelihood Estimation.","authors":"Melkior Ornik,&nbsp;Ufuk Topcu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This paper proposes a formal approach to online learning and planning for agents operating in a priori unknown, time-varying environments. The proposed method computes the maximally likely model of the environment, given the observations about the environment made by an agent earlier in the system run and assuming knowledge of a bound on the maximal rate of change of system dynamics. Such an approach generalizes the estimation method commonly used in learning algorithms for unknown Markov decision processes with time-invariant transition probabilities, but is also able to quickly and correctly identify the system dynamics following a change. Based on the proposed method, we generalize the exploration bonuses used in learning for time-invariant Markov decision processes by introducing a notion of uncertainty in a learned time-varying model, and develop a control policy for time-varying Markov decision processes based on the exploitation and exploration trade-off. We demonstrate the proposed methods on four numerical examples: a patrolling task with a change in system dynamics, a two-state MDP with periodically changing outcomes of actions, a wind flow estimation task, and a multi-armed bandit problem with periodically changing probabilities of different rewards.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39913174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation and Inference for High Dimensional Generalized Linear Models: A Splitting and Smoothing Approach. 高维广义线性模型的估计与推理:一种分裂与平滑方法。
IF 6 3区 计算机科学 Q1 Mathematics Pub Date : 2021-01-01
Zhe Fei, Yi Li

The focus of modern biomedical studies has gradually shifted to explanation and estimation of joint effects of high dimensional predictors on disease risks. Quantifying uncertainty in these estimates may provide valuable insight into prevention strategies or treatment decisions for both patients and physicians. High dimensional inference, including confidence intervals and hypothesis testing, has sparked much interest. While much work has been done in the linear regression setting, there is lack of literature on inference for high dimensional generalized linear models. We propose a novel and computationally feasible method, which accommodates a variety of outcome types, including normal, binomial, and Poisson data. We use a "splitting and smoothing" approach, which splits samples into two parts, performs variable selection using one part and conducts partial regression with the other part. Averaging the estimates over multiple random splits, we obtain the smoothed estimates, which are numerically stable. We show that the estimates are consistent, asymptotically normal, and construct confidence intervals with proper coverage probabilities for all predictors. We examine the finite sample performance of our method by comparing it with the existing methods and applying it to analyze a lung cancer cohort study.

现代生物医学研究的重点已逐渐转向解释和估计高维预测因子对疾病风险的联合效应。量化这些估计中的不确定性可能为患者和医生提供有价值的预防策略或治疗决策。包括置信区间和假设检验在内的高维推理引起了人们的极大兴趣。虽然在线性回归设置方面已经做了很多工作,但缺乏关于高维广义线性模型推理的文献。我们提出了一种新的和计算上可行的方法,它适用于各种结果类型,包括正态,二项和泊松数据。我们使用“分裂和平滑”的方法,将样本分成两部分,使用一部分进行变量选择,并对另一部分进行部分回归。对多个随机分割的估计进行平均,得到数值稳定的平滑估计。我们证明了估计是一致的,渐近正态的,并为所有预测因子构建了具有适当覆盖概率的置信区间。我们通过将我们的方法与现有方法进行比较,并将其应用于分析肺癌队列研究,来检验我们方法的有限样本性能。
{"title":"Estimation and Inference for High Dimensional Generalized Linear Models: A Splitting and Smoothing Approach.","authors":"Zhe Fei,&nbsp;Yi Li","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The focus of modern biomedical studies has gradually shifted to explanation and estimation of joint effects of high dimensional predictors on disease risks. Quantifying uncertainty in these estimates may provide valuable insight into prevention strategies or treatment decisions for both patients and physicians. High dimensional inference, including confidence intervals and hypothesis testing, has sparked much interest. While much work has been done in the linear regression setting, there is lack of literature on inference for high dimensional generalized linear models. We propose a novel and computationally feasible method, which accommodates a variety of outcome types, including normal, binomial, and Poisson data. We use a \"splitting and smoothing\" approach, which splits samples into two parts, performs variable selection using one part and conducts partial regression with the other part. Averaging the estimates over multiple random splits, we obtain the smoothed estimates, which are numerically stable. We show that the estimates are consistent, asymptotically normal, and construct confidence intervals with proper coverage probabilities for all predictors. We examine the finite sample performance of our method by comparing it with the existing methods and applying it to analyze a lung cancer cohort study.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442657/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39443931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonparametric graphical model for counts. 计数的非参数图形模型。
IF 6 3区 计算机科学 Q1 Mathematics Pub Date : 2020-12-01
Arkaprava Roy, David B Dunson

