Pub Date : 2024-07-01DOI: 10.1038/s44310-024-00016-7
Michele Cotrufo, Jonas H. Krakofsky, Sander A. Mann, Gerhard Boehm, Mikhail A. Belkin, Andrea Alù
Nonlinear intersubband polaritonic metasurfaces support one of the strongest known ultrafast nonlinear responses in the mid-infrared frequency range across all condensed matter systems. Beyond harmonic generation and frequency mixing, these nonlinearities can be leveraged for ultrafast optical switching and power limiting, based on tailored transitions from strong to weak polaritonic coupling. Here, we demonstrate synergistic optimization of materials and photonic nanostructures to achieve large reflection contrast in ultrafast polaritonic metasurface limiters. The devices are based on optimized semiconductor heterostructure materials that minimize the intersubband transition linewidth and reduce absorption in optically-saturated nanoresonators, achieving a record-high reflection contrast of 54% experimentally. We also discuss opportunities to further boost the metrics of performance of this class of ultrafast limiters, showing that reflection contrast as high as 94% may be realistically achieved using all-dielectric intersubband polaritonic metasurfaces.
{"title":"Intersubband polaritonic metasurfaces for high-contrast ultra-fast power limiting and optical switching","authors":"Michele Cotrufo, Jonas H. Krakofsky, Sander A. Mann, Gerhard Boehm, Mikhail A. Belkin, Andrea Alù","doi":"10.1038/s44310-024-00016-7","DOIUrl":"10.1038/s44310-024-00016-7","url":null,"abstract":"Nonlinear intersubband polaritonic metasurfaces support one of the strongest known ultrafast nonlinear responses in the mid-infrared frequency range across all condensed matter systems. Beyond harmonic generation and frequency mixing, these nonlinearities can be leveraged for ultrafast optical switching and power limiting, based on tailored transitions from strong to weak polaritonic coupling. Here, we demonstrate synergistic optimization of materials and photonic nanostructures to achieve large reflection contrast in ultrafast polaritonic metasurface limiters. The devices are based on optimized semiconductor heterostructure materials that minimize the intersubband transition linewidth and reduce absorption in optically-saturated nanoresonators, achieving a record-high reflection contrast of 54% experimentally. We also discuss opportunities to further boost the metrics of performance of this class of ultrafast limiters, showing that reflection contrast as high as 94% may be realistically achieved using all-dielectric intersubband polaritonic metasurfaces.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00016-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1038/s44310-024-00015-8
Yang Chen, Xuejuan Wu, Linpeng Lu, Jiasong Sun, Runnan Zhang, Wenhui Lin, Yufan Chen, Maciej Trusiak, Peng Gao, Chao Zuo
Lens-free on-chip microscopy (LFOCM) has been widely utilized in digital pathology, drug screening, point-of-care testing (POCT), and quantitative phase imaging (QPI) due to its high throughput imaging capability and compactness. Initially, coherent laser sources were used in LFOCM to generate interference fringes to reconstruct the intensity and phase information of an object. The use of partially coherent light-emitting diodes (LEDs) in LFOCM offers a more portable and cost-effective alternative to conventional coherent illumination sources. However, the coherence-gating effect from a relatively low degree of coherence may cause a blur of high-frequency information in holograms, leading to an inaccurate object recovery. Thus, we present a pixel-super-resolved lens-free quantitative phase microscopy (PSR-LFQPM) with partially coherent illumination, which not only compensates for the impact of low coherence without increasing the volume of the system but also suppresses the theoretical Nyquist-Shannon sampling resolution limit imposed by the sensor pixel size (0.9 μm). Based on the partially coherent imaging model, we integrate the spatial coherence transfer function (SCTF) obtained from the pre-calibrated LED source distribution during the iteration process to obtain an accurate high-resolution recovery. Applying PSR-LFQPM to image living HeLa cells in vitro, we achieve real-time dynamic high-throughput QPI performance (half-pitch resolution of 780 nm with a 1.41-fold improvement compared to results without considering the effect of coherence) across a wide FOV (19.53 mm2). The proposed method provides a compact, low-cost, and high-throughput lens-free on-chip microscopy system for biomedical and POCT applications.
