Pub Date : 2024-06-03DOI: 10.1038/s44310-024-00013-w
Zan Kui Meng, Yan Shi, Quan Wei Wu, Wen Yue Wei, Ru Hui, Shao Ze Wang, Shi Han Dai, Qian Ma, Tie Jun Cui
Intelligent voice interaction offers a flexible and powerful way to connect individuals with smart devices beyond our expectations. The real-time nature of voice communication enables smart devices to comprehend the user language, execute the corresponding instructions, and facilitate seamless communications, transforming our lives in unprecedented ways. Owing to self-adaptive and reprogrammable functionalities, information metasurface (IMS) opens up a new avenue for smart home and smart cities. To further enhance the intelligence of IMS, we propose an IMS system via intelligent voice interaction and information processing. The voice interaction enables the efficient remote control on the IMS in a flexible, convenient, touchless manner. Leveraging speech recognition, speech synthesis, target detection, and communication technologies, the IMS system achieves automatic beam manipulation capabilities for wireless information transmissions and wireless power transfers. The IMS system is designed to operate in two distinct modes: instruction mode, wherein the user instructs the operations, and autonomous mode, wherein the automatic detections govern the actions, in which seamless mode switching through the voice commands is supported. Users can flexibly achieve precise control over the functions of the intelligent metasurface system through voice interaction at a distance, without the need for close-range manual touch control, which greatly simplifies the operation difficulty and is particularly suitable for remote control and complex application scenarios. A series of experiments, including wireless video transmissions and wireless power transfers are conducted to demonstrate the flexibility and convenience of the IMS system. The incorporation of intelligent voice interaction technology with the IMS presents a novel paradigm for the applications of programmable and information metasurfaces.
{"title":"Voice interactive information metasurface system for simultaneous wireless information transmission and power transfer","authors":"Zan Kui Meng, Yan Shi, Quan Wei Wu, Wen Yue Wei, Ru Hui, Shao Ze Wang, Shi Han Dai, Qian Ma, Tie Jun Cui","doi":"10.1038/s44310-024-00013-w","DOIUrl":"10.1038/s44310-024-00013-w","url":null,"abstract":"Intelligent voice interaction offers a flexible and powerful way to connect individuals with smart devices beyond our expectations. The real-time nature of voice communication enables smart devices to comprehend the user language, execute the corresponding instructions, and facilitate seamless communications, transforming our lives in unprecedented ways. Owing to self-adaptive and reprogrammable functionalities, information metasurface (IMS) opens up a new avenue for smart home and smart cities. To further enhance the intelligence of IMS, we propose an IMS system via intelligent voice interaction and information processing. The voice interaction enables the efficient remote control on the IMS in a flexible, convenient, touchless manner. Leveraging speech recognition, speech synthesis, target detection, and communication technologies, the IMS system achieves automatic beam manipulation capabilities for wireless information transmissions and wireless power transfers. The IMS system is designed to operate in two distinct modes: instruction mode, wherein the user instructs the operations, and autonomous mode, wherein the automatic detections govern the actions, in which seamless mode switching through the voice commands is supported. Users can flexibly achieve precise control over the functions of the intelligent metasurface system through voice interaction at a distance, without the need for close-range manual touch control, which greatly simplifies the operation difficulty and is particularly suitable for remote control and complex application scenarios. A series of experiments, including wireless video transmissions and wireless power transfers are conducted to demonstrate the flexibility and convenience of the IMS system. The incorporation of intelligent voice interaction technology with the IMS presents a novel paradigm for the applications of programmable and information metasurfaces.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00013-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-27DOI: 10.1038/s44310-024-00020-x
Baohua Jia
As we celebrate the first anniversary of npj Nanophotonics opening for submissions, it is both a time to reflect on our progress and look forward to the future.
在我们庆祝《npj 纳米光子学》开放投稿一周年之际,既是回顾我们的进步的时刻,也是展望未来的时刻。
{"title":"Celebrating one year of npj Nanophotonics—reflecting on achievements and looking forward","authors":"Baohua Jia","doi":"10.1038/s44310-024-00020-x","DOIUrl":"10.1038/s44310-024-00020-x","url":null,"abstract":"As we celebrate the first anniversary of npj Nanophotonics opening for submissions, it is both a time to reflect on our progress and look forward to the future.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00020-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141165073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-02DOI: 10.1038/s44310-024-00004-x
Birgit Stiller, Kevin Jaksch, Johannes Piotrowski, Moritz Merklein, Mikołaj K. Schmidt, Khu Vu, Pan Ma, Stephen Madden, Michael J. Steel, Christopher G. Poulton, Benjamin J. Eggleton
Signal processing based on stimulated Brillouin scattering (SBS) is limited by the narrow linewidth of the optoacoustic response, which confines many Brillouin applications to continuous wave signals or optical pulses longer than several nanoseconds. In this work, we experimentally demonstrate Brillouin interactions at the 150 ps time scale and a delay for a record 15 ns which corresponds to a delay of 100 pulse widths. This breakthrough experimental result was enabled by the high local gain of the chalcogenide waveguides as the optoacoustic interaction length reduces with pulse width. We successfully transfer 150 ps-long pulses to traveling acoustic waves within a Brillouin-based memory setup. The information encoded in the optical pulses is stored for 15 ns in the acoustic field. We show the retrieval of eight amplitude levels, multiple consecutive pulses, and low distortion in pulse shape. The extension of Brillouin-based storage to the ultra-short pulse regime is an important step for the realization of practical Brillouin-based delay lines and other optical processing applications.
