首页 > 最新文献

Journal of Experimental & Clinical Cancer Research最新文献

英文 中文
Copy number amplification-induced overexpression of lncRNA LOC101927668 facilitates colorectal cancer progression by recruiting hnRNPD to disrupt RBM47/p53/p21 signaling. 拷贝数扩增诱导的lncRNA LOC101927668过表达通过招募hnRNPD破坏RBM47/p53/p21信号转导而促进结直肠癌的进展。
IF 11.4 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-30 DOI: 10.1186/s13046-024-03193-7
Zaozao Wang, Haibo Han, Chenghai Zhang, Chenxin Wu, Jiabo Di, Pu Xing, Xiaowen Qiao, Kai Weng, Hao Hao, Xinying Yang, Yifan Hou, Beihai Jiang, Xiangqian Su

Background: Somatic copy number alterations (SCNAs) are pivotal in cancer progression and patient prognosis. Dysregulated long non-coding RNAs (lncRNAs), modulated by SCNAs, significantly impact tumorigenesis, including colorectal cancer (CRC). Nonetheless, the functional significance of lncRNAs induced by SCNAs in CRC remains largely unexplored.

Methods: The dysregulated lncRNA LOC101927668, induced by copy number amplification, was identified through comprehensive bioinformatic analyses utilizing multidimensional data. Subsequent in situ hybridization was employed to ascertain the subcellular localization of LOC101927668, and gain- and loss-of-function experiments were conducted to elucidate its role in CRC progression. The downstream targets and signaling pathway influenced by LOC101927668 were identified and validated through a comprehensive approach, encompassing RNA sequencing, RT-qPCR, Western blot analysis, dual-luciferase reporter assay, evaluation of mRNA and protein degradation, and rescue experiments. Analysis of AU-rich elements (AREs) within the mRNA 3' untranslated region (UTR) of the downstream target, along with exploration of putative ARE-binding proteins, was conducted. RNA pull-down, mass spectrometry, RNA immunoprecipitation, and dual-luciferase reporter assays were employed to elucidate potential interacting proteins of LOC101927668 and further delineate the regulatory mechanism between LOC101927668 and its downstream target. Moreover, subcutaneous xenograft and orthotopic liver xenograft tumor models were utilized to evaluate the in vivo impact of LOC101927668 on CRC cells and investigate its correlation with downstream targets.

Results: Significantly overexpressed LOC101927668, driven by chr7p22.3-p14.3 amplification, was markedly correlated with unfavorable clinical outcomes in our CRC patient cohort, as well as in TCGA and GEO datasets. Moreover, we demonstrated that enforced expression of LOC101927668 significantly enhanced cell proliferation, migration, and invasion, while its depletion impeded these processes in a p53-dependent manner. Mechanistically, nucleus-localized LOC101927668 recruited hnRNPD and translocated to the cytoplasm, accelerating the destabilization of RBM47 mRNA, a transcription factor of p53. As a nucleocytoplasmic shuttling protein, hnRNPD mediated RBM47 destabilization by binding to the ARE motif within RBM47 3'UTR, thereby suppressing the p53 signaling pathway and facilitating CRC progression.

Conclusions: The overexpression of LOC101927668, driven by SCNAs, facilitates CRC proliferation and metastasis by recruiting hnRNPD, thus perturbing the RBM47/p53/p21 signaling pathway. These findings underscore the pivotal roles of LOC101927668 and highlight its therapeutic potential in anti-CRC interventions.

背景:体细胞拷贝数改变(SCNAs)在癌症进展和患者预后中起着关键作用。受 SCNAs 调节的失调长非编码 RNAs(lncRNAs)对包括结直肠癌(CRC)在内的肿瘤发生有重大影响。然而,SCNAs 诱导的 lncRNAs 在 CRC 中的功能意义在很大程度上仍未得到探索:方法:通过利用多维数据进行综合生物信息学分析,确定了由拷贝数扩增诱导的失调lncRNA LOC101927668。随后利用原位杂交确定了LOC101927668的亚细胞定位,并进行了功能增益和功能缺失实验,以阐明其在CRC进展中的作用。通过RNA测序、RT-qPCR、Western印迹分析、双荧光素酶报告实验、mRNA和蛋白质降解评估以及挽救实验等综合方法,确定并验证了受LOC101927668影响的下游靶点和信号通路。对下游靶标 mRNA 3' 非翻译区(UTR)内的富含 AU 的元素(ARE)进行了分析,并探索了推定的 ARE 结合蛋白。研究人员采用了 RNA 拉取、质谱分析、RNA 免疫沉淀和双荧光素酶报告实验等方法来阐明 LOC101927668 潜在的相互作用蛋白,并进一步阐明 LOC101927668 与其下游靶标之间的调控机制。此外,研究人员还利用皮下异种移植和正位肝脏异种移植肿瘤模型来评估 LOC101927668 对 CRC 细胞的体内影响,并研究其与下游靶点的相关性:结果:在我们的 CRC 患者队列以及 TCGA 和 GEO 数据集中,由 chr7p22.3-p14.3 扩增驱动的 LOC101927668 的显著过表达与不利的临床结果明显相关。此外,我们还证明,强化表达 LOC101927668 能显著增强细胞的增殖、迁移和侵袭能力,而消耗 LOC101927668 则会以 p53 依赖性方式阻碍这些过程。从机理上讲,细胞核定位的 LOC101927668 招募 hnRNPD 并转位到细胞质,加速了 p53 转录因子 RBM47 mRNA 的不稳定性。作为一种核胞质穿梭蛋白,hnRNPD通过与RBM47 3'UTR内的ARE基团结合,介导了RBM47的脱稳,从而抑制了p53信号通路,促进了CRC的进展:结论:在SCNAs的驱动下,LOC101927668的过表达通过招募hnRNPD促进了CRC的增殖和转移,从而扰乱了RBM47/p53/p21信号通路。这些发现强调了LOC101927668的关键作用,并突出了其在抗CRC干预中的治疗潜力。
{"title":"Copy number amplification-induced overexpression of lncRNA LOC101927668 facilitates colorectal cancer progression by recruiting hnRNPD to disrupt RBM47/p53/p21 signaling.","authors":"Zaozao Wang, Haibo Han, Chenghai Zhang, Chenxin Wu, Jiabo Di, Pu Xing, Xiaowen Qiao, Kai Weng, Hao Hao, Xinying Yang, Yifan Hou, Beihai Jiang, Xiangqian Su","doi":"10.1186/s13046-024-03193-7","DOIUrl":"10.1186/s13046-024-03193-7","url":null,"abstract":"<p><strong>Background: </strong>Somatic copy number alterations (SCNAs) are pivotal in cancer progression and patient prognosis. Dysregulated long non-coding RNAs (lncRNAs), modulated by SCNAs, significantly impact tumorigenesis, including colorectal cancer (CRC). Nonetheless, the functional significance of lncRNAs induced by SCNAs in CRC remains largely unexplored.</p><p><strong>Methods: </strong>The dysregulated lncRNA LOC101927668, induced by copy number amplification, was identified through comprehensive bioinformatic analyses utilizing multidimensional data. Subsequent in situ hybridization was employed to ascertain the subcellular localization of LOC101927668, and gain- and loss-of-function experiments were conducted to elucidate its role in CRC progression. The downstream targets and signaling pathway influenced by LOC101927668 were identified and validated through a comprehensive approach, encompassing RNA sequencing, RT-qPCR, Western blot analysis, dual-luciferase reporter assay, evaluation of mRNA and protein degradation, and rescue experiments. Analysis of AU-rich elements (AREs) within the mRNA 3' untranslated region (UTR) of the downstream target, along with exploration of putative ARE-binding proteins, was conducted. RNA pull-down, mass spectrometry, RNA immunoprecipitation, and dual-luciferase reporter assays were employed to elucidate potential interacting proteins of LOC101927668 and further delineate the regulatory mechanism between LOC101927668 and its downstream target. Moreover, subcutaneous xenograft and orthotopic liver xenograft tumor models were utilized to evaluate the in vivo impact of LOC101927668 on CRC cells and investigate its correlation with downstream targets.</p><p><strong>Results: </strong>Significantly overexpressed LOC101927668, driven by chr7p22.3-p14.3 amplification, was markedly correlated with unfavorable clinical outcomes in our CRC patient cohort, as well as in TCGA and GEO datasets. Moreover, we demonstrated that enforced expression of LOC101927668 significantly enhanced cell proliferation, migration, and invasion, while its depletion impeded these processes in a p53-dependent manner. Mechanistically, nucleus-localized LOC101927668 recruited hnRNPD and translocated to the cytoplasm, accelerating the destabilization of RBM47 mRNA, a transcription factor of p53. As a nucleocytoplasmic shuttling protein, hnRNPD mediated RBM47 destabilization by binding to the ARE motif within RBM47 3'UTR, thereby suppressing the p53 signaling pathway and facilitating CRC progression.</p><p><strong>Conclusions: </strong>The overexpression of LOC101927668, driven by SCNAs, facilitates CRC proliferation and metastasis by recruiting hnRNPD, thus perturbing the RBM47/p53/p21 signaling pathway. These findings underscore the pivotal roles of LOC101927668 and highlight its therapeutic potential in anti-CRC interventions.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440719/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Focusing on CD8+ T-cell phenotypes: improving solid tumor therapy. 关注 CD8+ T 细胞表型:改善实体瘤治疗。
IF 11.4 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-28 DOI: 10.1186/s13046-024-03195-5
Zhouchi Yao, Yayun Zeng, Cheng Liu, Huimin Jin, Hong Wang, Yue Zhang, Chengming Ding, Guodong Chen, Daichao Wu

Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.