{"title":"Pixel-super-resolved lens-free quantitative phase microscopy with partially coherent illumination","authors":"Yang Chen, Xuejuan Wu, Linpeng Lu, Jiasong Sun, Runnan Zhang, Wenhui Lin, Yufan Chen, Maciej Trusiak, Peng Gao, Chao Zuo","doi":"10.1038/s44310-024-00015-8","DOIUrl":"10.1038/s44310-024-00015-8","url":null,"abstract":"Lens-free on-chip microscopy (LFOCM) has been widely utilized in digital pathology, drug screening, point-of-care testing (POCT), and quantitative phase imaging (QPI) due to its high throughput imaging capability and compactness. Initially, coherent laser sources were used in LFOCM to generate interference fringes to reconstruct the intensity and phase information of an object. The use of partially coherent light-emitting diodes (LEDs) in LFOCM offers a more portable and cost-effective alternative to conventional coherent illumination sources. However, the coherence-gating effect from a relatively low degree of coherence may cause a blur of high-frequency information in holograms, leading to an inaccurate object recovery. Thus, we present a pixel-super-resolved lens-free quantitative phase microscopy (PSR-LFQPM) with partially coherent illumination, which not only compensates for the impact of low coherence without increasing the volume of the system but also suppresses the theoretical Nyquist-Shannon sampling resolution limit imposed by the sensor pixel size (0.9 μm). Based on the partially coherent imaging model, we integrate the spatial coherence transfer function (SCTF) obtained from the pre-calibrated LED source distribution during the iteration process to obtain an accurate high-resolution recovery. Applying PSR-LFQPM to image living HeLa cells in vitro, we achieve real-time dynamic high-throughput QPI performance (half-pitch resolution of 780 nm with a 1.41-fold improvement compared to results without considering the effect of coherence) across a wide FOV (19.53 mm2). The proposed method provides a compact, low-cost, and high-throughput lens-free on-chip microscopy system for biomedical and POCT applications.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00015-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chirality describes mirror symmetry breaking in geometric structures or certain physical quantities. The interaction between chiral structure and chiral light provides a rich collection of means for studying the chirality of substances. Recently, optical chiral metasurfaces have emerged as planar or quasi-planar photonic devices composed of subwavelength chiral unit cells, offering distinct appealing optical responses to circularly polarized light with opposite handedness. The chiroptical effects in optical metasurfaces can be manifested in the absorption, scattering, and even emission spectra under the circular polarization bases. A broadband chiroptical effect is highly desired for many passive chiral applications such as pure circular polarizers, chiral imaging, and chiral holography, in which cases the resonances should be avoided. On the other hand, resonant chiroptical responses are particularly needed in many situations requiring strong chiral field enhancement such as chiral sensing and chiral emission. This article reviews the latest research on both broadband and resonant chiral metasurfaces. First, we discuss the basic principle of different types of chiroptical effects including 3D/2D optical chirality and intrinsic/extrinsic optical chirality. Then we review typical means for broadband chiral metasurfaces, and related chiral photonic devices including broadband circular polarizers, chiral imaging and chiral holography. Then, we discuss the interaction between chiral light and matter enhanced by resonant chiral metasurfaces, especially for the chiral bound states in the continuum metasurfaces with ultra-high quality factors, which are particularly important for chiral molecule sensing, and chiral light sources. In the final section, the review concludes with an outlook on future directions in chiral photonics.