Although multivariate count data are routinely collected in many application areas, there is surprisingly little work developing flexible models for characterizing their dependence structure. This is particularly true when interest focuses on inferring the conditional independence graph. In this article, we propose a new class of pairwise Markov random field-type models for the joint distribution of a multivariate count vector. By employing a novel type of transformation, we avoid restricting to non-negative dependence structures or inducing other restrictions through truncations. Taking a Bayesian approach to inference, we choose a Dirichlet process prior for the distribution of a random effect to induce great flexibility in the specification. An efficient Markov chain Monte Carlo (MCMC) algorithm is developed for posterior computation. We prove various theoretical properties, including posterior consistency, and show that our COunt Nonparametric Graphical Analysis (CONGA) approach has good performance relative to competitors in simulation studies. The methods are motivated by an application to neuron spike count data in mice.

尽管在许多应用领域中经常收集多变量计数数据,但令人惊讶的是,很少有工作开发灵活的模型来表征它们的依赖结构。当兴趣集中在推断条件独立图时,这一点尤其正确。本文提出了一类新的多元计数向量联合分布的成对马尔可夫随机场模型。通过采用一种新颖的变换,我们避免了对非负依赖结构的限制或通过截断引起的其他限制。采用贝叶斯方法进行推理,我们为随机效应的分布选择了一个Dirichlet过程,以在规范中诱导很大的灵活性。提出了一种有效的后验计算马尔可夫链蒙特卡罗算法。我们证明了各种理论性质,包括后验一致性,并表明我们的计数非参数图形分析(CONGA)方法在模拟研究中相对于竞争对手具有良好的性能。这些方法的动机来自于对小鼠神经元尖峰计数数据的应用。
{"title":"Nonparametric graphical model for counts.","authors":"Arkaprava Roy,&nbsp;David B Dunson","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Although multivariate count data are routinely collected in many application areas, there is surprisingly little work developing flexible models for characterizing their dependence structure. This is particularly true when interest focuses on inferring the conditional independence graph. In this article, we propose a new class of pairwise Markov random field-type models for the joint distribution of a multivariate count vector. By employing a novel type of transformation, we avoid restricting to non-negative dependence structures or inducing other restrictions through truncations. Taking a Bayesian approach to inference, we choose a Dirichlet process prior for the distribution of a random effect to induce great flexibility in the specification. An efficient Markov chain Monte Carlo (MCMC) algorithm is developed for posterior computation. We prove various theoretical properties, including posterior consistency, and show that our COunt Nonparametric Graphical Analysis (CONGA) approach has good performance relative to competitors in simulation studies. The methods are motivated by an application to neuron spike count data in mice.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7821699/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38853679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning from Binary Multiway Data: Probabilistic Tensor Decomposition and its Statistical Optimality. 二元多路数据学习:概率张量分解及其统计最优性。
IF 6 3区 计算机科学 Q1 Mathematics Pub Date : 2020-07-01
Miaoyan Wang, Lexin Li

We consider the problem of decomposing a higher-order tensor with binary entries. Such data problems arise frequently in applications such as neuroimaging, recommendation system, topic modeling, and sensor network localization. We propose a multilinear Bernoulli model, develop a rank-constrained likelihood-based estimation method, and obtain the theoretical accuracy guarantees. In contrast to continuous-valued problems, the binary tensor problem exhibits an interesting phase transition phenomenon according to the signal-to-noise ratio. The error bound for the parameter tensor estimation is established, and we show that the obtained rate is minimax optimal under the considered model. Furthermore, we develop an alternating optimization algorithm with convergence guarantees. The efficacy of our approach is demonstrated through both simulations and analyses of multiple data sets on the tasks of tensor completion and clustering.

