Pub Date : 2024-02-02DOI: 10.3390/lubricants12020042
Yiming Han, Jing Wang, Hengrui Du, Weimin Li, Jingxin Zhao, Zongyi Bai, Meng Hu, Haichao Liu
For wind turbine applications, there is a cyclic load-varying process between rolling elements and raceways in pitch bearings. This kind of motion can also lead to radial fretting. However, this is seldom addressed under grease-lubricated conditions in the literature. In this study, grease-lubricated point contact problems have been investigated experimentally under cyclic load-varying conditions. The findings revealed that as the load-varying range diminishes, the variation in grease film distribution becomes more subtle and the rate of discharge of thickener fiber clusters in the stick zone decelerates. This is due to the fact that the rate of change in the Hertz contact radius is reduced and the migration of grease is weakened during the unloading process. Due to the large apparent viscosity of grease with a high soap content, entrapped grease is not easily discharged during loading, and the thickness of the film in the stick zone progressively increases as the soap content of the grease is augmented. This also causes the variable load zone to wear out more easily. As the grease is subjected to repeated loading and unloading, there is a gradual reduction in film thickness, and larger thickener fiber clusters tear, resulting in a flattened form and shear thinning. Grease containing sulphur–phosphorus additives demonstrates a superior effect on reducing fretting wear within the large variable load range but generally proves effective for smaller load-varying ranges. This study may offer insights into the degradation of grease under variable load motion and methods to prevent radial fretting wear.
{"title":"Film Thickness Decay and Wear Behavior of Grease-Lubricated Point Contact under Cyclic Variable Loads","authors":"Yiming Han, Jing Wang, Hengrui Du, Weimin Li, Jingxin Zhao, Zongyi Bai, Meng Hu, Haichao Liu","doi":"10.3390/lubricants12020042","DOIUrl":"https://doi.org/10.3390/lubricants12020042","url":null,"abstract":"For wind turbine applications, there is a cyclic load-varying process between rolling elements and raceways in pitch bearings. This kind of motion can also lead to radial fretting. However, this is seldom addressed under grease-lubricated conditions in the literature. In this study, grease-lubricated point contact problems have been investigated experimentally under cyclic load-varying conditions. The findings revealed that as the load-varying range diminishes, the variation in grease film distribution becomes more subtle and the rate of discharge of thickener fiber clusters in the stick zone decelerates. This is due to the fact that the rate of change in the Hertz contact radius is reduced and the migration of grease is weakened during the unloading process. Due to the large apparent viscosity of grease with a high soap content, entrapped grease is not easily discharged during loading, and the thickness of the film in the stick zone progressively increases as the soap content of the grease is augmented. This also causes the variable load zone to wear out more easily. As the grease is subjected to repeated loading and unloading, there is a gradual reduction in film thickness, and larger thickener fiber clusters tear, resulting in a flattened form and shear thinning. Grease containing sulphur–phosphorus additives demonstrates a superior effect on reducing fretting wear within the large variable load range but generally proves effective for smaller load-varying ranges. This study may offer insights into the degradation of grease under variable load motion and methods to prevent radial fretting wear.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"12 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139870147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-05DOI: 10.3390/lubricants12010014
L. Darul, T. Touret, C. Changenet, Fabrice Ville
This study presents a theoretical and experimental analysis to quantify the power losses generated by an oil jet lubricated angular contact ball bearing. The analysis is conducted for a moderate speed range (N∙dm product less than 106) and a limited applied load (<5% of the static capacity). The lubrication regime of each ball is studied through a theoretical model and varies from Iso-Viscous Rigid to Elasto-Hydrodynamic. Therefore, the hydrodynamic effects are considered in the power loss calculation. An experimental campaign is carried out and the influence of several parameters (applied load, oil injection temperature, speed, etc.) is studied. A good agreement is found between the developed model and the measurements. It is shown that the radial applied load has no influence on power losses, unlike speed and axial load. This can be explained by the load distribution and the hydrodynamic rolling contribution on the low loaded balls.