{"title":"Advances on broadband and resonant chiral metasurfaces","authors":"Qian-Mei Deng, Xin Li, Meng-Xia Hu, Feng-Jun Li, Xiangping Li, Zi-Lan Deng","doi":"10.1038/s44310-024-00018-5","DOIUrl":"10.1038/s44310-024-00018-5","url":null,"abstract":"Chirality describes mirror symmetry breaking in geometric structures or certain physical quantities. The interaction between chiral structure and chiral light provides a rich collection of means for studying the chirality of substances. Recently, optical chiral metasurfaces have emerged as planar or quasi-planar photonic devices composed of subwavelength chiral unit cells, offering distinct appealing optical responses to circularly polarized light with opposite handedness. The chiroptical effects in optical metasurfaces can be manifested in the absorption, scattering, and even emission spectra under the circular polarization bases. A broadband chiroptical effect is highly desired for many passive chiral applications such as pure circular polarizers, chiral imaging, and chiral holography, in which cases the resonances should be avoided. On the other hand, resonant chiroptical responses are particularly needed in many situations requiring strong chiral field enhancement such as chiral sensing and chiral emission. This article reviews the latest research on both broadband and resonant chiral metasurfaces. First, we discuss the basic principle of different types of chiroptical effects including 3D/2D optical chirality and intrinsic/extrinsic optical chirality. Then we review typical means for broadband chiral metasurfaces, and related chiral photonic devices including broadband circular polarizers, chiral imaging and chiral holography. Then, we discuss the interaction between chiral light and matter enhanced by resonant chiral metasurfaces, especially for the chiral bound states in the continuum metasurfaces with ultra-high quality factors, which are particularly important for chiral molecule sensing, and chiral light sources. In the final section, the review concludes with an outlook on future directions in chiral photonics.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-22"},"PeriodicalIF":0.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00018-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1038/s44310-024-00005-w
Hang Lu, Omar Alkhazragi, Yue Wang, Nawal Almaymoni, Wenbo Yan, Wahyu Hendra Gunawan, Heming Lin, Tae-Yong Park, Tien Khee Ng, Boon S. Ooi
Since the invention of the laser, there have been countless applications that were made possible or improved through exploiting its multitude of unique advantages. Most of these advantages are mainly due to the high degree of coherence of the laser light, which makes it directional and spectrally pure. Nevertheless, many fields require a moderate degree of temporal or spatial coherence, making conventional lasers unsuitable for these applications. This has brought about a great interest in partially coherent light sources, especially those based on semiconductor devices, given their efficiency, compactness, and high-speed operation. Here, we review the development of low-coherence semiconductor light sources, including superluminescent diodes, highly multimode lasers, and random lasers, and the wide range of applications in which they have been deployed. We highlight how each of these applications benefsits from a lower degree of coherence in space and/or time. We then discuss future potential applications that can be enabled using new types of low-coherence light.
{"title":"Low-coherence semiconductor light sources: devices and applications","authors":"Hang Lu, Omar Alkhazragi, Yue Wang, Nawal Almaymoni, Wenbo Yan, Wahyu Hendra Gunawan, Heming Lin, Tae-Yong Park, Tien Khee Ng, Boon S. Ooi","doi":"10.1038/s44310-024-00005-w","DOIUrl":"10.1038/s44310-024-00005-w","url":null,"abstract":"Since the invention of the laser, there have been countless applications that were made possible or improved through exploiting its multitude of unique advantages. Most of these advantages are mainly due to the high degree of coherence of the laser light, which makes it directional and spectrally pure. Nevertheless, many fields require a moderate degree of temporal or spatial coherence, making conventional lasers unsuitable for these applications. This has brought about a great interest in partially coherent light sources, especially those based on semiconductor devices, given their efficiency, compactness, and high-speed operation. Here, we review the development of low-coherence semiconductor light sources, including superluminescent diodes, highly multimode lasers, and random lasers, and the wide range of applications in which they have been deployed. We highlight how each of these applications benefsits from a lower degree of coherence in space and/or time. We then discuss future potential applications that can be enabled using new types of low-coherence light.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-19"},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00005-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optical metasurfaces that control the light wavefront play an important role in various applications, from imaging to spectroscopy. Over the past decade, metasurfaces-based dynamic optical manipulation has been broadly investigated on diverse reconfigurable mechanisms, providing a footing ground for light control in both spatial and temporal dimensions. Therein, mechanical reconfiguration, as one of the most direct methods, allows for the geometric alteration of constituent meta-atoms through external stimuli, thereby facilitating the evolution of metasurfaces from single function to multifunctional. This review focuses on introducing the primary mechanisms behind current mechanically reconfigurable metasurfaces, including mechanical, electrical, thermal, and optical modulations. Their emerging applications, such as dynamic focusing, image display, beam steering, polarization manipulator, thermal radiation, etc., are briefly highlighted. The main challenges and future development directions are also summarized within this dynamic and rapidly evolving research area, offering insights and future perspectives for advancements in the related fields.