活跃的 CD8+ T 细胞在识别肿瘤细胞和抗击实体瘤方面发挥着至关重要的作用。T 细胞如何有效识别和靶向肿瘤抗原,以及如何在实体瘤微环境的 "排斥 "中保持活性,是人们关注的主要问题。最近,人们对 CD8+ T 细胞的免疫学轨迹和寿命的认识取得了进展,这为设计更优化的抗肿瘤免疫疗法方案提供了指导。在此,我们回顾了新发现的增强 CD8+ T 细胞抗实体瘤功能的方法,重点是优化 T 细胞受体(TCR)表达、改善工程 T 细胞的抗原识别、增强 TCR-CD3 复合物的信号转导、诱导多克隆功能 T 细胞向肿瘤归巢、逆转 T 细胞在慢性抗原刺激下的衰竭以及重编程 T 细胞的能量和代谢途径。我们还讨论了如何参与 CD8+ T 细胞的表观遗传变化,以调节抗肿瘤反应的两个关键指标,即有效性和持久性。
{"title":"Focusing on CD8<sup>+</sup> T-cell phenotypes: improving solid tumor therapy.","authors":"Zhouchi Yao, Yayun Zeng, Cheng Liu, Huimin Jin, Hong Wang, Yue Zhang, Chengming Ding, Guodong Chen, Daichao Wu","doi":"10.1186/s13046-024-03195-5","DOIUrl":"https://doi.org/10.1186/s13046-024-03195-5","url":null,"abstract":"<p><p>Vigorous CD8<sup>+</sup> T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the \"rejection\" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8<sup>+</sup> T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8<sup>+</sup> T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8<sup>+</sup> T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inactivation of HIPK2 attenuates KRASG12D activity and prevents pancreatic tumorigenesis. HIPK2 失活可减轻 KRASG12D 的活性并防止胰腺肿瘤发生。
IF 11.4 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-28 DOI: 10.1186/s13046-024-03189-3
Silvia Sozzi, Isabella Manni, Cristiana Ercolani, Maria Grazia Diodoro, Armando Bartolazzi, Francesco Spallotta, Giulia Piaggio, Laura Monteonofrio, Silvia Soddu, Cinzia Rinaldo, Davide Valente

Background: Pancreatic ductal adenocarcinoma (PDAC) features KRAS mutations in approximately 90% of human cases and excessive stromal response, termed desmoplastic reaction. Oncogenic KRAS drives pancreatic carcinogenesis by acting on both epithelial cells and tumor microenvironment (TME). We have previously shown that Homeodomain-Interacting Protein Kinase 2 (HIPK2) cooperates with KRAS in sustaining ERK1/2 phosphorylation in human colorectal cancers. Here, we investigated whether HIPK2 contributes to oncogenic KRAS-driven tumorigenesis in vivo, in the onset of pancreatic cancer.

Methods: We employed an extensively characterized model of KRASG12D-dependent preinvasive PDAC, the Pdx1-Cre;LSL-KRasG12D/+ (KC) mice. In these mice, HIPK2 was inhibited by genetic knockout in the pancreatic epithelial cells (KCH-/-) or by pharmacologic inactivation with the small molecule 5-IodoTubercidin (5-ITu). The development of preneoplastic acinar-to-ductal metaplasia (ADM), intraepithelial neoplasia (PanIN), and their associated desmoplastic reaction were analyzed.

Results: In Hipk2-KO mice (KCH-/-), ERK phosphorylation was lowered, the appearance of ADM was slowed down, and both the number and pathologic grade of PanIN were reduced compared to Hipk2-WT KC mice. The pancreatic lesion phenotype in KCH-/- mice was characterized by abundant collagen fibers and reduced number of αSMA+ and pSTAT3+ desmoplastic cells. These features were reminiscent of the recently described human "deserted" sub-TME, poor in cells, rich in matrix, and associated with tumor differentiation. In contrast, the desmoplastic reaction of KC mice resembled the "reactive" sub-TME, rich in stromal cells and associated with tumor progression. These observations were confirmed by the pharmacologic inhibition of HIPK2 in KC mice.

Conclusion: This study demonstrates that HIPK2 inhibition weakens oncogenic KRAS activity and pancreatic tumorigenesis providing a rationale for testing HIPK2 inhibitors to mitigate the incidence of PDAC development in high-risk individuals.

背景:约 90% 的人类胰腺导管腺癌 (PDAC) 具有 KRAS 突变和过度基质反应(脱瘤反应)的特征。致癌 KRAS 通过作用于上皮细胞和肿瘤微环境 (TME) 推动胰腺癌的发生。我们之前研究发现,同源多聚酶域相互作用蛋白激酶 2(HIPK2)与 KRAS 相互合作,维持人类结直肠癌中 ERK1/2 的磷酸化。在此,我们研究了在胰腺癌发病过程中,HIPK2 是否有助于体内 KRAS 驱动的肿瘤发生:我们采用了一种具有广泛特征的 KRASG12D 依赖性浸润前 PDAC 模型--Pdx1-Cre;LSL-KRasG12D/+(KC)小鼠。在这些小鼠中,通过基因敲除胰腺上皮细胞(KCH-/-)或使用小分子 5-ITu 抑制 HIPK2。结果分析了肿瘤前针尖至导管化生(ADM)、上皮内瘤变(PanIN)的发展及其相关的去瘤反应:结果:与Hipk2-WT KC小鼠相比,Hipk2-KO小鼠(KCH-/-)的ERK磷酸化程度降低,ADM的出现速度减慢,PanIN的数量和病理级别降低。KCH-/- 小鼠胰腺病变表型的特点是胶原纤维丰富,αSMA+ 和 pSTAT3+ 去增生细胞数量减少。这些特征让人联想到最近描述的人类 "荒废的 "亚 TME,细胞少,基质丰富,与肿瘤分化有关。相反,KC 小鼠的脱鳞反应类似于 "反应性 "亚 TME,富含基质细胞,与肿瘤进展有关。在 KC 小鼠体内对 HIPK2 进行药物抑制证实了这些观察结果:本研究表明,抑制 HIPK2 可减弱致癌 KRAS 的活性和胰腺肿瘤的发生,为测试 HIPK2 抑制剂以降低高危人群 PDAC 的发病率提供了理论依据。
{"title":"Inactivation of HIPK2 attenuates KRAS<sup>G12D</sup> activity and prevents pancreatic tumorigenesis.","authors":"Silvia Sozzi, Isabella Manni, Cristiana Ercolani, Maria Grazia Diodoro, Armando Bartolazzi, Francesco Spallotta, Giulia Piaggio, Laura Monteonofrio, Silvia Soddu, Cinzia Rinaldo, Davide Valente","doi":"10.1186/s13046-024-03189-3","DOIUrl":"10.1186/s13046-024-03189-3","url":null,"abstract":"<p><strong>Background: </strong>Pancreatic ductal adenocarcinoma (PDAC) features KRAS mutations in approximately 90% of human cases and excessive stromal response, termed desmoplastic reaction. Oncogenic KRAS drives pancreatic carcinogenesis by acting on both epithelial cells and tumor microenvironment (TME). We have previously shown that Homeodomain-Interacting Protein Kinase 2 (HIPK2) cooperates with KRAS in sustaining ERK1/2 phosphorylation in human colorectal cancers. Here, we investigated whether HIPK2 contributes to oncogenic KRAS-driven tumorigenesis in vivo, in the onset of pancreatic cancer.</p><p><strong>Methods: </strong>We employed an extensively characterized model of KRAS<sup>G12D</sup>-dependent preinvasive PDAC, the Pdx1-Cre;LSL-KRas<sup>G12D/+</sup> (KC) mice. In these mice, HIPK2 was inhibited by genetic knockout in the pancreatic epithelial cells (KCH<sup>-/-</sup>) or by pharmacologic inactivation with the small molecule 5-IodoTubercidin (5-ITu). The development of preneoplastic acinar-to-ductal metaplasia (ADM), intraepithelial neoplasia (PanIN), and their associated desmoplastic reaction were analyzed.</p><p><strong>Results: </strong>In Hipk2-KO mice (KCH<sup>-/-</sup>), ERK phosphorylation was lowered, the appearance of ADM was slowed down, and both the number and pathologic grade of PanIN were reduced compared to Hipk2-WT KC mice. The pancreatic lesion phenotype in KCH<sup>-/-</sup> mice was characterized by abundant collagen fibers and reduced number of αSMA<sup>+</sup> and pSTAT3<sup>+</sup> desmoplastic cells. These features were reminiscent of the recently described human \"deserted\" sub-TME, poor in cells, rich in matrix, and associated with tumor differentiation. In contrast, the desmoplastic reaction of KC mice resembled the \"reactive\" sub-TME, rich in stromal cells and associated with tumor progression. These observations were confirmed by the pharmacologic inhibition of HIPK2 in KC mice.</p><p><strong>Conclusion: </strong>This study demonstrates that HIPK2 inhibition weakens oncogenic KRAS activity and pancreatic tumorigenesis providing a rationale for testing HIPK2 inhibitors to mitigate the incidence of PDAC development in high-risk individuals.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of cfDNA and ctDNA to improve the risk stratification and the disease follow-up in patients with endometrial cancer: towards the clinical application. cfDNA 和 ctDNA 在改善子宫内膜癌患者风险分层和疾病随访中的作用:走向临床应用。
IF 11.4 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-20 DOI: 10.1186/s13046-024-03158-w
Carlos Casas-Arozamena, Ana Vilar, Juan Cueva, Efigenia Arias, Victoria Sampayo, Eva Diaz, Sara S Oltra, Cristian Pablo Moiola, Silvia Cabrera, Alexandra Cortegoso, Teresa Curiel, Alicia Abalo, Mónica Pamies Serrano, Santiago Domingo, Pablo Padilla-Iserte, Marta Arnaez de la Cruz, Alicia Hernández, Virginia García-Pineda, Juan Ruiz-Bañobre, Rafael López, Xavier Matias-Guiu, Eva Colás, Antonio Gil-Moreno, Miguel Abal, Gema Moreno-Bueno, Laura Muinelo-Romay