{"title":"Brillouin light storage for 100 pulse widths","authors":"Birgit Stiller, Kevin Jaksch, Johannes Piotrowski, Moritz Merklein, Mikołaj K. Schmidt, Khu Vu, Pan Ma, Stephen Madden, Michael J. Steel, Christopher G. Poulton, Benjamin J. Eggleton","doi":"10.1038/s44310-024-00004-x","DOIUrl":"10.1038/s44310-024-00004-x","url":null,"abstract":"Signal processing based on stimulated Brillouin scattering (SBS) is limited by the narrow linewidth of the optoacoustic response, which confines many Brillouin applications to continuous wave signals or optical pulses longer than several nanoseconds. In this work, we experimentally demonstrate Brillouin interactions at the 150 ps time scale and a delay for a record 15 ns which corresponds to a delay of 100 pulse widths. This breakthrough experimental result was enabled by the high local gain of the chalcogenide waveguides as the optoacoustic interaction length reduces with pulse width. We successfully transfer 150 ps-long pulses to traveling acoustic waves within a Brillouin-based memory setup. The information encoded in the optical pulses is stored for 15 ns in the acoustic field. We show the retrieval of eight amplitude levels, multiple consecutive pulses, and low distortion in pulse shape. The extension of Brillouin-based storage to the ultra-short pulse regime is an important step for the realization of practical Brillouin-based delay lines and other optical processing applications.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00004-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140819069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-02DOI: 10.1038/s44310-024-00006-9
Anna Fischer, T. V. Raziman, Wai Kit Ng, Jente Clarysse, Dhruv Saxena, Jakub Dranczewski, Stefano Vezzoli, Heinz Schmid, Kirsten Moselund, Riccardo Sapienza
Coupled nanolasers are of growing interest for on-chip optical computation and data transmission, which requires an understanding of how lasers interact to form complex systems. The non-Hermitian interaction between two coupled resonators, when excited selectively, can lead to parity-time symmetry, the formation of exceptional points, and subsequently spectral control and increased sensitivity. These investigations have been limited to pump energies close to the lasing threshold, and large or narrow-line lasers. Here, by programmable optical excitation we study two coupled nanolasers significantly above threshold, where mode instability plays an important role. We map the mode evolution around two exceptional points, and observe lasing gaps due to reversed pump dependence which compare well with non-linear theory. Finally, the coupling can be exploited to control the lasing threshold and wavelength, and for frequency switching around the lasing gap. Controlled and integrated nanolasers constitutes a promising platform for future highly sensitive and programmable on-chip laser sources.
{"title":"Controlling lasing around exceptional points in coupled nanolasers","authors":"Anna Fischer, T. V. Raziman, Wai Kit Ng, Jente Clarysse, Dhruv Saxena, Jakub Dranczewski, Stefano Vezzoli, Heinz Schmid, Kirsten Moselund, Riccardo Sapienza","doi":"10.1038/s44310-024-00006-9","DOIUrl":"10.1038/s44310-024-00006-9","url":null,"abstract":"Coupled nanolasers are of growing interest for on-chip optical computation and data transmission, which requires an understanding of how lasers interact to form complex systems. The non-Hermitian interaction between two coupled resonators, when excited selectively, can lead to parity-time symmetry, the formation of exceptional points, and subsequently spectral control and increased sensitivity. These investigations have been limited to pump energies close to the lasing threshold, and large or narrow-line lasers. Here, by programmable optical excitation we study two coupled nanolasers significantly above threshold, where mode instability plays an important role. We map the mode evolution around two exceptional points, and observe lasing gaps due to reversed pump dependence which compare well with non-linear theory. Finally, the coupling can be exploited to control the lasing threshold and wavelength, and for frequency switching around the lasing gap. Controlled and integrated nanolasers constitutes a promising platform for future highly sensitive and programmable on-chip laser sources.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00006-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140819053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1038/s44310-024-00007-8
Junyi Wang, Rongtao Yu, Xin Ye, Jiacheng Sun, Jian Li, Chunyu Huang, Xingjian Xiao, Jitao Ji, Wenjing Shen, Zuoxiu Tie, Chen Chen, Shining Zhu, Tao Li
Quantitative phase imaging (QPI) based on the transport-of-intensity equation (TIE) is a powerful technique in label-free microscopy. The image stack required for a successful TIE-QPI is traditionally obtained by translating the object or image plane, and the optical elements used in the conventional TIE-QPI systems are usually bulky and cumbersome. Stable and compact TIE-QPI methods capable of non-motion optical zooming can significantly facilitate applications that demand portability. Here, we propose a non-motion TIE-QPI method based on a dispersive metalens. The dispersive nature of the metalens is utilized to provide a spectral focal tuning. With fixed object and image planes, seven through-focus intensity images are captured by changing the illumination wavelength. The QPI performance is validated by retrieving the surface phase profiles of a microlens array and a phase resolution target, showing a high phase detection accuracy (deviation less than 0.03 wavelength). Subsequently, we established a compact meta-microscope by integrating the metalens with a commercially available CMOS image sensor, which shows good performance in microscopic imaging of unstained bio-samples. Our approach, based on the large-dispersive metalens, facilitates a compact and robust QPI system for optical metrology and label-free microscopy.