{"title":"Mechanically reconfigurable metasurfaces: fabrications and applications","authors":"Yinghao Zhao, Zhiguang Liu, Chongrui Li, Wenlong Jiao, Senlin Jiang, Xiaowei Li, Jiahua Duan, Jiafang Li","doi":"10.1038/s44310-024-00010-z","DOIUrl":"10.1038/s44310-024-00010-z","url":null,"abstract":"Optical metasurfaces that control the light wavefront play an important role in various applications, from imaging to spectroscopy. Over the past decade, metasurfaces-based dynamic optical manipulation has been broadly investigated on diverse reconfigurable mechanisms, providing a footing ground for light control in both spatial and temporal dimensions. Therein, mechanical reconfiguration, as one of the most direct methods, allows for the geometric alteration of constituent meta-atoms through external stimuli, thereby facilitating the evolution of metasurfaces from single function to multifunctional. This review focuses on introducing the primary mechanisms behind current mechanically reconfigurable metasurfaces, including mechanical, electrical, thermal, and optical modulations. Their emerging applications, such as dynamic focusing, image display, beam steering, polarization manipulator, thermal radiation, etc., are briefly highlighted. The main challenges and future development directions are also summarized within this dynamic and rapidly evolving research area, offering insights and future perspectives for advancements in the related fields.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00010-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1038/s44310-024-00009-6
Rui Chen, Virat Tara, Minho Choi, Jayita Dutta, Justin Sim, Julian Ye, Zhuoran Fang, Jiajiu Zheng, Arka Majumdar
Programmable photonic integrated circuits (PICs) consisting of reconfigurable on-chip optical components have been creating new paradigms in various applications, such as integrated spectroscopy, multi-purpose microwave photonics, and optical information processing. Among many reconfiguration mechanisms, non-volatile chalcogenide phase-change materials (PCMs) exhibit a promising approach to the future very-large-scale programmable PICs, thanks to their zero static power and large optical index modulation, leading to extremely low energy consumption and ultra-compact footprints. However, the scalability of the current PCM-based programmable PICs is still limited since they are not directly off-the-shelf in commercial photonic foundries now. Here, we demonstrate a scalable platform harnessing the mature and reliable 300 mm silicon photonic fab, assisted by an in-house wide-bandgap PCM (Sb2S3) integration process. We show various non-volatile programmable devices, including micro-ring resonators, Mach-Zehnder interferometers and asymmetric directional couplers, with low loss (~0.0044 dB/µm), large phase shift (~0.012 π/µm) and high endurance (>5000 switching events with little performance degradation). Moreover, we showcase this platform’s capability of handling relatively complex structures such as multiple PIN diode heaters in devices, each independently controlling an Sb2S3 segment. By reliably setting the Sb2S3 segments to fully amorphous or crystalline state, we achieved deterministic multilevel operation. An asymmetric directional coupler with two unequal-length Sb2S3 segments showed the capability of four-level switching, beyond cross-and-bar binary states. We further showed unbalanced Mach-Zehnder interferometers with equal-length and unequal-length Sb2S3 segments, exhibiting reversible switching and a maximum of 5 ( $$N+1,N=4$$ ) and 8 ( $${2}^{N},N=3$$ ) equally spaced operation levels, respectively. This work lays the foundation for future programmable very-large-scale PICs with deterministic programmability.