Background: There has been a rise in endometrial cancer (EC) incidence leading to increased mortality. To counter this trend, improving the stratification of post-surgery recurrence risk and anticipating disease relapse and treatment resistance is essential. Liquid biopsy analyses offer a promising tool for these clinical challenges, though the best strategy for applying them in EC must be defined. This study was designed to determine the value of cfDNA/ctDNA monitoring in improving the clinical management of patients with localized and recurrent disease.

Methods: Plasma samples and uterine aspirates (UA) from 198 EC patients were collected at surgery and over time. The genetic landscape of UAs was characterized using targeted sequencing. Total cfDNA was analyzed for ctDNA presence based on the UA mutational profile.

Results: High cfDNA levels and detectable ctDNA at baseline correlated with poor prognosis for DFS (p-value < 0.0001; HR = 9.25) and DSS (p-value < 0.0001; HR = 11.20). This remained clinically significant when stratifying tumors by histopathological risk factors. Of note, cfDNA/ctDNA analyses discriminated patients with early post-surgery relapse and the ctDNA kinetics served to identify patients undergoing relapse before any clinical evidence emerged.

Conclusions: This is the most comprehensive study on cfDNA/ctDNA characterization in EC, demonstrating its value in improving risk stratification and anticipating disease relapse in patients with localized disease. CtDNA kinetics assessment complements current strategies to monitor the disease evolution and the treatment response. Therefore, implementing cfDNA/ctDNA monitoring in clinical routines offers a unique opportunity to improve EC management.

Translational relevance: The study demonstrates that high levels of cfDNA and detectable ctDNA at baseline are strong indicators of poor prognosis. This enables more accurate risk stratification beyond traditional histopathological factors, allowing clinicians to identify high-risk patients who may benefit from more aggressive treatment and closer monitoring. Moreover, longitudinal analysis of cfDNA/ctDNA can detect disease recurrence months before clinical symptoms or imaging evidence appear. This early warning system offers a significant advantage in clinical practice, providing a window of opportunity for early intervention and potentially improving patient outcomes.