我们考虑具有二元项的高阶张量的分解问题。这类数据问题在神经成像、推荐系统、主题建模、传感器网络定位等应用中经常出现。提出了多线性伯努利模型,提出了基于秩约束的似然估计方法,并获得了理论精度保证。与连续值问题相比,根据信噪比,二元张量问题表现出有趣的相变现象。建立了参数张量估计的误差界,并证明了在考虑的模型下得到的速率是极小极大最优的。在此基础上,提出了一种具有收敛性保证的交替优化算法。通过对多个数据集的张量补全和聚类任务的模拟和分析,证明了我们方法的有效性。
{"title":"Learning from Binary Multiway Data: Probabilistic Tensor Decomposition and its Statistical Optimality.","authors":"Miaoyan Wang,&nbsp;Lexin Li","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We consider the problem of decomposing a higher-order tensor with binary entries. Such data problems arise frequently in applications such as neuroimaging, recommendation system, topic modeling, and sensor network localization. We propose a multilinear Bernoulli model, develop a rank-constrained likelihood-based estimation method, and obtain the theoretical accuracy guarantees. In contrast to continuous-valued problems, the binary tensor problem exhibits an interesting phase transition phenomenon according to the signal-to-noise ratio. The error bound for the parameter tensor estimation is established, and we show that the obtained rate is minimax optimal under the considered model. Furthermore, we develop an alternating optimization algorithm with convergence guarantees. The efficacy of our approach is demonstrated through both simulations and analyses of multiple data sets on the tasks of tensor completion and clustering.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39465843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantile Graphical Models: Bayesian Approaches. 分位数图形模型:贝叶斯方法。
IF 6 3区 计算机科学 Q1 Mathematics Pub Date : 2020-01-01
Nilabja Guha, Veera Baladandayuthapani, Bani K Mallick

Graphical models are ubiquitous tools to describe the interdependence between variables measured simultaneously such as large-scale gene or protein expression data. Gaussian graphical models (GGMs) are well-established tools for probabilistic exploration of dependence structures using precision matrices and they are generated under a multivariate normal joint distribution. However, they suffer from several shortcomings since they are based on Gaussian distribution assumptions. In this article, we propose a Bayesian quantile based approach for sparse estimation of graphs. We demonstrate that the resulting graph estimation is robust to outliers and applicable under general distributional assumptions. Furthermore, we develop efficient variational Bayes approximations to scale the methods for large data sets. Our methods are applied to a novel cancer proteomics data dataset where-in multiple proteomic antibodies are simultaneously assessed on tumor samples using reverse-phase protein arrays (RPPA) technology.

