Sarah Nothdurft, Oliver Seffer, Jörg Hermsdorf, Stefan Kaierle
Nowadays, battery-electric drives and energy storage are elected to be the future technologies. In the manufacturing of parts for electric applications, laser beam welding is an appropriate and favorable welding method. The characteristics of high welding speed, local heat input, and the contact-free process allow efficient and automatable processes. For electrodes, mainly copper and aluminum are used. Many foils with thicknesses of an area of 10 μm have to be connected to create battery cells. Different than expected, aluminum is a more challenging material to produce than others. Pore formation is also extended in aluminum due to the presence of air between the foils. The connecting cross section is thereby reduced. Furthermore, there is detachment in the fusion area and a high weld seam undercut. In addition to insufficient clamping, a lack of material reduces strength and, thus, usability. In the research presented here, the use of aluminum filler wire (AA 1050A) and shielding gas are investigated for the application of welding 40 aluminum foils (AA 1050A) with a thickness of 15 μm to an aluminum sheet with a thickness of 2 mm using infrared laser beam wavelength. The aims of the process development are welds with high connection widths and high quality as well as reproducibility to provide excellent mechanical properties and the highest electrical conductivity.
{"title":"Investigations on laser beam welding of thin aluminum foils with additional filler wire","authors":"Sarah Nothdurft, Oliver Seffer, Jörg Hermsdorf, Stefan Kaierle","doi":"10.2351/7.0001160","DOIUrl":"https://doi.org/10.2351/7.0001160","url":null,"abstract":"Nowadays, battery-electric drives and energy storage are elected to be the future technologies. In the manufacturing of parts for electric applications, laser beam welding is an appropriate and favorable welding method. The characteristics of high welding speed, local heat input, and the contact-free process allow efficient and automatable processes. For electrodes, mainly copper and aluminum are used. Many foils with thicknesses of an area of 10 μm have to be connected to create battery cells. Different than expected, aluminum is a more challenging material to produce than others. Pore formation is also extended in aluminum due to the presence of air between the foils. The connecting cross section is thereby reduced. Furthermore, there is detachment in the fusion area and a high weld seam undercut. In addition to insufficient clamping, a lack of material reduces strength and, thus, usability. In the research presented here, the use of aluminum filler wire (AA 1050A) and shielding gas are investigated for the application of welding 40 aluminum foils (AA 1050A) with a thickness of 15 μm to an aluminum sheet with a thickness of 2 mm using infrared laser beam wavelength. The aims of the process development are welds with high connection widths and high quality as well as reproducibility to provide excellent mechanical properties and the highest electrical conductivity.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135778936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigated the effects of laser beam intensity distribution on the reduction of dross height in fiber laser cutting of a steel plate with 3.2 mm thickness. A twin-spot beam was produced by splitting a single Gaussian beam into two beams using a special axicon lens, and these beams were set in the scanning direction for cutting experiments. The power ratio of two beams (R:F = Rear power:Front power) was varied to discuss the intensity balance for the effective reduction of dross. After cutting experiments, ray tracing analysis was conducted using an optical analysis to calculate the absorbed power density distributions in the kerf. A smaller dross height of 18 μm can be achieved at a power ratio of R:F = 8:2, and its value is lower than that by a single Gaussian beam. At a power ratio of R:F = 8:2, the front beam of lower power is irradiated at the upper part of the workpiece, and the rear beam of higher power is absorbed at the lower part of the workpiece. Thus, effective heat input to the lower part of the workpiece can contribute to a reduction of the dross height. Variation of power ratio in the rear and the front beams is effective in controlling the cutting front shape, and the uniformity of absorbed power in the thickness direction can be improved by setting the rear beam of about four times higher power to the front beam of lower power to obtain a smaller dross height in the case of a 3.2 mm steel plate.