背景:子宫内膜癌(EC)发病率上升,导致死亡率增加。为应对这一趋势,改善手术后复发风险分层、预测疾病复发和耐药性至关重要。液体活检分析为应对这些临床挑战提供了一种前景广阔的工具,但将其应用于子宫内膜癌的最佳策略仍有待确定。本研究旨在确定 cfDNA/ctDNA 监测在改善局部复发患者临床管理方面的价值:方法:收集了 198 例子宫内膜癌患者手术时和手术后的血浆样本和子宫腔穿刺液(UA)。采用靶向测序技术确定了子宫穿刺抽液的遗传特征。根据UA的突变情况,分析了cfDNA总量,以确定是否存在ctDNA:结果:高水平的 cfDNA 和基线时可检测到的 ctDNA 与 DFS 的不良预后相关(p 值 结论:高水平的 cfDNA 和基线时可检测到的 ctDNA 与 DFS 的不良预后相关(p 值):这是关于 EC 中 cfDNA/ctDNA 特征的最全面研究,证明了其在改善局部疾病患者的风险分层和预测疾病复发方面的价值。CtDNA 动力学评估补充了目前监测疾病演变和治疗反应的策略。因此,在临床常规中实施 cfDNA/ctDNA 监测为改善心血管疾病的管理提供了一个独特的机会:该研究表明,基线高水平的 cfDNA 和可检测到的 ctDNA 是预后不良的有力指标。除了传统的组织病理学因素外,这还能进行更准确的风险分层,使临床医生能够识别可能受益于更积极治疗和更密切监测的高危患者。此外,对 cfDNA/ctDNA 的纵向分析可以在临床症状或影像学证据出现前几个月发现疾病复发。这种早期预警系统在临床实践中具有显著优势,为早期干预提供了机会之窗,并有可能改善患者的预后。
{"title":"Role of cfDNA and ctDNA to improve the risk stratification and the disease follow-up in patients with endometrial cancer: towards the clinical application.","authors":"Carlos Casas-Arozamena, Ana Vilar, Juan Cueva, Efigenia Arias, Victoria Sampayo, Eva Diaz, Sara S Oltra, Cristian Pablo Moiola, Silvia Cabrera, Alexandra Cortegoso, Teresa Curiel, Alicia Abalo, Mónica Pamies Serrano, Santiago Domingo, Pablo Padilla-Iserte, Marta Arnaez de la Cruz, Alicia Hernández, Virginia García-Pineda, Juan Ruiz-Bañobre, Rafael López, Xavier Matias-Guiu, Eva Colás, Antonio Gil-Moreno, Miguel Abal, Gema Moreno-Bueno, Laura Muinelo-Romay","doi":"10.1186/s13046-024-03158-w","DOIUrl":"https://doi.org/10.1186/s13046-024-03158-w","url":null,"abstract":"<p><strong>Background: </strong>There has been a rise in endometrial cancer (EC) incidence leading to increased mortality. To counter this trend, improving the stratification of post-surgery recurrence risk and anticipating disease relapse and treatment resistance is essential. Liquid biopsy analyses offer a promising tool for these clinical challenges, though the best strategy for applying them in EC must be defined. This study was designed to determine the value of cfDNA/ctDNA monitoring in improving the clinical management of patients with localized and recurrent disease.</p><p><strong>Methods: </strong>Plasma samples and uterine aspirates (UA) from 198 EC patients were collected at surgery and over time. The genetic landscape of UAs was characterized using targeted sequencing. Total cfDNA was analyzed for ctDNA presence based on the UA mutational profile.</p><p><strong>Results: </strong>High cfDNA levels and detectable ctDNA at baseline correlated with poor prognosis for DFS (p-value < 0.0001; HR = 9.25) and DSS (p-value < 0.0001; HR = 11.20). This remained clinically significant when stratifying tumors by histopathological risk factors. Of note, cfDNA/ctDNA analyses discriminated patients with early post-surgery relapse and the ctDNA kinetics served to identify patients undergoing relapse before any clinical evidence emerged.</p><p><strong>Conclusions: </strong>This is the most comprehensive study on cfDNA/ctDNA characterization in EC, demonstrating its value in improving risk stratification and anticipating disease relapse in patients with localized disease. CtDNA kinetics assessment complements current strategies to monitor the disease evolution and the treatment response. Therefore, implementing cfDNA/ctDNA monitoring in clinical routines offers a unique opportunity to improve EC management.</p><p><strong>Translational relevance: </strong>The study demonstrates that high levels of cfDNA and detectable ctDNA at baseline are strong indicators of poor prognosis. This enables more accurate risk stratification beyond traditional histopathological factors, allowing clinicians to identify high-risk patients who may benefit from more aggressive treatment and closer monitoring. Moreover, longitudinal analysis of cfDNA/ctDNA can detect disease recurrence months before clinical symptoms or imaging evidence appear. This early warning system offers a significant advantage in clinical practice, providing a window of opportunity for early intervention and potentially improving patient outcomes.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414036/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo CAR T cell therapy against angioimmunoblastic T cell lymphoma 针对血管免疫母细胞性 T 细胞淋巴瘤的体内 CAR T 细胞疗法
IF 11.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-14 DOI: 10.1186/s13046-024-03179-5
Adrien Krug, Aymen Saidane, Chiara Martinello, Floriane Fusil, Alexander Michels, Christian J. Buchholz, Jean-Ehrland Ricci, Els Verhoeyen
For angioimmunoblastic T cell lymphoma (AITL), a rare cancer, no specific treatments are available and survival outcome is poor. We previously developed a murine model for AITL that mimics closely human disease and allows to evaluate new treatments. As in human AITL, the murine CD4+ follicular helper T (Tfh) cells are drivers of the malignancy. Therefore, chimeric antigen receptor (CAR) T cell therapy might represent a new therapeutic option. To prevent fratricide among CAR T cells when delivering an CD4-specific CAR, we used a lentiviral vector (LV) encoding an anti-CD4 CAR, allowing exclusive entry into CD8 T cells. These anti-CD4CAR CD8-targeted LVs achieved in murine AITL biopsies high CAR-expression levels in CD8 T cells. Malignant CD4 Tfh cells were eliminated from the mAITL lymphoma, while the CAR + CD8 T cells expanded upon encounter with the CD4 receptor and were shaped into functional cytotoxic cells. Finally, in vivo injection of the CAR + CD8-LVs into our preclinical AITL mouse model carrying lymphomas, significantly prolonged mice survival. Moreover, the in vivo generated functional CAR + CD8 T cells efficiently reduced neoplastic T cell numbers in the mAITL tumors. This is the first description of in vivo generated CAR T cells for therapy of a T cell lymphoma. The strategy described offers a new therapeutic concept for patients suffering from CD4-driven T cell lymphomas.
血管免疫母细胞T细胞淋巴瘤(AITL)是一种罕见的癌症,目前尚无特效治疗方法,生存率很低。我们之前开发了一种血管免疫母细胞淋巴瘤小鼠模型,该模型与人类疾病非常相似,可用于评估新疗法。与人类 AITL 一样,小鼠 CD4+ 滤泡辅助性 T(Tfh)细胞是恶性肿瘤的驱动因素。因此,嵌合抗原受体(CAR)T细胞疗法可能是一种新的治疗选择。为了在递送 CD4 特异性 CAR 时防止 CAR T 细胞自相残杀,我们使用了编码抗 CD4 CAR 的慢病毒载体 (LV),使其能独家进入 CD8 T 细胞。在小鼠 AITL 活检中,这些抗 CD4CAR CD8 靶向 LV 在 CD8 T 细胞中实现了高 CAR 表达水平。恶性 CD4 Tfh 细胞从 mAITL 淋巴瘤中被清除,而 CAR + CD8 T 细胞在与 CD4 受体相遇后得到扩增,并形成功能性细胞毒性细胞。最后,将 CAR + CD8-LVs 体内注射到携带淋巴瘤的临床前 AITL 小鼠模型中,可显著延长小鼠的存活时间。此外,体内生成的功能性 CAR + CD8 T 细胞有效减少了 mAITL 肿瘤中的肿瘤性 T 细胞数量。这是首次描述体内生成的 CAR T 细胞用于治疗 T 细胞淋巴瘤。所述策略为 CD4 驱动的 T 细胞淋巴瘤患者提供了一种新的治疗理念。
{"title":"In vivo CAR T cell therapy against angioimmunoblastic T cell lymphoma","authors":"Adrien Krug, Aymen Saidane, Chiara Martinello, Floriane Fusil, Alexander Michels, Christian J. Buchholz, Jean-Ehrland Ricci, Els Verhoeyen","doi":"10.1186/s13046-024-03179-5","DOIUrl":"https://doi.org/10.1186/s13046-024-03179-5","url":null,"abstract":"For angioimmunoblastic T cell lymphoma (AITL), a rare cancer, no specific treatments are available and survival outcome is poor. We previously developed a murine model for AITL that mimics closely human disease and allows to evaluate new treatments. As in human AITL, the murine CD4+ follicular helper T (Tfh) cells are drivers of the malignancy. Therefore, chimeric antigen receptor (CAR) T cell therapy might represent a new therapeutic option. To prevent fratricide among CAR T cells when delivering an CD4-specific CAR, we used a lentiviral vector (LV) encoding an anti-CD4 CAR, allowing exclusive entry into CD8 T cells. These anti-CD4CAR CD8-targeted LVs achieved in murine AITL biopsies high CAR-expression levels in CD8 T cells. Malignant CD4 Tfh cells were eliminated from the mAITL lymphoma, while the CAR + CD8 T cells expanded upon encounter with the CD4 receptor and were shaped into functional cytotoxic cells. Finally, in vivo injection of the CAR + CD8-LVs into our preclinical AITL mouse model carrying lymphomas, significantly prolonged mice survival. Moreover, the in vivo generated functional CAR + CD8 T cells efficiently reduced neoplastic T cell numbers in the mAITL tumors. This is the first description of in vivo generated CAR T cells for therapy of a T cell lymphoma. The strategy described offers a new therapeutic concept for patients suffering from CD4-driven T cell lymphomas.","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell therapy using ex vivo reprogrammed macrophages enhances antitumor immune responses in melanoma 利用体外重编程巨噬细胞的细胞疗法可增强黑色素瘤的抗肿瘤免疫反应