{"title":"Deterministic quasi-continuous tuning of phase-change material integrated on a high-volume 300-mm silicon photonics platform","authors":"Rui Chen, Virat Tara, Minho Choi, Jayita Dutta, Justin Sim, Julian Ye, Zhuoran Fang, Jiajiu Zheng, Arka Majumdar","doi":"10.1038/s44310-024-00009-6","DOIUrl":"10.1038/s44310-024-00009-6","url":null,"abstract":"Programmable photonic integrated circuits (PICs) consisting of reconfigurable on-chip optical components have been creating new paradigms in various applications, such as integrated spectroscopy, multi-purpose microwave photonics, and optical information processing. Among many reconfiguration mechanisms, non-volatile chalcogenide phase-change materials (PCMs) exhibit a promising approach to the future very-large-scale programmable PICs, thanks to their zero static power and large optical index modulation, leading to extremely low energy consumption and ultra-compact footprints. However, the scalability of the current PCM-based programmable PICs is still limited since they are not directly off-the-shelf in commercial photonic foundries now. Here, we demonstrate a scalable platform harnessing the mature and reliable 300 mm silicon photonic fab, assisted by an in-house wide-bandgap PCM (Sb2S3) integration process. We show various non-volatile programmable devices, including micro-ring resonators, Mach-Zehnder interferometers and asymmetric directional couplers, with low loss (~0.0044 dB/µm), large phase shift (~0.012 π/µm) and high endurance (>5000 switching events with little performance degradation). Moreover, we showcase this platform’s capability of handling relatively complex structures such as multiple PIN diode heaters in devices, each independently controlling an Sb2S3 segment. By reliably setting the Sb2S3 segments to fully amorphous or crystalline state, we achieved deterministic multilevel operation. An asymmetric directional coupler with two unequal-length Sb2S3 segments showed the capability of four-level switching, beyond cross-and-bar binary states. We further showed unbalanced Mach-Zehnder interferometers with equal-length and unequal-length Sb2S3 segments, exhibiting reversible switching and a maximum of 5 ( $$N+1,N=4$$ ) and 8 ( $${2}^{N},N=3$$ ) equally spaced operation levels, respectively. This work lays the foundation for future programmable very-large-scale PICs with deterministic programmability.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00009-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1038/s44310-024-00011-y
Arthur L. Hendriks, Luca Picelli, René P. J. van Veldhoven, Ewold Verhagen, Andrea Fiore
Nano-optomechanical sensors exploit light confinement at the nanoscale to enable very precise measurements of displacement, force, acceleration, and mass. Their application is hampered by the complex optical set-ups or packaging schemes required to couple light to and from the nano-optomechanical resonator. In this work, we present a fiber-coupled nano-optomechanical sensor that requires no coupling optics. This is achieved by directly placing a nano-optomechanical structure, a double membrane photonic crystal (DM-PhC), on the facet of a fiber, using a simple and scalable wafer-to-fiber transfer method. The device is probed in reflection and has a resonance at telecom wavelengths with a relatively broad spectral width of 3–10 nm, which is advantageous for a simple read-out and achieves a displacement imprecision of $$10,{{rm{fm}}}/{sqrt{{rm{Hz}}}}$$ . Using resonant driving and a ringdown measurement, we can induce and monitor mechanical oscillations with an nm-scale amplitude via the fiber, which allows for tracking the mechanical resonant frequency and the mechanical linewidth with imprecisions of 79 and 12 Hz, respectively, at integration times of 4.5 s. We further demonstrate the application of this fiber-tip sensor to the measurement of pressure, using the effect of collisional damping on the mechanical linewidth, leading to the imprecision of $$9times {10}^{-4},{rm{mbar}}$$ with an integration time of 290 s. This combination of optomechanics and fiber-tip sensing may open the way to a new generation of fiber sensors with unprecedented functionality, ultrasmall footprint, and low-cost readout.