{"title":"Fiber laser cutting of steel plate by twin spot beam setting in scanning direction","authors":"Yasuhiro Okamoto, Kota Morimoto, Naoki Kai, Akira Okada, Hiroaki Ishiguro, Ryohei Ito, Hiroshi Okawa","doi":"10.2351/7.0001097","DOIUrl":"https://doi.org/10.2351/7.0001097","url":null,"abstract":"This study investigated the effects of laser beam intensity distribution on the reduction of dross height in fiber laser cutting of a steel plate with 3.2 mm thickness. A twin-spot beam was produced by splitting a single Gaussian beam into two beams using a special axicon lens, and these beams were set in the scanning direction for cutting experiments. The power ratio of two beams (R:F = Rear power:Front power) was varied to discuss the intensity balance for the effective reduction of dross. After cutting experiments, ray tracing analysis was conducted using an optical analysis to calculate the absorbed power density distributions in the kerf. A smaller dross height of 18 μm can be achieved at a power ratio of R:F = 8:2, and its value is lower than that by a single Gaussian beam. At a power ratio of R:F = 8:2, the front beam of lower power is irradiated at the upper part of the workpiece, and the rear beam of higher power is absorbed at the lower part of the workpiece. Thus, effective heat input to the lower part of the workpiece can contribute to a reduction of the dross height. Variation of power ratio in the rear and the front beams is effective in controlling the cutting front shape, and the uniformity of absorbed power in the thickness direction can be improved by setting the rear beam of about four times higher power to the front beam of lower power to obtain a smaller dross height in the case of a 3.2 mm steel plate.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135885071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In laser metal deposition (LMD), the powder is fed into the laser-induced melt pool using different powder nozzles for the purpose of additive manufacturing and the generation of wear and corrosion protection coatings. So far, there are no industrially established in-process monitoring systems for the powder stream but mainly measuring systems that examine the powder stream propagation offline and without the processing laser. A challenge in implementing an image-based in-process monitoring system is the process illumination for the distinction of the powder particles from the background radiation caused by the processing laser and the melt pool. To overcome this challenge, filtering is needed to attenuate the process emissions and simultaneously brighten the powder stream. Therefore, this work focuses on generating a continuous high contrast between the powder and the background. The powder particles are illuminated by a light source mounted laterally to the powder stream in the horizontal plane below the nozzle opening to make the reflecting powder particles visible to the camera. The optical process emissions were characterized during LMD with respect to the influence of an increasing laser power, which was presented in correlation to the increasing process emissions. The evaluation of the spectrograms has made it possible, due to the adapted illumination and filtering, to ensure a constantly high contrast between the process emissions and the powder so that online monitoring of the powder stream was implemented successfully during the LMD process despite the active processing laser.
{"title":"Characterization of optical emissions during laser metal deposition for the implementation of an in-process powder stream monitoring","authors":"Philipp Hildinger, Thomas Seefeld, Annika Bohlen","doi":"10.2351/7.0001161","DOIUrl":"https://doi.org/10.2351/7.0001161","url":null,"abstract":"In laser metal deposition (LMD), the powder is fed into the laser-induced melt pool using different powder nozzles for the purpose of additive manufacturing and the generation of wear and corrosion protection coatings. So far, there are no industrially established in-process monitoring systems for the powder stream but mainly measuring systems that examine the powder stream propagation offline and without the processing laser. A challenge in implementing an image-based in-process monitoring system is the process illumination for the distinction of the powder particles from the background radiation caused by the processing laser and the melt pool. To overcome this challenge, filtering is needed to attenuate the process emissions and simultaneously brighten the powder stream. Therefore, this work focuses on generating a continuous high contrast between the powder and the background. The powder particles are illuminated by a light source mounted laterally to the powder stream in the horizontal plane below the nozzle opening to make the reflecting powder particles visible to the camera. The optical process emissions were characterized during LMD with respect to the influence of an increasing laser power, which was presented in correlation to the increasing process emissions. The evaluation of the spectrograms has made it possible, due to the adapted illumination and filtering, to ensure a constantly high contrast between the process emissions and the powder so that online monitoring of the powder stream was implemented successfully during the LMD process despite the active processing laser.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136114678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karim Asami, Sebastian Roth, Michel Krukenberg, Tim Röver, Dirk Herzog, Claus Emmelmann