IF 11.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-14 DOI: 10.1186/s13046-024-03182-w
Satish kumar Reddy Noonepalle, Maria Gracia-Hernandez, Nima Aghdam, Michael Berrigan, Hawa Coulibaly, Xintang Li, Christian Zevallos-Delgado, Andrew Pletcher, Bryan Weselman, Erica Palmer, Tessa Knox, Eduardo Sotomayor, Katherine B. Chiappinelli, Duncan Wardrop, Anelia Horvath, Brett A. Shook, Norman Lee, Anatoly Dritschilo, Rohan Fernandes, Karthik Musunuri, Maho Shibata, Alejandro Villagra
Macrophage-based cell therapies have shown modest success in clinical trials, which can be attributed to their phenotypic plasticity, where transplanted macrophages get reprogrammed towards a pro-tumor phenotype. In most tumor types, including melanoma, the balance between antitumor M1-like and tumor-promoting M2-like macrophages is critical in defining the local immune response with a higher M1/M2 ratio favoring antitumor immunity. Therefore, designing novel strategies to increase the M1/M2 ratio in the TME has high clinical significance and benefits macrophage-based cell therapies. In this study, we reprogrammed antitumor and proinflammatory macrophages ex-vivo with HDAC6 inhibitors (HDAC6i). We administered the reprogrammed macrophages intratumorally as an adoptive cell therapy (ACT) in the syngeneic SM1 murine melanoma model and patient-derived xenograft bearing NSG-SGM3 humanized mouse models. We phenotyped the tumor-infiltrated immune cells by flow cytometry and histological analysis of tumor sections for macrophage markers. We performed bulk RNA-seq profiling of murine bone marrow-derived macrophages treated with vehicle or HDAC6i and single-cell RNA-seq profiling of SM1 tumor-infiltrated immune cells to determine the effect of intratumor macrophage ACT on the tumor microenvironment (TME). We further analyzed the single-cell data to identify key cell-cell interactions and trajectory analysis to determine the fate of tumor-associated macrophages post-ACT. Macrophage ACT resulted in diminished tumor growth in both mouse models. We also demonstrated that HDAC6 inhibition in macrophages suppressed the polarization toward tumor-promoting phenotype by attenuating STAT3-mediated M2 reprogramming. Two weeks post-transplantation, ACT macrophages were viable, and inhibition of HDAC6 rendered intratumor transplanted M1 macrophages resistant to repolarization towards protumor M2 phenotype in-vivo. Further characterization of tumors by flow cytometry, single-cell transcriptomics, and single-cell secretome analyses revealed a significant enrichment of antitumor M1-like macrophages, resulting in increased M1/M2 ratio and infiltration of CD8 effector T-cells. Computational analysis of single-cell RNA-seq data for cell-cell interactions and trajectory analyses indicated activation of monocytes and T-cells in the TME. In summary, for the first time, we demonstrated the potential of reprogramming macrophages ex-vivo with HDAC6 inhibitors as a viable macrophage cell therapy to treat solid tumors.
基于巨噬细胞的细胞疗法在临床试验中取得了一定的成功,这可归因于它们的表型可塑性,即移植的巨噬细胞会被重新编程,变成有利于肿瘤的表型。在包括黑色素瘤在内的大多数肿瘤类型中,抗肿瘤的M1样巨噬细胞和促进肿瘤的M2样巨噬细胞之间的平衡对于确定局部免疫反应至关重要,较高的M1/M2比例有利于抗肿瘤免疫。因此,设计新的策略来提高TME中的M1/M2比例具有很高的临床意义,并有利于基于巨噬细胞的细胞疗法。在这项研究中,我们用 HDAC6 抑制剂(HDAC6i)对体内外的抗肿瘤巨噬细胞和促炎巨噬细胞进行了重编程。我们将重编程的巨噬细胞作为一种采用性细胞疗法(ACT),在合成SM1小鼠黑色素瘤模型和患者异种移植的NSG-SGM3人源化小鼠模型中进行肿瘤内注射。我们通过流式细胞术对肿瘤浸润免疫细胞进行了表型分析,并对肿瘤切片的巨噬细胞标记物进行了组织学分析。我们对用药物或 HDAC6i 处理的小鼠骨髓衍生巨噬细胞进行了批量 RNA-seq 分析,并对 SM1 肿瘤浸润免疫细胞进行了单细胞 RNA-seq 分析,以确定肿瘤内巨噬细胞 ACT 对肿瘤微环境 (TME) 的影响。我们进一步分析了单细胞数据,以确定关键的细胞-细胞相互作用,并进行了轨迹分析,以确定ACT后肿瘤相关巨噬细胞的命运。巨噬细胞ACT导致两种小鼠模型的肿瘤生长减弱。我们还证明,通过抑制 STAT3 介导的 M2 重编程,巨噬细胞中的 HDAC6 抑制了向肿瘤促进表型的极化。移植后两周,ACT巨噬细胞仍有生命力,抑制HDAC6可使肿瘤内移植的M1巨噬细胞在体内抗原肿瘤M2表型的极化。通过流式细胞术、单细胞转录组学和单细胞分泌组分析对肿瘤进行进一步鉴定后发现,抗肿瘤 M1 样巨噬细胞显著富集,导致 M1/M2 比率增加和 CD8 效应 T 细胞浸润。对单细胞 RNA-seq 数据进行的细胞间相互作用计算分析和轨迹分析表明,TME 中的单核细胞和 T 细胞被激活。总之,我们首次证明了用HDAC6抑制剂对体内外巨噬细胞进行重编程作为一种可行的巨噬细胞疗法来治疗实体瘤的潜力。
{"title":"Cell therapy using ex vivo reprogrammed macrophages enhances antitumor immune responses in melanoma","authors":"Satish kumar Reddy Noonepalle, Maria Gracia-Hernandez, Nima Aghdam, Michael Berrigan, Hawa Coulibaly, Xintang Li, Christian Zevallos-Delgado, Andrew Pletcher, Bryan Weselman, Erica Palmer, Tessa Knox, Eduardo Sotomayor, Katherine B. Chiappinelli, Duncan Wardrop, Anelia Horvath, Brett A. Shook, Norman Lee, Anatoly Dritschilo, Rohan Fernandes, Karthik Musunuri, Maho Shibata, Alejandro Villagra","doi":"10.1186/s13046-024-03182-w","DOIUrl":"https://doi.org/10.1186/s13046-024-03182-w","url":null,"abstract":"Macrophage-based cell therapies have shown modest success in clinical trials, which can be attributed to their phenotypic plasticity, where transplanted macrophages get reprogrammed towards a pro-tumor phenotype. In most tumor types, including melanoma, the balance between antitumor M1-like and tumor-promoting M2-like macrophages is critical in defining the local immune response with a higher M1/M2 ratio favoring antitumor immunity. Therefore, designing novel strategies to increase the M1/M2 ratio in the TME has high clinical significance and benefits macrophage-based cell therapies. In this study, we reprogrammed antitumor and proinflammatory macrophages ex-vivo with HDAC6 inhibitors (HDAC6i). We administered the reprogrammed macrophages intratumorally as an adoptive cell therapy (ACT) in the syngeneic SM1 murine melanoma model and patient-derived xenograft bearing NSG-SGM3 humanized mouse models. We phenotyped the tumor-infiltrated immune cells by flow cytometry and histological analysis of tumor sections for macrophage markers. We performed bulk RNA-seq profiling of murine bone marrow-derived macrophages treated with vehicle or HDAC6i and single-cell RNA-seq profiling of SM1 tumor-infiltrated immune cells to determine the effect of intratumor macrophage ACT on the tumor microenvironment (TME). We further analyzed the single-cell data to identify key cell-cell interactions and trajectory analysis to determine the fate of tumor-associated macrophages post-ACT. Macrophage ACT resulted in diminished tumor growth in both mouse models. We also demonstrated that HDAC6 inhibition in macrophages suppressed the polarization toward tumor-promoting phenotype by attenuating STAT3-mediated M2 reprogramming. Two weeks post-transplantation, ACT macrophages were viable, and inhibition of HDAC6 rendered intratumor transplanted M1 macrophages resistant to repolarization towards protumor M2 phenotype in-vivo. Further characterization of tumors by flow cytometry, single-cell transcriptomics, and single-cell secretome analyses revealed a significant enrichment of antitumor M1-like macrophages, resulting in increased M1/M2 ratio and infiltration of CD8 effector T-cells. Computational analysis of single-cell RNA-seq data for cell-cell interactions and trajectory analyses indicated activation of monocytes and T-cells in the TME. In summary, for the first time, we demonstrated the potential of reprogramming macrophages ex-vivo with HDAC6 inhibitors as a viable macrophage cell therapy to treat solid tumors.","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recruitment of USP10 by GCS1 to deubiquitinate GRP78 promotes the progression of colorectal cancer via alleviating endoplasmic reticulum stress GCS1 招募 USP10 对 GRP78 进行去泛素化,通过缓解内质网应激促进结直肠癌的进展
IF 11.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-13 DOI: 10.1186/s13046-024-03176-8
Yang Chen, Hengyang Shen, Zhenling Wang, Changzhi Huang, Hongqiang Zhang, Yu Shao, Ying Tong, Lei Xu, Yunfei Lu, Zan Fu