{"title":"Nano-optomechanical fiber-tip sensing","authors":"Arthur L. Hendriks, Luca Picelli, René P. J. van Veldhoven, Ewold Verhagen, Andrea Fiore","doi":"10.1038/s44310-024-00011-y","DOIUrl":"10.1038/s44310-024-00011-y","url":null,"abstract":"Nano-optomechanical sensors exploit light confinement at the nanoscale to enable very precise measurements of displacement, force, acceleration, and mass. Their application is hampered by the complex optical set-ups or packaging schemes required to couple light to and from the nano-optomechanical resonator. In this work, we present a fiber-coupled nano-optomechanical sensor that requires no coupling optics. This is achieved by directly placing a nano-optomechanical structure, a double membrane photonic crystal (DM-PhC), on the facet of a fiber, using a simple and scalable wafer-to-fiber transfer method. The device is probed in reflection and has a resonance at telecom wavelengths with a relatively broad spectral width of 3–10 nm, which is advantageous for a simple read-out and achieves a displacement imprecision of $$10,{{rm{fm}}}/{sqrt{{rm{Hz}}}}$$ . Using resonant driving and a ringdown measurement, we can induce and monitor mechanical oscillations with an nm-scale amplitude via the fiber, which allows for tracking the mechanical resonant frequency and the mechanical linewidth with imprecisions of 79 and 12 Hz, respectively, at integration times of 4.5 s. We further demonstrate the application of this fiber-tip sensor to the measurement of pressure, using the effect of collisional damping on the mechanical linewidth, leading to the imprecision of $$9times {10}^{-4},{rm{mbar}}$$ with an integration time of 290 s. This combination of optomechanics and fiber-tip sensing may open the way to a new generation of fiber sensors with unprecedented functionality, ultrasmall footprint, and low-cost readout.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00011-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1038/s44310-024-00012-x
Wen Yi Cui, Xinxin Gao, Jingjing Zhang, Yu Luo, Tie Jun Cui
High-power electromagnetic (EM) waves can directly modulate the parameters of nonlinear varactor diodes through the rectification and Kerr effects without relying on external sources. Based on this principle, we propose a power-modulated reconfigurable nonlinear device based on spoof surface plasmon polariton (SSPP) waveguide loaded by varactor diodes, without applying DC power supply or feed circuit. Increasing the input power level reduces the effective capacitance of the varactor diode, leading to a blueshift in the cutoff frequency of the SSPP waveguide. This feature can be employed to realize the switching on/off of the input signal depending on the signal power. On the other hand, the transmission state of a low-power signal can be controlled by inputting another independent high-power EM wave simultaneously. Increasing the power of the control wave will enable the low-power signal within a wider bandwidth switched from off to on states. Experimental results are presented to show the excellent performance of the power-modulated reconfigurable SSPP device. This method can reduce the system complexity and provide inspiration for reconfigurable all-passive multifunctional devices and systems.