图形模型是描述同时测量的变量之间的相互依赖关系的普遍工具,例如大规模的基因或蛋白质表达数据。高斯图形模型(GGMs)是利用精度矩阵对相关结构进行概率探索的成熟工具,它是在多元正态联合分布下生成的。然而,由于它们是基于高斯分布假设,因此存在一些缺点。在本文中,我们提出了一种基于贝叶斯分位数的图稀疏估计方法。我们证明了所得到的图估计对异常值具有鲁棒性,并且适用于一般分布假设。此外,我们开发了有效的变分贝叶斯近似来扩展大型数据集的方法。我们的方法应用于一个新的癌症蛋白质组学数据集,其中使用反相蛋白质阵列(RPPA)技术同时评估肿瘤样品中的多个蛋白质组学抗体。
{"title":"Quantile Graphical Models: Bayesian Approaches.","authors":"Nilabja Guha,&nbsp;Veera Baladandayuthapani,&nbsp;Bani K Mallick","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Graphical models are ubiquitous tools to describe the interdependence between variables measured simultaneously such as large-scale gene or protein expression data. Gaussian graphical models (GGMs) are well-established tools for probabilistic exploration of dependence structures using precision matrices and they are generated under a multivariate normal joint distribution. However, they suffer from several shortcomings since they are based on Gaussian distribution assumptions. In this article, we propose a Bayesian quantile based approach for sparse estimation of graphs. We demonstrate that the resulting graph estimation is robust to outliers and applicable under general distributional assumptions. Furthermore, we develop efficient variational Bayes approximations to scale the methods for large data sets. Our methods are applied to a novel cancer proteomics data dataset where-in multiple proteomic antibodies are simultaneously assessed on tumor samples using reverse-phase protein arrays (RPPA) technology.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297664/pdf/nihms-1636569.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39223529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near-optimal Individualized Treatment Recommendations. 近乎最佳的个体化治疗建议。
IF 6 3区 计算机科学 Q1 Mathematics Pub Date : 2020-01-01
Haomiao Meng, Ying-Qi Zhao, Haoda Fu, Xingye Qiao

The individualized treatment recommendation (ITR) is an important analytic framework for precision medicine. The goal of ITR is to assign the best treatments to patients based on their individual characteristics. From the machine learning perspective, the solution to the ITR problem can be formulated as a weighted classification problem to maximize the mean benefit from the recommended treatments given patients' characteristics. Several ITR methods have been proposed in both the binary setting and the multicategory setting. In practice, one may prefer a more flexible recommendation that includes multiple treatment options. This motivates us to develop methods to obtain a set of near-optimal individualized treatment recommendations alternative to each other, called alternative individualized treatment recommendations (A-ITR). We propose two methods to estimate the optimal A-ITR within the outcome weighted learning (OWL) framework. Simulation studies and a real data analysis for Type 2 diabetic patients with injectable antidiabetic treatments are conducted to show the usefulness of the proposed A-ITR framework. We also show the consistency of these methods and obtain an upper bound for the risk between the theoretically optimal recommendation and the estimated one. An R package aitr has been developed, found at https://github.com/menghaomiao/aitr.

个体化治疗推荐(ITR)是精准医疗的重要分析框架。ITR的目标是根据患者的个体特征分配最佳治疗方案。从机器学习的角度来看,ITR问题的解决方案可以被表述为一个加权分类问题,以最大化根据患者特征推荐治疗的平均收益。在二元设置和多类别设置下,提出了几种ITR方法。实际上,人们可能更喜欢更灵活的建议,包括多种治疗方案。这促使我们开发方法来获得一组相互替代的接近最佳的个体化治疗建议,称为替代个体化治疗建议(a - itr)。我们提出了两种方法来估计结果加权学习(OWL)框架下的最优A-ITR。通过对2型糖尿病患者注射降糖治疗的模拟研究和真实数据分析,证明了所提出的a - itr框架的有效性。我们还证明了这些方法的一致性,并得到了理论最优推荐和估计风险之间的上界。已经开发了一个R包,可以在https://github.com/menghaomiao/aitr上找到。
{"title":"Near-optimal Individualized Treatment Recommendations.","authors":"Haomiao Meng,&nbsp;Ying-Qi Zhao,&nbsp;Haoda Fu,&nbsp;Xingye Qiao","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The individualized treatment recommendation (ITR) is an important analytic framework for precision medicine. The goal of ITR is to assign the best treatments to patients based on their individual characteristics. From the machine learning perspective, the solution to the ITR problem can be formulated as a weighted classification problem to maximize the mean benefit from the recommended treatments given patients' characteristics. Several ITR methods have been proposed in both the binary setting and the multicategory setting. In practice, one may prefer a more flexible recommendation that includes multiple treatment options. This motivates us to develop methods to obtain a set of near-optimal individualized treatment recommendations alternative to each other, called alternative individualized treatment recommendations (A-ITR). We propose two methods to estimate the optimal A-ITR within the outcome weighted learning (OWL) framework. Simulation studies and a real data analysis for Type 2 diabetic patients with injectable antidiabetic treatments are conducted to show the usefulness of the proposed A-ITR framework. We also show the consistency of these methods and obtain an upper bound for the risk between the theoretically optimal recommendation and the estimated one. An R package aitr has been developed, found at https://github.com/menghaomiao/aitr.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8324003/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39264728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions. 鲁棒异步随机梯度推:强凸函数的渐近最优和网络无关性能。
IF 6 3区 计算机科学 Q1 Mathematics Pub Date : 2020-01-01
Artin Spiridonoff, Alex Olshevsky, Ioannis Ch Paschalidis