Lattice structures in additive manufacturing of 316L stainless steel have gained increasing attention due to their well-suited mechanical properties and lightweight characteristics. Infill structures such as honeycomb, lattice, and gyroid have shown promise in achieving desirable mechanical properties for various applications. However, the design process of these structures is complex and time-consuming. In this study, we propose a machine learning-based approach to optimize the design of honeycomb, lattice, and gyroid infill structures in 316L stainless steel fabricated using laser powder bed fusion (L-PBF) technology under different loading conditions. A dataset of simulated lattice structures with varying geometries, wall thickness, distance, and angle using a computational model that simulates the mechanical behavior of infill structures under different loading conditions was generated. The dataset was then used to train a machine learning model to predict the mechanical properties of infill structures based on their design parameters. Using the trained machine learning model, we then performed a design exploration to identify the optimal infill structure geometry for a given set of mechanical requirements and loading conditions. Finally, we fabricated the optimized infill structures using L-PBF technology and conducted a series of mechanical tests to validate their performance under different loading conditions. Overall, our study demonstrates the potential of machine learning-based approaches for efficient and effective designing of honeycomb, lattice, and gyroid infill structures in 316L stainless steel fabricated using L-PBF technology under different loading conditions. Furthermore, this approach can be used for dynamic loading studies of infill structures.
{"title":"Predictive modeling of lattice structure design for 316L stainless steel using machine learning in the L-PBF process","authors":"Karim Asami, Sebastian Roth, Michel Krukenberg, Tim Röver, Dirk Herzog, Claus Emmelmann","doi":"10.2351/7.0001174","DOIUrl":"https://doi.org/10.2351/7.0001174","url":null,"abstract":"Lattice structures in additive manufacturing of 316L stainless steel have gained increasing attention due to their well-suited mechanical properties and lightweight characteristics. Infill structures such as honeycomb, lattice, and gyroid have shown promise in achieving desirable mechanical properties for various applications. However, the design process of these structures is complex and time-consuming. In this study, we propose a machine learning-based approach to optimize the design of honeycomb, lattice, and gyroid infill structures in 316L stainless steel fabricated using laser powder bed fusion (L-PBF) technology under different loading conditions. A dataset of simulated lattice structures with varying geometries, wall thickness, distance, and angle using a computational model that simulates the mechanical behavior of infill structures under different loading conditions was generated. The dataset was then used to train a machine learning model to predict the mechanical properties of infill structures based on their design parameters. Using the trained machine learning model, we then performed a design exploration to identify the optimal infill structure geometry for a given set of mechanical requirements and loading conditions. Finally, we fabricated the optimized infill structures using L-PBF technology and conducted a series of mechanical tests to validate their performance under different loading conditions. Overall, our study demonstrates the potential of machine learning-based approaches for efficient and effective designing of honeycomb, lattice, and gyroid infill structures in 316L stainless steel fabricated using L-PBF technology under different loading conditions. Furthermore, this approach can be used for dynamic loading studies of infill structures.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"131 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Filofteia-Laura Toma, Holger Hillig, Marc Kaubisch, Irina Shakhverdova, Marko Seifert, Frank Brueckner
Laser cladding is widely used in the industry to precisely apply tailored surface coatings, as well as three-dimensional deposits for repair and additive manufacturing of metallic parts. However, the processing of larger components is economically challenging mainly because of low deposition rates. At Fraunhofer IWS, a Laserline fiber-coupled diode laser with 20 kW power has been employed for over a decade to develop competitive coating solutions with powder-based laser cladding. The deposition rates achieved with this technology is comparable to common PTA technique at the same time bringing significant advantages in terms of reduced heat affected zone, distortion, and savings in material resources. While high-power powder-based laser cladding is an industrially established coating technology, for example, to coat hydraulic cylinders or most recently brake discs, a high-productivity solution for wire-based processes is still challenging. Fraunhofer IWS has developed a new nozzle for high-power high-productivity laser wire cladding for coating and additive manufacturing, the so-called COAXquattro. This system enables to feed at the same time four wires into the melt pool, reaching deposition efficiencies in the same range as a powder-based laser process. For selected materials, the improvement in coating quality compared to powder laser cladding is achieved. Furthermore, with COAXquattro system simultaneous feeding of powder particles to wire cladding presents a great potential for in situ alloying and cost-effective production of new compositions on material alloying or hardmetal-reinforced composites for coating application and 3D additive manufacturing.