Long-term accumulation of misfolded proteins leads to endoplasmic reticulum (ER) stress in colorectal cancer (CRC). However, the precise pathways controlling the decision between survival and apoptosis in CRC are unclear. Therefore, in this study, we investigated the function and molecular mechanism of glucosidase I (GCS1) in regulating ER stress in CRC. A public database was used to confirm the expression level of GCS1 in CRC and normal tissues. Clinical samples from our center were used to confirm the mRNA and protein expression levels of GCS1. Cell proliferation, migration, invasion, and apoptosis assays revealed the biological role of GCS1. Immunohistochemical techniques were used to evaluate the expression of key proteins in subcutaneous implanted tumors in nude mice, which provided further evidence for the biological function of GCS1 in promoting cancer in vivo. The results of coimmunoprecipitation-mass spectrometry analysis and immunofluorescence colocalization analysis the interaction between GCS1 and GRP78. In addition, the mechanism of action of USP10, GRP78, and GCS1 at the post- translational level was investigated. Finally, a tissue microarray was used to examine the connection between GCS1 and GRP78 expression and intracellular localization of these proteins using immunohistochemistry and immunofluorescence. The experimental results revealed that GCS1 was substantially expressed in CRC, with higher expression indicating a worse prognosis. Thus, GCS1 can enhance the proliferation and metastasis while inhibiting the apoptosis of CRC cells both in vivo and in vitro. Mechanistically, GCS1 binds to GRP78, recruits USP10 for deubiquitination of GRP78 to promote its degradation, and decreases ER stress-mediated apoptosis, increasing CRC cell proliferation and metastasis. In summary, GCS1 stimulates CRC growth and migration and reduces ER stress-mediated apoptosis via USP10-mediated deubiquitination of GRP78. Our findings identify a possible therapeutic target for CRC.
错误折叠蛋白的长期积累会导致结直肠癌(CRC)出现内质网(ER)应激。然而,控制 CRC 生存与凋亡之间决定的确切途径尚不清楚。因此,本研究调查了葡萄糖苷酶 I(GCS1)在调控 CRC ER 应激中的功能和分子机制。我们利用公共数据库确认了 GCS1 在 CRC 和正常组织中的表达水平。本中心的临床样本用于确认 GCS1 的 mRNA 和蛋白表达水平。细胞增殖、迁移、侵袭和凋亡试验揭示了 GCS1 的生物学作用。免疫组化技术用于评估裸鼠皮下植入肿瘤中关键蛋白的表达,进一步证明了 GCS1 在体内促癌的生物学功能。免疫共沉淀-质谱分析和免疫荧光共定位分析结果表明,GCS1 与 GRP78 之间存在相互作用。此外,还研究了 USP10、GRP78 和 GCS1 在翻译后水平的作用机制。最后,利用组织芯片,采用免疫组化和免疫荧光技术研究了 GCS1 和 GRP78 的表达与细胞内定位之间的联系。实验结果显示,GCS1 在 CRC 中大量表达,表达量越高预后越差。因此,GCS1 在体内和体外都能增强 CRC 细胞的增殖和转移,同时抑制其凋亡。从机理上讲,GCS1 与 GRP78 结合,招募 USP10 对 GRP78 进行去泛素化以促进其降解,减少 ER 应激介导的细胞凋亡,从而增加 CRC 细胞的增殖和转移。总之,GCS1 通过 USP10 介导的 GRP78 去泛素化作用刺激 CRC 的生长和迁移,并减少 ER 应激介导的细胞凋亡。我们的发现为 CRC 找到了一个可能的治疗靶点。
{"title":"Recruitment of USP10 by GCS1 to deubiquitinate GRP78 promotes the progression of colorectal cancer via alleviating endoplasmic reticulum stress","authors":"Yang Chen, Hengyang Shen, Zhenling Wang, Changzhi Huang, Hongqiang Zhang, Yu Shao, Ying Tong, Lei Xu, Yunfei Lu, Zan Fu","doi":"10.1186/s13046-024-03176-8","DOIUrl":"https://doi.org/10.1186/s13046-024-03176-8","url":null,"abstract":"Long-term accumulation of misfolded proteins leads to endoplasmic reticulum (ER) stress in colorectal cancer (CRC). However, the precise pathways controlling the decision between survival and apoptosis in CRC are unclear. Therefore, in this study, we investigated the function and molecular mechanism of glucosidase I (GCS1) in regulating ER stress in CRC. A public database was used to confirm the expression level of GCS1 in CRC and normal tissues. Clinical samples from our center were used to confirm the mRNA and protein expression levels of GCS1. Cell proliferation, migration, invasion, and apoptosis assays revealed the biological role of GCS1. Immunohistochemical techniques were used to evaluate the expression of key proteins in subcutaneous implanted tumors in nude mice, which provided further evidence for the biological function of GCS1 in promoting cancer in vivo. The results of coimmunoprecipitation-mass spectrometry analysis and immunofluorescence colocalization analysis the interaction between GCS1 and GRP78. In addition, the mechanism of action of USP10, GRP78, and GCS1 at the post- translational level was investigated. Finally, a tissue microarray was used to examine the connection between GCS1 and GRP78 expression and intracellular localization of these proteins using immunohistochemistry and immunofluorescence. The experimental results revealed that GCS1 was substantially expressed in CRC, with higher expression indicating a worse prognosis. Thus, GCS1 can enhance the proliferation and metastasis while inhibiting the apoptosis of CRC cells both in vivo and in vitro. Mechanistically, GCS1 binds to GRP78, recruits USP10 for deubiquitination of GRP78 to promote its degradation, and decreases ER stress-mediated apoptosis, increasing CRC cell proliferation and metastasis. In summary, GCS1 stimulates CRC growth and migration and reduces ER stress-mediated apoptosis via USP10-mediated deubiquitination of GRP78. Our findings identify a possible therapeutic target for CRC.","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
STUB1-mediated K63-linked ubiquitination of UHRF1 promotes the progression of cholangiocarcinoma by maintaining DNA hypermethylation of PLA2G2A STUB1 介导的 K63 链接泛素化 UHRF1 通过维持 PLA2G2A 的 DNA 高甲基化促进胆管癌的进展
IF 11.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-13 DOI: 10.1186/s13046-024-03186-6
Junsheng Chen, Da Wang, Guanhua Wu, Fei Xiong, Wenzheng Liu, Qi Wang, Yiyang Kuai, Wenhua Huang, Yongqiang Qi, Bing Wang, Yongjun Chen
Cholangiocarcinoma (CCA) is a highly malignant tumor characterized by a lack of effective targeted therapeutic strategies. The protein UHRF1 plays a pivotal role in the preservation of DNA methylation and works synergistically with DNMT1. Posttranscriptional modifications (PTMs), such as ubiquitination, play indispensable roles in facilitating this process. Nevertheless, the specific PTMs that regulate UHRF1 in CCA remain unidentified. We confirmed the interaction between STUB1 and UHRF1 through mass spectrometry analysis. Furthermore, we investigated the underlying mechanisms of the STUB1-UHRF1/DNMT1 axis via co-IP experiments, denaturing IP ubiquitination experiments, nuclear‒cytoplasmic separation and immunofluorescence experiments. The downstream PLA2G2A gene, regulated by the STUB1-UHRF1/DNMT1 axis, was identified via RNA-seq. The negative regulatory mechanism of PLA2G2A was explored via bisulfite sequencing PCR (BSP) experiments to assess changes in promoter methylation. The roles of PLA2G2A and STUB1 in the proliferation, invasion, and migration of CCA cells were assessed using the CCK-8 assay, colony formation assay, Transwell assay, wound healing assay and xenograft mouse model. We evaluated the effects of STUB1/UHRF1 on cholangiocarcinoma by utilizing a primary CCA mouse model. This study revealed that STUB1 interacts with UHRF1, resulting in an increase in the K63-linked ubiquitination of UHRF1. Consequently, this facilitates the nuclear translocation of UHRF1 and enhances its binding affinity with DNMT1. The STUB1-UHRF1/DNMT1 axis led to increased DNA methylation of the PLA2G2A promoter, subsequently repressing its expression. Increased STUB1 expression in CCA was inversely correlated with tumor progression and overall survival. Conversely, PLA2G2A functions as a tumor suppressor in CCA by inhibiting cell proliferation, invasion and migration. These findings suggest that the STUB1-mediated ubiquitination of UHRF1 plays a pivotal role in tumor progression by epigenetically silencing PLA2G2A, underscoring the potential of STUB1 as both a prognostic biomarker and therapeutic target for CCA.
胆管癌(CCA)是一种高度恶性的肿瘤,其特点是缺乏有效的靶向治疗策略。蛋白质 UHRF1 在保护 DNA 甲基化方面发挥着关键作用,并与 DNMT1 协同作用。转录后修饰(PTM),如泛素化,在促进这一过程中发挥着不可或缺的作用。然而,CCA中调控UHRF1的特定PTM仍未确定。我们通过质谱分析证实了 STUB1 和 UHRF1 之间的相互作用。此外,我们还通过共IP实验、变性IP泛素化实验、核-胞质分离和免疫荧光实验研究了STUB1-UHRF1/DNMT1轴的内在机制。通过 RNA-seq 鉴定了受 STUB1-UHRF1/DNMT1 轴调控的下游 PLA2G2A 基因。通过亚硫酸氢盐测序 PCR(BSP)实验评估启动子甲基化的变化,探索了 PLA2G2A 的负调控机制。我们使用 CCK-8 试验、集落形成试验、Transwell 试验、伤口愈合试验和异种移植小鼠模型评估了 PLA2G2A 和 STUB1 在 CCA 细胞增殖、侵袭和迁移中的作用。我们利用原代 CCA 小鼠模型评估了 STUB1/UHRF1 对胆管癌的影响。研究发现,STUB1 与 UHRF1 相互作用,导致 UHRF1 的 K63 链接泛素化增加。因此,这促进了 UHRF1 的核转位,并增强了其与 DNMT1 的结合亲和力。STUB1-UHRF1/DNMT1 轴导致 PLA2G2A 启动子的 DNA 甲基化增加,进而抑制其表达。STUB1 在 CCA 中的表达增加与肿瘤进展和总生存期成反比。相反,PLA2G2A 在 CCA 中通过抑制细胞增殖、侵袭和迁移发挥抑瘤作用。这些研究结果表明,STUB1 介导的 UHRF1 泛素化通过表观遗传沉默 PLA2G2A,在肿瘤进展过程中发挥了关键作用,这凸显了 STUB1 作为 CCA 预后生物标志物和治疗靶点的潜力。