{"title":"Power-modulated reconfigurable nonlinear plasmonic devices without DC power supply and feed circuit","authors":"Wen Yi Cui, Xinxin Gao, Jingjing Zhang, Yu Luo, Tie Jun Cui","doi":"10.1038/s44310-024-00012-x","DOIUrl":"10.1038/s44310-024-00012-x","url":null,"abstract":"High-power electromagnetic (EM) waves can directly modulate the parameters of nonlinear varactor diodes through the rectification and Kerr effects without relying on external sources. Based on this principle, we propose a power-modulated reconfigurable nonlinear device based on spoof surface plasmon polariton (SSPP) waveguide loaded by varactor diodes, without applying DC power supply or feed circuit. Increasing the input power level reduces the effective capacitance of the varactor diode, leading to a blueshift in the cutoff frequency of the SSPP waveguide. This feature can be employed to realize the switching on/off of the input signal depending on the signal power. On the other hand, the transmission state of a low-power signal can be controlled by inputting another independent high-power EM wave simultaneously. Increasing the power of the control wave will enable the low-power signal within a wider bandwidth switched from off to on states. Experimental results are presented to show the excellent performance of the power-modulated reconfigurable SSPP device. This method can reduce the system complexity and provide inspiration for reconfigurable all-passive multifunctional devices and systems.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00012-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1038/s44310-024-00008-7
Ze-Sheng Xu, Jun Gao, Adrian Iovan, Ivan M. Khaymovich, Val Zwiller, Ali W. Elshaari
The interrelationship between localization, quantum transport, and disorder has remained a fascinating focus in scientific research. Traditionally, it has been widely accepted in the physics community that in one-dimensional systems, as disorder increases, localization intensifies, triggering a metal-insulator transition. However, a recent theoretical investigation [Phys. Rev. Lett. 126, 106803] has revealed that the interplay between dimerization and disorder leads to a reentrant localization transition, constituting a remarkable theoretical advancement in the field. Here, we present the first experimental observation of reentrant localization using an experimentally friendly model, a photonic SSH lattice with random-dimer disorder, achieved by incrementally adjusting synthetic potentials. In the presence of correlated on-site potentials, certain eigenstates exhibit extended behavior following the localization transition as the disorder continues to increase. We directly probe the wave function in disordered lattices by exciting specific lattice sites and recording the light distribution. This reentrant phenomenon is further verified by observing an anomalous peak in the normalized participation ratio. Our study enriches the understanding of transport in disordered mediums and accentuates the substantial potential of integrated photonics for the simulation of intricate condensed matter physics phenomena.
{"title":"Observation of reentrant metal-insulator transition in a random-dimer disordered SSH lattice","authors":"Ze-Sheng Xu, Jun Gao, Adrian Iovan, Ivan M. Khaymovich, Val Zwiller, Ali W. Elshaari","doi":"10.1038/s44310-024-00008-7","DOIUrl":"10.1038/s44310-024-00008-7","url":null,"abstract":"The interrelationship between localization, quantum transport, and disorder has remained a fascinating focus in scientific research. Traditionally, it has been widely accepted in the physics community that in one-dimensional systems, as disorder increases, localization intensifies, triggering a metal-insulator transition. However, a recent theoretical investigation [Phys. Rev. Lett. 126, 106803] has revealed that the interplay between dimerization and disorder leads to a reentrant localization transition, constituting a remarkable theoretical advancement in the field. Here, we present the first experimental observation of reentrant localization using an experimentally friendly model, a photonic SSH lattice with random-dimer disorder, achieved by incrementally adjusting synthetic potentials. In the presence of correlated on-site potentials, certain eigenstates exhibit extended behavior following the localization transition as the disorder continues to increase. We directly probe the wave function in disordered lattices by exciting specific lattice sites and recording the light distribution. This reentrant phenomenon is further verified by observing an anomalous peak in the normalized participation ratio. Our study enriches the understanding of transport in disordered mediums and accentuates the substantial potential of integrated photonics for the simulation of intricate condensed matter physics phenomena.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00008-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1038/s44310-024-00014-9