{"title":"Quantitative phase imaging with a compact meta-microscope","authors":"Junyi Wang, Rongtao Yu, Xin Ye, Jiacheng Sun, Jian Li, Chunyu Huang, Xingjian Xiao, Jitao Ji, Wenjing Shen, Zuoxiu Tie, Chen Chen, Shining Zhu, Tao Li","doi":"10.1038/s44310-024-00007-8","DOIUrl":"10.1038/s44310-024-00007-8","url":null,"abstract":"Quantitative phase imaging (QPI) based on the transport-of-intensity equation (TIE) is a powerful technique in label-free microscopy. The image stack required for a successful TIE-QPI is traditionally obtained by translating the object or image plane, and the optical elements used in the conventional TIE-QPI systems are usually bulky and cumbersome. Stable and compact TIE-QPI methods capable of non-motion optical zooming can significantly facilitate applications that demand portability. Here, we propose a non-motion TIE-QPI method based on a dispersive metalens. The dispersive nature of the metalens is utilized to provide a spectral focal tuning. With fixed object and image planes, seven through-focus intensity images are captured by changing the illumination wavelength. The QPI performance is validated by retrieving the surface phase profiles of a microlens array and a phase resolution target, showing a high phase detection accuracy (deviation less than 0.03 wavelength). Subsequently, we established a compact meta-microscope by integrating the metalens with a commercially available CMOS image sensor, which shows good performance in microscopic imaging of unstained bio-samples. Our approach, based on the large-dispersive metalens, facilitates a compact and robust QPI system for optical metrology and label-free microscopy.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00007-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.1038/s44310-023-00001-6
Juan Camilo López Carreño, Santiago Bermúdez Feijoo, Magdalena Stobińska
Particle entanglement is a fundamental resource upon which are based many quantum technologies. In this Article, we introduce a new source of entangled photons based on Resonance Fluorescence delivering photon pairs as a superposition of vacuum and the Bell state $$leftvert {{{Phi }}}^{-}rightrangle$$ . Our proposal relies on the emission from the satellite peaks of a two-level system driven by a strong off-resonant laser, whose intensity controls the frequencies of the entangled photons. Notably, such a frequency tuning can be done without decreasing the degree of entanglement between the photons and, unlike current technologies, the intensity of our source can be increased without the risk of spoiling the signal by including higher-order processes into the emission. Finally, we illustrate the power of our novel source by exciting an ubiquitous condensed-matter system, namely exciton-polaritons, and show that they are left in a maximally entangled steady state.