{"title":"STUB1-mediated K63-linked ubiquitination of UHRF1 promotes the progression of cholangiocarcinoma by maintaining DNA hypermethylation of PLA2G2A","authors":"Junsheng Chen, Da Wang, Guanhua Wu, Fei Xiong, Wenzheng Liu, Qi Wang, Yiyang Kuai, Wenhua Huang, Yongqiang Qi, Bing Wang, Yongjun Chen","doi":"10.1186/s13046-024-03186-6","DOIUrl":"https://doi.org/10.1186/s13046-024-03186-6","url":null,"abstract":"Cholangiocarcinoma (CCA) is a highly malignant tumor characterized by a lack of effective targeted therapeutic strategies. The protein UHRF1 plays a pivotal role in the preservation of DNA methylation and works synergistically with DNMT1. Posttranscriptional modifications (PTMs), such as ubiquitination, play indispensable roles in facilitating this process. Nevertheless, the specific PTMs that regulate UHRF1 in CCA remain unidentified. We confirmed the interaction between STUB1 and UHRF1 through mass spectrometry analysis. Furthermore, we investigated the underlying mechanisms of the STUB1-UHRF1/DNMT1 axis via co-IP experiments, denaturing IP ubiquitination experiments, nuclear‒cytoplasmic separation and immunofluorescence experiments. The downstream PLA2G2A gene, regulated by the STUB1-UHRF1/DNMT1 axis, was identified via RNA-seq. The negative regulatory mechanism of PLA2G2A was explored via bisulfite sequencing PCR (BSP) experiments to assess changes in promoter methylation. The roles of PLA2G2A and STUB1 in the proliferation, invasion, and migration of CCA cells were assessed using the CCK-8 assay, colony formation assay, Transwell assay, wound healing assay and xenograft mouse model. We evaluated the effects of STUB1/UHRF1 on cholangiocarcinoma by utilizing a primary CCA mouse model. This study revealed that STUB1 interacts with UHRF1, resulting in an increase in the K63-linked ubiquitination of UHRF1. Consequently, this facilitates the nuclear translocation of UHRF1 and enhances its binding affinity with DNMT1. The STUB1-UHRF1/DNMT1 axis led to increased DNA methylation of the PLA2G2A promoter, subsequently repressing its expression. Increased STUB1 expression in CCA was inversely correlated with tumor progression and overall survival. Conversely, PLA2G2A functions as a tumor suppressor in CCA by inhibiting cell proliferation, invasion and migration. These findings suggest that the STUB1-mediated ubiquitination of UHRF1 plays a pivotal role in tumor progression by epigenetically silencing PLA2G2A, underscoring the potential of STUB1 as both a prognostic biomarker and therapeutic target for CCA. ","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor-associated neutrophils upregulate Nectin2 expression, creating the immunosuppressive microenvironment in pancreatic ductal adenocarcinoma 肿瘤相关中性粒细胞上调 Nectin2 的表达,为胰腺导管腺癌创造免疫抑制微环境
IF 11.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-11 DOI: 10.1186/s13046-024-03178-6
Haizhen Luo, Naoki Ikenaga, Kohei Nakata, Nobuhiro Higashijima, Pingshan Zhong, Akihiro Kubo, Chenyi Wu, Chikanori Tsutsumi, Yuki Shimada, Masataka Hayashi, Koki Oyama, Satomi Date, Toshiya Abe, Noboru Ideno, Chika Iwamoto, Koji Shindo, Kenoki Ohuchida, Yoshinao Oda, Masafumi Nakamura
Tumor-associated neutrophils (TANs) constitute an abundant component among tumor-infiltrating immune cells and have recently emerged as a critical player in pancreatic ductal adenocarcinoma (PDAC) progression. This study aimed to elucidate the pro-tumor mechanisms of TAN and identify a novel target for effective immunotherapy against PDAC. Microarray and cytokine array analyses were performed to identify the mechanisms underlying the function of TANs. Human and mouse TANs were obtained from differentiated HL-60 cells and orthotopically transplanted PDAC tumors, respectively. The interactions of TANs with cancer and cytotoxic T-cells were evaluated through in vitro co-culture and in vivo orthotopic or subcutaneous models. Single-cell transcriptomes from patients with PDAC were analyzed to validate the cellular findings. Increased neutrophil infiltration in the tumor microenvironment was associated with poor survival in patients with PDAC. TANs secreted abundant amounts of chemokine ligand 5 (CCL5), subsequently enhancing cancer cell migration and invasion. TANs subpopulations negatively correlated with cytotoxic CD8+ T-cell infiltration in PDAC and promoted T-cell dysfunction. TANs upregulated the membranous expression of Nectin2, which contributed to CD8+ T-cell exhaustion. Blocking Nectin2 improved CD8+ T-cell function and suppressed tumor progression in the mouse model. Single-cell analysis of human PDAC revealed two immunosuppressive TANs phenotypes: Nectin2+ TANs and OLR1+ TANs. Endoplasmic reticulum stress regulated the protumor activities in TANs. TANs enhance PDAC progression by secreting CCL5 and upregulating Nectin2. Targeting the immune checkpoint Nectin2 could represent a novel strategy to enhance immunotherapy efficacy in PDAC.
肿瘤相关中性粒细胞(TANs)是肿瘤浸润免疫细胞中的一个重要组成部分,最近已成为胰腺导管腺癌(PDAC)进展过程中的一个关键角色。本研究旨在阐明TAN的促瘤机制,并为有效的PDAC免疫疗法找到新的靶点。研究人员进行了微阵列和细胞因子阵列分析,以确定TANs的功能机制。人和小鼠的TAN分别来自分化的HL-60细胞和正位移植的PDAC肿瘤。通过体外共培养和体内正位或皮下模型评估了TANs与癌细胞和细胞毒性T细胞的相互作用。对PDAC患者的单细胞转录组进行了分析,以验证细胞研究结果。肿瘤微环境中中性粒细胞浸润的增加与PDAC患者的生存率低下有关。TANs分泌大量趋化因子配体5(CCL5),从而增强了癌细胞的迁移和侵袭。TANs亚群与PDAC的细胞毒性CD8+ T细胞浸润呈负相关,并促进T细胞功能障碍。TANs上调Nectin2的膜表达,导致CD8+ T细胞衰竭。阻断Nectin2可改善CD8+ T细胞功能,抑制小鼠模型的肿瘤进展。人类 PDAC 的单细胞分析显示了两种免疫抑制 TANs 表型:Nectin2+ TANs和OLR1+ TANs。内质网应激调节TANs的原瘤活性。TANs通过分泌CCL5和上调Nectin2促进PDAC的进展。靶向免疫检查点Nectin2可能是提高PDAC免疫疗法疗效的一种新策略。
{"title":"Tumor-associated neutrophils upregulate Nectin2 expression, creating the immunosuppressive microenvironment in pancreatic ductal adenocarcinoma","authors":"Haizhen Luo, Naoki Ikenaga, Kohei Nakata, Nobuhiro Higashijima, Pingshan Zhong, Akihiro Kubo, Chenyi Wu, Chikanori Tsutsumi, Yuki Shimada, Masataka Hayashi, Koki Oyama, Satomi Date, Toshiya Abe, Noboru Ideno, Chika Iwamoto, Koji Shindo, Kenoki Ohuchida, Yoshinao Oda, Masafumi Nakamura","doi":"10.1186/s13046-024-03178-6","DOIUrl":"https://doi.org/10.1186/s13046-024-03178-6","url":null,"abstract":"Tumor-associated neutrophils (TANs) constitute an abundant component among tumor-infiltrating immune cells and have recently emerged as a critical player in pancreatic ductal adenocarcinoma (PDAC) progression. This study aimed to elucidate the pro-tumor mechanisms of TAN and identify a novel target for effective immunotherapy against PDAC. Microarray and cytokine array analyses were performed to identify the mechanisms underlying the function of TANs. Human and mouse TANs were obtained from differentiated HL-60 cells and orthotopically transplanted PDAC tumors, respectively. The interactions of TANs with cancer and cytotoxic T-cells were evaluated through in vitro co-culture and in vivo orthotopic or subcutaneous models. Single-cell transcriptomes from patients with PDAC were analyzed to validate the cellular findings. Increased neutrophil infiltration in the tumor microenvironment was associated with poor survival in patients with PDAC. TANs secreted abundant amounts of chemokine ligand 5 (CCL5), subsequently enhancing cancer cell migration and invasion. TANs subpopulations negatively correlated with cytotoxic CD8+ T-cell infiltration in PDAC and promoted T-cell dysfunction. TANs upregulated the membranous expression of Nectin2, which contributed to CD8+ T-cell exhaustion. Blocking Nectin2 improved CD8+ T-cell function and suppressed tumor progression in the mouse model. Single-cell analysis of human PDAC revealed two immunosuppressive TANs phenotypes: Nectin2+ TANs and OLR1+ TANs. Endoplasmic reticulum stress regulated the protumor activities in TANs. TANs enhance PDAC progression by secreting CCL5 and upregulating Nectin2. Targeting the immune checkpoint Nectin2 could represent a novel strategy to enhance immunotherapy efficacy in PDAC.","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Anti-tumor effects of ONC201 in combination with VEGF-inhibitors significantly impacts colorectal cancer growth and survival in vivo through complementary non-overlapping mechanisms 更正:ONC201 与血管内皮生长因子抑制剂联用的抗肿瘤作用通过互补的非重叠机制显著影响体内结直肠癌的生长和存活率
IF 11.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-11 DOI: 10.1186/s13046-024-03185-7
Jessica Wagner, C. Leah Kline, Lanlan Zhou, Vladimir Khazak, Wafik S. El-Deiry