{"title":"Latest developments in coaxial multiwire high-power laser cladding","authors":"Filofteia-Laura Toma, Holger Hillig, Marc Kaubisch, Irina Shakhverdova, Marko Seifert, Frank Brueckner","doi":"10.2351/7.0001138","DOIUrl":"https://doi.org/10.2351/7.0001138","url":null,"abstract":"Laser cladding is widely used in the industry to precisely apply tailored surface coatings, as well as three-dimensional deposits for repair and additive manufacturing of metallic parts. However, the processing of larger components is economically challenging mainly because of low deposition rates. At Fraunhofer IWS, a Laserline fiber-coupled diode laser with 20 kW power has been employed for over a decade to develop competitive coating solutions with powder-based laser cladding. The deposition rates achieved with this technology is comparable to common PTA technique at the same time bringing significant advantages in terms of reduced heat affected zone, distortion, and savings in material resources. While high-power powder-based laser cladding is an industrially established coating technology, for example, to coat hydraulic cylinders or most recently brake discs, a high-productivity solution for wire-based processes is still challenging. Fraunhofer IWS has developed a new nozzle for high-power high-productivity laser wire cladding for coating and additive manufacturing, the so-called COAXquattro. This system enables to feed at the same time four wires into the melt pool, reaching deposition efficiencies in the same range as a powder-based laser process. For selected materials, the improvement in coating quality compared to powder laser cladding is achieved. Furthermore, with COAXquattro system simultaneous feeding of powder particles to wire cladding presents a great potential for in situ alloying and cost-effective production of new compositions on material alloying or hardmetal-reinforced composites for coating application and 3D additive manufacturing.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"118 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fan Yang, Xiangmeng Meng, Stephen Nugraha Putra, Antoni Artinov, Marcel Bachmann, Michael Rethmeier
The effect of the oscillating metal vapor plume on the keyhole and molten pool behavior during the laser beam welding of AlMg3 aluminum alloys is investigated by experimental and numerical methods. The real-time height of the metal vapor plume is measured by high-speed camera observation. The obtained experimental results are used to evaluate the additional heating source and laser beam attenuation caused by the scattering and absorption based on the Beer–Lambert theory. Furthermore, the dynamic behavior of the metal vapor plume is incorporated into a 3D transient heat transfer and fluid flow model, coupled with the ray tracing method, for the laser beam welding of the AlMg3 alloy. It is found that additional heating resulting from the scattered and absorbed laser beam energy by the metal vapor plume significantly expands the shape of the molten pool on the top region. Moreover, the oscillating metal vapor plume caused the fluctuation of the high-temperature region in the molten pool. The probability of keyhole collapse at the bottom increases 17% due to the oscillating laser power induced by the laser beam attenuation. The internal interplay between the metal vapor plume, molten pool shape, and keyhole collapse is obtained. The developed model has been validated by experiments, which shows a good agreement.