{"title":"Entanglement in Resonance Fluorescence","authors":"Juan Camilo López Carreño, Santiago Bermúdez Feijoo, Magdalena Stobińska","doi":"10.1038/s44310-023-00001-6","DOIUrl":"10.1038/s44310-023-00001-6","url":null,"abstract":"Particle entanglement is a fundamental resource upon which are based many quantum technologies. In this Article, we introduce a new source of entangled photons based on Resonance Fluorescence delivering photon pairs as a superposition of vacuum and the Bell state $$leftvert {{{Phi }}}^{-}rightrangle$$ . Our proposal relies on the emission from the satellite peaks of a two-level system driven by a strong off-resonant laser, whose intensity controls the frequencies of the entangled photons. Notably, such a frequency tuning can be done without decreasing the degree of entanglement between the photons and, unlike current technologies, the intensity of our source can be increased without the risk of spoiling the signal by including higher-order processes into the emission. Finally, we illustrate the power of our novel source by exciting an ubiquitous condensed-matter system, namely exciton-polaritons, and show that they are left in a maximally entangled steady state.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-023-00001-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140333362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-06DOI: 10.1038/s44310-024-00003-y
Alperen Govdeli, John N. Straguzzi, Zheng Yong, Yiding Lin, Xianshu Luo, Hongyao Chua, Guo-Qiang Lo, Wesley D. Sacher, Joyce K. S. Poon
Single photon detection is important for a wide range of low-light applications, including quantum information processing, spectroscopy, and light detection and ranging (LiDAR). A key challenge in these applications has been to integrate single-photon detection capability into photonic circuits for the realization of complex photonic microsystems. Short-wavelength (λ < 1.1 μm) integrated photonics platforms that use silicon (Si) as photodetectors offer the opportunity to achieve single-photon avalanche diodes (SPADs) that operate at or near room temperature. Here, we report the first waveguide-coupled Si SPAD. The device is monolithically integrated in a Si photonic platform and operates in the visible spectrum. The device exhibited a single photon detection efficiency of >6% for wavelengths of 488 and 532 nm with an excess voltage of <20% of the breakdown voltage. The dark count rate was below 100 kHz at room temperature, with the possibility of improving by approximately 35% by reducing the temperature to −5 °C.
{"title":"Room-temperature waveguide-coupled silicon single-photon avalanche diodes","authors":"Alperen Govdeli, John N. Straguzzi, Zheng Yong, Yiding Lin, Xianshu Luo, Hongyao Chua, Guo-Qiang Lo, Wesley D. Sacher, Joyce K. S. Poon","doi":"10.1038/s44310-024-00003-y","DOIUrl":"10.1038/s44310-024-00003-y","url":null,"abstract":"Single photon detection is important for a wide range of low-light applications, including quantum information processing, spectroscopy, and light detection and ranging (LiDAR). A key challenge in these applications has been to integrate single-photon detection capability into photonic circuits for the realization of complex photonic microsystems. Short-wavelength (λ < 1.1 μm) integrated photonics platforms that use silicon (Si) as photodetectors offer the opportunity to achieve single-photon avalanche diodes (SPADs) that operate at or near room temperature. Here, we report the first waveguide-coupled Si SPAD. The device is monolithically integrated in a Si photonic platform and operates in the visible spectrum. The device exhibited a single photon detection efficiency of >6% for wavelengths of 488 and 532 nm with an excess voltage of <20% of the breakdown voltage. The dark count rate was below 100 kHz at room temperature, with the possibility of improving by approximately 35% by reducing the temperature to −5 °C.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00003-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140043203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-06DOI: 10.1038/s44310-024-00002-z
Jiawei Xi, Tsz Kit Yung, Hong Liang, Tan Li, Wing Yim Tam, Jensen Li
Coincidence measurement has become an emerging technique for optical imaging. Based on measuring the second-order coherence g2, sample features such as reflection/transmission amplitude and phase delay can be extracted with developed algorithms pixel-by-pixel. However, an accurate measurement of g2 requires a substantial number of collected photons which becomes difficult under low-light conditions. Here, we propose a deep-learning approach for Jones matrix imaging using photon arrival data directly. A variational autoencoder (β-VAE) is trained using numerical data in an unsupervised manner to obtain a minimal data representation, which can be transformed into an image with little effort. We demonstrate as few as 88 photons collected per pixel on average to extract a Jones matrix image, with accuracy surpassing previous semi-analytic algorithms derived from g2. Our approach not only automates formulating imaging algorithms but can also assess the sufficiency of information from a designed experimental procedure, which can be useful in equipment or algorithm designs for a wide range of imaging applications.
{"title":"Coincidence imaging for Jones matrix with a deep-learning approach","authors":"Jiawei Xi, Tsz Kit Yung, Hong Liang, Tan Li, Wing Yim Tam, Jensen Li","doi":"10.1038/s44310-024-00002-z","DOIUrl":"10.1038/s44310-024-00002-z","url":null,"abstract":"Coincidence measurement has become an emerging technique for optical imaging. Based on measuring the second-order coherence g2, sample features such as reflection/transmission amplitude and phase delay can be extracted with developed algorithms pixel-by-pixel. However, an accurate measurement of g2 requires a substantial number of collected photons which becomes difficult under low-light conditions. Here, we propose a deep-learning approach for Jones matrix imaging using photon arrival data directly. A variational autoencoder (β-VAE) is trained using numerical data in an unsupervised manner to obtain a minimal data representation, which can be transformed into an image with little effort. We demonstrate as few as 88 photons collected per pixel on average to extract a Jones matrix image, with accuracy surpassing previous semi-analytic algorithms derived from g2. Our approach not only automates formulating imaging algorithms but can also assess the sufficiency of information from a designed experimental procedure, which can be useful in equipment or algorithm designs for a wide range of imaging applications.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00002-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140043214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}