Zijun Bian, Xingyu Zhao, Jingzhao Liu, Daehyun Kim, Adam F. McKenzie, Stephen Thoms, Paul Reynolds, Neil D. Gerrard, Aye S. M. Kyaw, James Grant, Katherine Rae, Jonathan R. Orchard, Calum H. Hill, Connor W. Munro, Pavlo Ivanov, David T. D. Childs, Richard J. E. Taylor, Richard A. Hogg
The finite size of 2D photonic crystals results in them being a lossy resonator, with the normally emitting modes of conventional photonic crystal surface emitting lasers (PCSELs) differing in photon lifetime via their different radiative rates, and the different in-plane losses of higher order spatial modes. As a consequence, the fundamental spatial mode (lowest in-plane loss) with lowest out-of-plane scattering is the primary lasing mode. For electrically driven PCSELs, as current is increased, incomplete gain clamping results in additional spatial (and spectral) modes leading to a reduction in beam quality. A number of approaches have been discussed to enhance the area (power) scalability of epitaxy regrown PCSELs through careful design of the photonic crystal atom1–3. None of these approaches tackle the inflexibility in being unable to independently modify the photon lifetime of the different modes at the Γ2 point. As a method to introduce design flexibility, resonator embedded photonic crystal surface emitting lasers (REPCSELs) are introduced. This device, combining comparatively low coupling strength photonic crystal structures along with perimeter mirrors, allow a Fabry–Pérot resonance effect to be realised that provides wavelength selective modification of the photon lifetime. We show that surface emission of different surface emitting modes may be selectively enhanced, effectively changing the character of the modes at the Γ2 point. This is a consequence of the selective modification of in-plane loss for particular modes, and is dependent upon the alignment of the photonic crystal (PhC) band-structure and distributed Bragg reflectors’ (DBRs) reflectance spectrum. These findings offer new avenues in surface emitting laser diode engineering. The use of DBRs to reduce the lateral size of a PCSEL opens the route to small, low threshold current (Ith), high output efficiency epitaxy regrown PCSELs for high-speed communication and power sensitive sensing applications.
{"title":"Resonator embedded photonic crystal surface emitting lasers","authors":"Zijun Bian, Xingyu Zhao, Jingzhao Liu, Daehyun Kim, Adam F. McKenzie, Stephen Thoms, Paul Reynolds, Neil D. Gerrard, Aye S. M. Kyaw, James Grant, Katherine Rae, Jonathan R. Orchard, Calum H. Hill, Connor W. Munro, Pavlo Ivanov, David T. D. Childs, Richard J. E. Taylor, Richard A. Hogg","doi":"10.1038/s44310-024-00014-9","DOIUrl":"10.1038/s44310-024-00014-9","url":null,"abstract":"The finite size of 2D photonic crystals results in them being a lossy resonator, with the normally emitting modes of conventional photonic crystal surface emitting lasers (PCSELs) differing in photon lifetime via their different radiative rates, and the different in-plane losses of higher order spatial modes. As a consequence, the fundamental spatial mode (lowest in-plane loss) with lowest out-of-plane scattering is the primary lasing mode. For electrically driven PCSELs, as current is increased, incomplete gain clamping results in additional spatial (and spectral) modes leading to a reduction in beam quality. A number of approaches have been discussed to enhance the area (power) scalability of epitaxy regrown PCSELs through careful design of the photonic crystal atom1–3. None of these approaches tackle the inflexibility in being unable to independently modify the photon lifetime of the different modes at the Γ2 point. As a method to introduce design flexibility, resonator embedded photonic crystal surface emitting lasers (REPCSELs) are introduced. This device, combining comparatively low coupling strength photonic crystal structures along with perimeter mirrors, allow a Fabry–Pérot resonance effect to be realised that provides wavelength selective modification of the photon lifetime. We show that surface emission of different surface emitting modes may be selectively enhanced, effectively changing the character of the modes at the Γ2 point. This is a consequence of the selective modification of in-plane loss for particular modes, and is dependent upon the alignment of the photonic crystal (PhC) band-structure and distributed Bragg reflectors’ (DBRs) reflectance spectrum. These findings offer new avenues in surface emitting laser diode engineering. The use of DBRs to reduce the lateral size of a PCSEL opens the route to small, low threshold current (Ith), high output efficiency epitaxy regrown PCSELs for high-speed communication and power sensitive sensing applications.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00014-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}