{"title":"Numerical analysis of the effect of an oscillating metal vapor plume on the keyhole and molten pool behavior during deep penetration laser beam welding","authors":"Fan Yang, Xiangmeng Meng, Stephen Nugraha Putra, Antoni Artinov, Marcel Bachmann, Michael Rethmeier","doi":"10.2351/7.0001094","DOIUrl":"https://doi.org/10.2351/7.0001094","url":null,"abstract":"The effect of the oscillating metal vapor plume on the keyhole and molten pool behavior during the laser beam welding of AlMg3 aluminum alloys is investigated by experimental and numerical methods. The real-time height of the metal vapor plume is measured by high-speed camera observation. The obtained experimental results are used to evaluate the additional heating source and laser beam attenuation caused by the scattering and absorption based on the Beer–Lambert theory. Furthermore, the dynamic behavior of the metal vapor plume is incorporated into a 3D transient heat transfer and fluid flow model, coupled with the ray tracing method, for the laser beam welding of the AlMg3 alloy. It is found that additional heating resulting from the scattered and absorbed laser beam energy by the metal vapor plume significantly expands the shape of the molten pool on the top region. Moreover, the oscillating metal vapor plume caused the fluctuation of the high-temperature region in the molten pool. The probability of keyhole collapse at the bottom increases 17% due to the oscillating laser power induced by the laser beam attenuation. The internal interplay between the metal vapor plume, molten pool shape, and keyhole collapse is obtained. The developed model has been validated by experiments, which shows a good agreement.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135967754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jorge Sanchez-Medina, Dieter De Baere, Charles Snyers, Zoé Jardon, Michaël Hinderdael, Julien Ertveldt, Patrick Guillaume
Directed energy deposition is an additive manufacturing process that allows the production of near net shape structures. Moreover, the process can also be applied for the repair of high value components. To obtain structures with consistent good characteristics, the directed energy deposition process requires the implementation of a control system. The currently applied approaches for control that are discussed in the literature have specifically focused on melt-pool temperature control. Pyrometers have been used for such purposes; however, they provide only a single scalar value without any spatial information. In this paper, the implementation of a high-speed hyperspectral camera-based system is discussed with a high spatial resolution unlike the pyrometers. Different calibration and temperature estimation procedures for this camera-based system are evaluated and analyzed. The number of effective wavelengths needed for temperature estimation will be discussed in detail and provide an outlook on the potential of this hyperspectral camera-based system. In addition to the number of wavelengths, another important aspect of the temperature estimation methods is the stability with respect to disturbances. Within this paper, the impact of the nominal laser power will be evaluated on the stability of the temperature signals for a control system.
{"title":"Comparison and analysis of hyperspectral temperature data in directed energy deposition","authors":"Jorge Sanchez-Medina, Dieter De Baere, Charles Snyers, Zoé Jardon, Michaël Hinderdael, Julien Ertveldt, Patrick Guillaume","doi":"10.2351/7.0001074","DOIUrl":"https://doi.org/10.2351/7.0001074","url":null,"abstract":"Directed energy deposition is an additive manufacturing process that allows the production of near net shape structures. Moreover, the process can also be applied for the repair of high value components. To obtain structures with consistent good characteristics, the directed energy deposition process requires the implementation of a control system. The currently applied approaches for control that are discussed in the literature have specifically focused on melt-pool temperature control. Pyrometers have been used for such purposes; however, they provide only a single scalar value without any spatial information. In this paper, the implementation of a high-speed hyperspectral camera-based system is discussed with a high spatial resolution unlike the pyrometers. Different calibration and temperature estimation procedures for this camera-based system are evaluated and analyzed. The number of effective wavelengths needed for temperature estimation will be discussed in detail and provide an outlook on the potential of this hyperspectral camera-based system. In addition to the number of wavelengths, another important aspect of the temperature estimation methods is the stability with respect to disturbances. Within this paper, the impact of the nominal laser power will be evaluated on the stability of the temperature signals for a control system.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136012589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christyane Oliveira Leão Almeida, Odair José Pereira dos Santos, Renato Camponogara Panziera, Manoel Kolling Dutra, Milton Pereira, Marcelo dos Santos Pereira