<p><b>Correction: J Exp Clin Cancer Res 37, 11 (2018)</b></p><p><b>https://doi.org/10.1186/s13046-018-0671-0</b></p><br/><p>Following publication of the original article [1], the authors have been alerted to an error in Fig. 3A that shows a duplication of a histological image in two panels in the figure. This image duplication error in Fig. 3A was missed by all the authors and reviewers of the paper.</p><p><b>Incorrect Fig. 3</b></p><figure><figcaption><b data-test="figure-caption-text">Fig. 3</b></figcaption><picture><source srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13046-024-03185-7/MediaObjects/13046_2024_3185_Fig1_HTML.png?as=webp" type="image/webp"/><img alt="figure 1" aria-describedby="Fig1" height="1000" loading="lazy" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13046-024-03185-7/MediaObjects/13046_2024_3185_Fig1_HTML.png" width="685"/></picture><p>ONC201 does not impact VEGF expression in xenografts or HUVEC sprouting. <b>a</b> VEGF-A expression as detected by immunohistochemistry in HT29 and HCT116 CRC xenografts. <b>b</b> HUVEC representative images of sprouting from HUVECs grown on Matrigel. <b>c</b> Quantitation of HUVEC sprouting and branching after 12 h of drug treatment. In vivo: <i>n</i> = 5 ONC201 treatment dose was 50 mg/kg weekly. HUVECS <i>N</i> = 4, ONC201 treatment dose 5 μM, bevacizumab dose 5 mg/ml</p><span>Full size image</span><svg aria-hidden="true" focusable="false" height="16" role="img" width="16"><use xlink:href="#icon-eds-i-chevron-right-small" xmlns:xlink="http://www.w3.org/1999/xlink"></use></svg></figure><p><b>Correct Fig. 3</b></p><figure><figcaption><b data-test="figure-caption-text">Fig. 3</b></figcaption><picture><source srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13046-024-03185-7/MediaObjects/13046_2024_3185_Fig2_HTML.png?as=webp" type="image/webp"/><img alt="figure 2" aria-describedby="Fig2" height="994" loading="lazy" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13046-024-03185-7/MediaObjects/13046_2024_3185_Fig2_HTML.png" width="685"/></picture><p>ONC201 does not impact VEGF expression in xenografts or HUVEC sprouting. <b>a</b> VEGF-A expression as detected by immunohistochemistry in HT29 and HCT116 CRC xenografts. <b>b</b> HUVEC representative images of sprouting from HUVECs grown on Matrigel. <b>c</b> Quantitation of HUVEC sprouting and branching after 12 h of drug treatment. In vivo: <i>n</i> = 5 ONC201 treatment dose was 50 mg/kg weekly. HUVECS <i>N</i> = 4, ONC201 treatment dose 5 μM, bevacizumab dose 5 mg/ml</p><span>Full size image</span><svg aria-hidden="true" focusable="false" height="16" role="img" width="16"><use xlink:href="#icon-eds-i-chevron-right-small" xmlns:xlink="http://www.w3.org/1999/xlink"></use></svg></figure><ol data-track-component="outbound reference" data-track-context="references section"><li data-counter="1."><p>Wagner J, Kline C, Zhou L,
更正:J Exp Cliner Cancer Res 37, 11 (2018)https://doi.org/10.1186/s13046-018-0671-0Following,原文[1]发表后,作者被提醒图3A中的一个错误,图中两个面板中的组织学图像重复了。a HT29 和 HCT116 CRC 异种移植物中免疫组化检测到的 VEGF-A 表达。b 生长在 Matrigel 上的 HUVEC 发芽的代表性 HUVEC 图像。体内:n = 5 ONC201 治疗剂量为每周 50 毫克/千克。HUVECS N = 4,ONC201 治疗剂量为 5 μM,贝伐珠单抗剂量为 5 mg/ml全尺寸图像校正图 3图 3ONC201 不影响异种移植中的 VEGF 表达或 HUVEC 发芽。a HT29 和 HCT116 CRC 异种移植中免疫组化检测到的 VEGF-A 表达。 b 生长在 Matrigel 上的 HUVEC 发芽的代表性图像。体内:n = 5 ONC201 治疗剂量为每周 50 毫克/千克。HUVECS N = 4,ONC201治疗剂量为5 μM,贝伐单抗剂量为5 mg/ml全尺寸图片Wagner J, Kline C, Zhou L, et al. ONC201联合VEGF抑制剂的抗肿瘤作用通过互补非重叠机制显著影响体内结直肠癌的生长和存活。J Exp Cliner Cancer Res. 2018;37:11. https://doi.org/10.1186/s13046-018-0671-0.Article CAS PubMed PubMed Central Google Scholar Download references作者及单位美国宾夕法尼亚州费城福克斯蔡斯癌症中心分子治疗项目和血液学/肿瘤学系转化肿瘤学和实验癌症治疗实验室Jessica Wagner, C. Leah Kline, Lanlan Zhou & Wafik S. El-DeiryNexusPharma, Inc、Philadelphia, PA, USAVladimir Khazak作者Jessica Wagner查看作者发表的文章您也可以在PubMed Google Scholar中搜索该作者C.Leah KlineView Author publications您也可以在PubMed Google Scholar中搜索该作者Lanlan ZhouView Author publications您也可以在PubMed Google Scholar中搜索该作者Vladimir KhazakView Author publications您也可以在PubMed Google Scholar中搜索该作者Wafik S. El-DeiryView Author publications您也可以在PubMed Google Scholar中搜索该作者Corresponding authorCorrespondence to Wafik S. El-Deiry.El-Deiry.Open Access 本文采用知识共享署名 4.0 国际许可协议进行许可,该协议允许以任何媒介或格式使用、共享、改编、分发和复制本文,但必须注明原作者和出处,提供知识共享许可协议的链接,并注明是否进行了修改。本文中的图片或其他第三方材料均包含在文章的知识共享许可协议中,除非在材料的署名栏中另有说明。如果材料未包含在文章的知识共享许可协议中,且您打算使用的材料不符合法律规定或超出许可使用范围,则您需要直接从版权所有者处获得许可。要查看该许可的副本,请访问 http://creativecommons.org/licenses/by/4.0/。除非在数据的信用行中另有说明,否则知识共享公共领域专用免责声明 (http://creativecommons.org/publicdomain/zero/1.0/) 适用于本文提供的数据。转载与许可引用本文Wagner, J., Kline, C.L., Zhou, L. et al. Correction:ONC201联合VEGF抑制剂的抗肿瘤作用通过互补的非重叠机制显著影响体内结直肠癌的生长和存活。J Exp Cliner Cancer Res 43, 257 (2024). https://doi.org/10.1186/s13046-024-03185-7Download citationPublished: 11 September 2024DOI: https://doi.org/10.1186/s13046-024-03185-7Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative
{"title":"Correction: Anti-tumor effects of ONC201 in combination with VEGF-inhibitors significantly impacts colorectal cancer growth and survival in vivo through complementary non-overlapping mechanisms","authors":"Jessica Wagner, C. Leah Kline, Lanlan Zhou, Vladimir Khazak, Wafik S. El-Deiry","doi":"10.1186/s13046-024-03185-7","DOIUrl":"https://doi.org/10.1186/s13046-024-03185-7","url":null,"abstract":"&lt;p&gt;&lt;b&gt;Correction: J Exp Clin Cancer Res 37, 11 (2018)&lt;/b&gt;&lt;/p&gt;&lt;p&gt;&lt;b&gt;https://doi.org/10.1186/s13046-018-0671-0&lt;/b&gt;&lt;/p&gt;&lt;br/&gt;&lt;p&gt;Following publication of the original article [1], the authors have been alerted to an error in Fig. 3A that shows a duplication of a histological image in two panels in the figure. This image duplication error in Fig. 3A was missed by all the authors and reviewers of the paper.\u0000&lt;/p&gt;&lt;p&gt;&lt;b&gt;Incorrect Fig. 3&lt;/b&gt;&lt;/p&gt;&lt;figure&gt;&lt;figcaption&gt;&lt;b data-test=\"figure-caption-text\"&gt;Fig. 3&lt;/b&gt;&lt;/figcaption&gt;&lt;picture&gt;&lt;source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13046-024-03185-7/MediaObjects/13046_2024_3185_Fig1_HTML.png?as=webp\" type=\"image/webp\"/&gt;&lt;img alt=\"figure 1\" aria-describedby=\"Fig1\" height=\"1000\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13046-024-03185-7/MediaObjects/13046_2024_3185_Fig1_HTML.png\" width=\"685\"/&gt;&lt;/picture&gt;&lt;p&gt;ONC201 does not impact VEGF expression in xenografts or HUVEC sprouting. &lt;b&gt;a&lt;/b&gt; VEGF-A expression as detected by immunohistochemistry in HT29 and HCT116 CRC xenografts. &lt;b&gt;b&lt;/b&gt; HUVEC representative images of sprouting from HUVECs grown on Matrigel. &lt;b&gt;c&lt;/b&gt; Quantitation of HUVEC sprouting and branching after 12 h of drug treatment. In vivo: &lt;i&gt;n&lt;/i&gt; = 5 ONC201 treatment dose was 50 mg/kg weekly. HUVECS &lt;i&gt;N&lt;/i&gt; = 4, ONC201 treatment dose 5 μM, bevacizumab dose 5 mg/ml&lt;/p&gt;&lt;span&gt;Full size image&lt;/span&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"&gt;&lt;use xlink:href=\"#icon-eds-i-chevron-right-small\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;/use&gt;&lt;/svg&gt;&lt;/figure&gt;&lt;p&gt;&lt;b&gt;Correct Fig. 3&lt;/b&gt;&lt;/p&gt;&lt;figure&gt;&lt;figcaption&gt;&lt;b data-test=\"figure-caption-text\"&gt;Fig. 3&lt;/b&gt;&lt;/figcaption&gt;&lt;picture&gt;&lt;source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13046-024-03185-7/MediaObjects/13046_2024_3185_Fig2_HTML.png?as=webp\" type=\"image/webp\"/&gt;&lt;img alt=\"figure 2\" aria-describedby=\"Fig2\" height=\"994\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13046-024-03185-7/MediaObjects/13046_2024_3185_Fig2_HTML.png\" width=\"685\"/&gt;&lt;/picture&gt;&lt;p&gt;ONC201 does not impact VEGF expression in xenografts or HUVEC sprouting. &lt;b&gt;a&lt;/b&gt; VEGF-A expression as detected by immunohistochemistry in HT29 and HCT116 CRC xenografts. &lt;b&gt;b&lt;/b&gt; HUVEC representative images of sprouting from HUVECs grown on Matrigel. &lt;b&gt;c&lt;/b&gt; Quantitation of HUVEC sprouting and branching after 12 h of drug treatment. In vivo: &lt;i&gt;n&lt;/i&gt; = 5 ONC201 treatment dose was 50 mg/kg weekly. HUVECS &lt;i&gt;N&lt;/i&gt; = 4, ONC201 treatment dose 5 μM, bevacizumab dose 5 mg/ml&lt;/p&gt;&lt;span&gt;Full size image&lt;/span&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"&gt;&lt;use xlink:href=\"#icon-eds-i-chevron-right-small\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;/use&gt;&lt;/svg&gt;&lt;/figure&gt;&lt;ol data-track-component=\"outbound reference\" data-track-context=\"references section\"&gt;&lt;li data-counter=\"1.\"&gt;&lt;p&gt;Wagner J, Kline C, Zhou L,","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Experimental & Clinical Cancer Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1