We consider the standard model of distributed optimization of a sum of functions F ( z ) = i = 1 n f i ( z ) , where node i in a network holds the function fi (z). We allow for a harsh network model characterized by asynchronous updates, message delays, unpredictable message losses, and directed communication among nodes. In this setting, we analyze a modification of the Gradient-Push method for distributed optimization, assuming that (i) node i is capable of generating gradients of its function fi (z) corrupted by zero-mean bounded-support additive noise at each step, (ii) F(z) is strongly convex, and (iii) each fi (z) has Lipschitz gradients. We show that our proposed method asymptotically performs as well as the best bounds on centralized gradient descent that takes steps in the direction of the sum of the noisy gradients of all the functions f 1(z), …, fn (z) at each step.

我们考虑函数和的分布式优化的标准模型F (z) =∑i = 1 n F i (z),其中网络中的节点i保存函数fi (z)。我们允许一个苛刻的网络模型,其特征是异步更新,消息延迟,不可预测的消息丢失和节点之间的定向通信。在此设置中,我们分析了用于分布式优化的Gradient-Push方法的修改,假设(i)节点i能够生成其函数fi (z)的梯度,该函数在每一步都被零均值有界支持加性噪声破坏,(ii) F(z)是强凸的,以及(iii)每个fi (z)具有Lipschitz梯度。我们表明,我们提出的方法在集中梯度下降上的渐近性能与最佳边界一样好,该方法在每一步都朝着所有函数f1 (z),…,fn (z)的噪声梯度之和的方向采取步骤。
{"title":"Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions.","authors":"Artin Spiridonoff,&nbsp;Alex Olshevsky,&nbsp;Ioannis Ch Paschalidis","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We consider the standard model of distributed optimization of a sum of functions <math><mrow><mi>F</mi> <mrow><mo>(</mo> <mi>z</mi> <mo>)</mo></mrow> <mo>=</mo> <msubsup><mo>∑</mo> <mrow><mi>i</mi> <mo>=</mo> <mn>1</mn></mrow> <mi>n</mi></msubsup> <mrow><msub><mi>f</mi> <mi>i</mi></msub> <mrow><mo>(</mo> <mi>z</mi> <mo>)</mo></mrow> </mrow> </mrow> </math> , where node <i>i</i> in a network holds the function <i>f<sub>i</sub></i> (<b>z</b>). We allow for a harsh network model characterized by asynchronous updates, message delays, unpredictable message losses, and directed communication among nodes. In this setting, we analyze a modification of the Gradient-Push method for distributed optimization, assuming that (i) node <i>i</i> is capable of generating gradients of its function <i>f<sub>i</sub></i> (<b>z</b>) corrupted by zero-mean bounded-support additive noise at each step, (ii) <i>F</i>(<b>z</b>) is strongly convex, and (iii) each <i>f<sub>i</sub></i> (<b>z</b>) has Lipschitz gradients. We show that our proposed method asymptotically performs as well as the best bounds on centralized gradient descent that takes steps in the direction of the sum of the noisy gradients of all the functions <i>f</i> <sub>1</sub>(<b>z</b>), …, <i>f<sub>n</sub></i> (<b>z</b>) at each step.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38434192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Regularization-Based Adaptive Test for High-Dimensional Generalized Linear Models. 高维广义线性模型的基于正则化的自适应检验。
IF 6 3区 计算机科学 Q1 Mathematics Pub Date : 2020-01-01 Epub Date: 2020-07-26
Chong Wu, Gongjun Xu, Xiaotong Shen, Wei Pan