Steel sheets are produced with increasingly smaller thicknesses, without compromising the properties of the steel, maintaining ductility, strength, and energy absorption after impact can total depth enhance vehicle energy efficiency, lower manufacturing costs, and address the springback effect. The springback effect of laser-welded DP600 two-phase steel sheets was studied in this research. Parameters such as punching speed, initial bending angle, and time were varied. Tests including tensile tests, Vickers hardness, and optical microscopy analysis were conducted to correlate results with material properties. Autogenous laser welding joined DP600 steel plates at the bending position. Controlling springback ensures better quality in vehicle manufacturing and assembly. The results revealed that increasing the punch descent speed from 4 to 12 mm/min, for an internal angle of 90°, on the first day of observation, led to higher springback values (0.58°–3.3°, respectively), while increasing the initial curvature angle (30°–90°), maintaining a constant speed of 4 mm/min on the first day of observation, and impacting the elastic return (6.74°–0.58°, respectively). Furthermore, the observation time demonstrated a continuous increase in the springback variation during 6 days after the flexural test before stabilization (6.89°– 8.7°), maintaining a constant value of 8 mm/min and the internal angle of doubles of 30°.
{"title":"Analysis of the springback effect of laser welded DP600 high-strength steel thin sheets","authors":"Christyane Oliveira Leão Almeida, Odair José Pereira dos Santos, Renato Camponogara Panziera, Manoel Kolling Dutra, Milton Pereira, Marcelo dos Santos Pereira","doi":"10.2351/7.0001100","DOIUrl":"https://doi.org/10.2351/7.0001100","url":null,"abstract":"Steel sheets are produced with increasingly smaller thicknesses, without compromising the properties of the steel, maintaining ductility, strength, and energy absorption after impact can total depth enhance vehicle energy efficiency, lower manufacturing costs, and address the springback effect. The springback effect of laser-welded DP600 two-phase steel sheets was studied in this research. Parameters such as punching speed, initial bending angle, and time were varied. Tests including tensile tests, Vickers hardness, and optical microscopy analysis were conducted to correlate results with material properties. Autogenous laser welding joined DP600 steel plates at the bending position. Controlling springback ensures better quality in vehicle manufacturing and assembly. The results revealed that increasing the punch descent speed from 4 to 12 mm/min, for an internal angle of 90°, on the first day of observation, led to higher springback values (0.58°–3.3°, respectively), while increasing the initial curvature angle (30°–90°), maintaining a constant speed of 4 mm/min on the first day of observation, and impacting the elastic return (6.74°–0.58°, respectively). Furthermore, the observation time demonstrated a continuous increase in the springback variation during 6 days after the flexural test before stabilization (6.89°– 8.7°), maintaining a constant value of 8 mm/min and the internal angle of doubles of 30°.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"179 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136012851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sharhid Jabar, Tianzhu Sun, Pasquale Franciosa, Hiren R. Kotadia, Darek Ceglarek, Bryan Paolini, Richard Faulhaber
Advances in laser beam shaping technologies are being studied and are considered beneficial in many aspects of dissimilar metal joining, which include reducing intermetallic compounds (IMCs), optimizing weld pool profiles, and controlling porosity and spatters. This paper utilizes a coaxial ring and core dual beam laser and aims to study the impact of the power ratios between core and ring beams on the weldability of 1100 aluminum alloy to hilumin (steel). High-resolution electron microscopy was performed in the cross sections of the weld pools to quantify the melt pool composition and subsequent IMC formation and weld defects (cracking and cavitation). Lap-shear mechanical testing and electrical resistivity testing were also carried out. Results showed that the optimal power ratio for lap-shear strength was 0.4 (intermediate core and ring) due to the reduction in the Fe-rich liquid into the upper weld region. As a result, this produced a smaller interface between the Fe-rich region and Al, thus reducing the formation of the most detrimental IMC (e.g., Fe2Al5). Conversely, a power ratio of 0.2 (core-dominant) was found beneficial for reducing electrical resistance due to a reduced total IMC volume.