In spite of its urgent importance in the era of big data, testing high-dimensional parameters in generalized linear models (GLMs) in the presence of high-dimensional nuisance parameters has been largely under-studied, especially with regard to constructing powerful tests for general (and unknown) alternatives. Most existing tests are powerful only against certain alternatives and may yield incorrect Type I error rates under high-dimensional nuisance parameter situations. In this paper, we propose the adaptive interaction sum of powered score (aiSPU) test in the framework of penalized regression with a non-convex penalty, called truncated Lasso penalty (TLP), which can maintain correct Type I error rates while yielding high statistical power across a wide range of alternatives. To calculate its p-values analytically, we derive its asymptotic null distribution. Via simulations, its superior finite-sample performance is demonstrated over several representative existing methods. In addition, we apply it and other representative tests to an Alzheimer's Disease Neuroimaging Initiative (ADNI) data set, detecting possible gene-gender interactions for Alzheimer's disease. We also put R package "aispu" implementing the proposed test on GitHub.

尽管在大数据时代具有紧迫的重要性,但在存在高维干扰参数的情况下测试广义线性模型(GLM)中的高维参数在很大程度上被研究不足,尤其是在为一般(和未知)替代方案构建强大的测试方面。大多数现有的测试仅针对某些替代方案是强大的,并且在高维干扰参数情况下可能产生不正确的I型错误率。在本文中,我们提出了在具有非凸惩罚的惩罚回归框架下的自适应交互和幂分数(aiSPU)检验,称为截断Lasso惩罚(TLP),它可以保持正确的I型错误率,同时在广泛的备选方案中产生高统计幂。为了解析地计算它的p值,我们导出了它的渐近零分布。通过仿真,与几种具有代表性的现有方法相比,证明了其优越的有限样本性能。此外,我们将其和其他具有代表性的测试应用于阿尔茨海默病神经成像倡议(ADNI)数据集,检测阿尔茨海默病可能的基因-性别相互作用。我们还在GitHub上放了R包“aispu”来实现所提出的测试。
{"title":"A Regularization-Based Adaptive Test for High-Dimensional Generalized Linear Models.","authors":"Chong Wu,&nbsp;Gongjun Xu,&nbsp;Xiaotong Shen,&nbsp;Wei Pan","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>In spite of its urgent importance in the era of big data, testing high-dimensional parameters in generalized linear models (GLMs) in the presence of high-dimensional nuisance parameters has been largely under-studied, especially with regard to constructing powerful tests for general (and unknown) alternatives. Most existing tests are powerful only against certain alternatives and may yield incorrect Type I error rates under high-dimensional nuisance parameter situations. In this paper, we propose the adaptive interaction sum of powered score (aiSPU) test in the framework of penalized regression with a non-convex penalty, called truncated Lasso penalty (TLP), which can maintain correct Type I error rates while yielding high statistical power across a wide range of alternatives. To calculate its <i>p</i>-values analytically, we derive its asymptotic null distribution. Via simulations, its superior finite-sample performance is demonstrated over several representative existing methods. In addition, we apply it and other representative tests to an Alzheimer's Disease Neuroimaging Initiative (ADNI) data set, detecting possible gene-gender interactions for Alzheimer's disease. We also put R package \"<i>aispu</i>\" implementing the proposed test on GitHub.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425805/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38270305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Machine Learning Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1