{"title":"Effect of a ring-shaped laser beam on the weldability of aluminum-to-hilumin for battery tab connectors","authors":"Sharhid Jabar, Tianzhu Sun, Pasquale Franciosa, Hiren R. Kotadia, Darek Ceglarek, Bryan Paolini, Richard Faulhaber","doi":"10.2351/7.0001156","DOIUrl":"https://doi.org/10.2351/7.0001156","url":null,"abstract":"Advances in laser beam shaping technologies are being studied and are considered beneficial in many aspects of dissimilar metal joining, which include reducing intermetallic compounds (IMCs), optimizing weld pool profiles, and controlling porosity and spatters. This paper utilizes a coaxial ring and core dual beam laser and aims to study the impact of the power ratios between core and ring beams on the weldability of 1100 aluminum alloy to hilumin (steel). High-resolution electron microscopy was performed in the cross sections of the weld pools to quantify the melt pool composition and subsequent IMC formation and weld defects (cracking and cavitation). Lap-shear mechanical testing and electrical resistivity testing were also carried out. Results showed that the optimal power ratio for lap-shear strength was 0.4 (intermediate core and ring) due to the reduction in the Fe-rich liquid into the upper weld region. As a result, this produced a smaller interface between the Fe-rich region and Al, thus reducing the formation of the most detrimental IMC (e.g., Fe2Al5). Conversely, a power ratio of 0.2 (core-dominant) was found beneficial for reducing electrical resistance due to a reduced total IMC volume.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136013143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongting Yang, Daniel Franz, Cemal Esen, Ralf Hellmann
We demonstrate an innovative beam stabilization concept consisting of complementary metal-oxide semiconductor cameras and piezo actuators for a six-axis articulated ultrashort pulsed laser robot system. The beam stabilization system is fixed on robot axes 4 and 5. Moving robot axis 5 in an angular range between 0° and 90°, the laser beam position coupled to the actual robot position is monitored by two cameras integrated on robot axis 5 and used for laser beam characterization and model generation. A mathematical description and models generated with machine learning methods, namely, linear regression and neural network, are compared for predicting the beam position drift as a function of robot axis motion, where the neural network model shows a low prediction tolerance of about 7 pixels. In addition, a stand-alone time-triggered beam correction algorithm is developed and implemented on the system, which shows an excellent correction performance for large beam position drifts (below 500 pixels).
{"title":"Development and comparison of algorithms for beam stabilization in ultrashort pulsed laser equipped on a six-axis robot","authors":"Yongting Yang, Daniel Franz, Cemal Esen, Ralf Hellmann","doi":"10.2351/7.0001169","DOIUrl":"https://doi.org/10.2351/7.0001169","url":null,"abstract":"We demonstrate an innovative beam stabilization concept consisting of complementary metal-oxide semiconductor cameras and piezo actuators for a six-axis articulated ultrashort pulsed laser robot system. The beam stabilization system is fixed on robot axes 4 and 5. Moving robot axis 5 in an angular range between 0° and 90°, the laser beam position coupled to the actual robot position is monitored by two cameras integrated on robot axis 5 and used for laser beam characterization and model generation. A mathematical description and models generated with machine learning methods, namely, linear regression and neural network, are compared for predicting the beam position drift as a function of robot axis motion, where the neural network model shows a low prediction tolerance of about 7 pixels. In addition, a stand-alone time-triggered beam correction algorithm is developed and implemented on the system, which shows an excellent correction performance for large beam position drifts (below 500 pixels).","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"248 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136013572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}