{"title":"Power Loss Analysis of an Oil-Jet Lubricated Angular Contact Ball Bearing: Theoretical and Experimental Investigations","authors":"L. Darul, T. Touret, C. Changenet, Fabrice Ville","doi":"10.3390/lubricants12010014","DOIUrl":"https://doi.org/10.3390/lubricants12010014","url":null,"abstract":"This study presents a theoretical and experimental analysis to quantify the power losses generated by an oil jet lubricated angular contact ball bearing. The analysis is conducted for a moderate speed range (N∙dm product less than 106) and a limited applied load (<5% of the static capacity). The lubrication regime of each ball is studied through a theoretical model and varies from Iso-Viscous Rigid to Elasto-Hydrodynamic. Therefore, the hydrodynamic effects are considered in the power loss calculation. An experimental campaign is carried out and the influence of several parameters (applied load, oil injection temperature, speed, etc.) is studied. A good agreement is found between the developed model and the measurements. It is shown that the radial applied load has no influence on power losses, unlike speed and axial load. This can be explained by the load distribution and the hydrodynamic rolling contribution on the low loaded balls.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139383152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-04DOI: 10.3390/lubricants12010013
Tomohiko Obata, Hiroki Fujiwara, F. Itoigawa, Satoru Maegawa
Grease-lubricated rolling bearings transition from the churning phase to the channeling phase. This transition property affects grease life and torque properties. Therefore, the relationship between grease yield stress and grease degradation during operation, which affects this transition, has been investigated. However, there have been few studies on grease flow that affects the transition. In this study, the mechanism of grease reduction on the races was investigated for small bearings operated at low speeds, where thermal degradation and softening of the grease are less likely to occur. It was inferred that the grease transfer to the cage affects the channeling transition and that the amount of transfer varies depending on the initial grease viscosity. These findings can be applied to grease composition and cage design and are useful in providing bearings with excellent low-torque characteristics, such as in industrial motor applications.
{"title":"Effect of Grease Viscosity on Channeling Properties of Ball Bearings","authors":"Tomohiko Obata, Hiroki Fujiwara, F. Itoigawa, Satoru Maegawa","doi":"10.3390/lubricants12010013","DOIUrl":"https://doi.org/10.3390/lubricants12010013","url":null,"abstract":"Grease-lubricated rolling bearings transition from the churning phase to the channeling phase. This transition property affects grease life and torque properties. Therefore, the relationship between grease yield stress and grease degradation during operation, which affects this transition, has been investigated. However, there have been few studies on grease flow that affects the transition. In this study, the mechanism of grease reduction on the races was investigated for small bearings operated at low speeds, where thermal degradation and softening of the grease are less likely to occur. It was inferred that the grease transfer to the cage affects the channeling transition and that the amount of transfer varies depending on the initial grease viscosity. These findings can be applied to grease composition and cage design and are useful in providing bearings with excellent low-torque characteristics, such as in industrial motor applications.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"29 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139386525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-03DOI: 10.3390/lubricants12010012
Felipe Kevin Correa Luz, F. Profito, Marcelo Braga dos Santos, Samuel A. N. Silva, H. Costa
The use of synthesis gas (SYNGAS) from waste gasification has been pointed out as a key strategy to help the energy transition. However, SYNGAS’ low calorific power is considered a difficult obstacle to its technological use in internal combustion engines. To overcome this, a novel free-piston linear motor has been proposed to pave the way for the use of SYNGAS in the mobility sector. Surface texturing has vast potential to reduce friction losses in this system. This study utilizes a deterministic numerical model to investigate the mixed lubrication performance of a textured piston ring/cylinder liner conjunction in a free piston engine. The model considers the simultaneous solution of the lubrication and asperity contact problems at the roughness scale, including texturing features on the cylinder surface. The numerical model employs the Reynolds equation with mass-conserving cavitation to calculate the inter-asperity fluid pressure. The rough contact model utilizes the Hertz theory for elastic contact to calculate the contact pressure at each asperity between the piston liner surface and the admitted smooth and rigid ring surface. Surface texturing demonstrated remarkable effectiveness, particularly in the hydrodynamic lubrication regime, with a maximum friction reduction of 38.5% observed for an area coverage of 50%. This was accompanied by a notable shift in the transition from the boundary to the mixed lubrication regime. The textured surfaces exhibited consistent efficiency in reducing fluid pressure and shear stress as the coverage of the textured areas increased. The incorporation of dimples on these surfaces played a crucial role by augmenting the lubricant storage capacity while concurrently reducing the real shear and contact areas. This study offers valuable insights into the nuanced friction-reducing mechanisms of surface textures, illuminating their influence on the coefficient of friction and the formation of lubricant films across various lubrication regimes.
{"title":"Deterministic Simulation of Surface Textures for the Piston Ring/Cylinder Liner System in a Free Piston Linear Engine","authors":"Felipe Kevin Correa Luz, F. Profito, Marcelo Braga dos Santos, Samuel A. N. Silva, H. Costa","doi":"10.3390/lubricants12010012","DOIUrl":"https://doi.org/10.3390/lubricants12010012","url":null,"abstract":"The use of synthesis gas (SYNGAS) from waste gasification has been pointed out as a key strategy to help the energy transition. However, SYNGAS’ low calorific power is considered a difficult obstacle to its technological use in internal combustion engines. To overcome this, a novel free-piston linear motor has been proposed to pave the way for the use of SYNGAS in the mobility sector. Surface texturing has vast potential to reduce friction losses in this system. This study utilizes a deterministic numerical model to investigate the mixed lubrication performance of a textured piston ring/cylinder liner conjunction in a free piston engine. The model considers the simultaneous solution of the lubrication and asperity contact problems at the roughness scale, including texturing features on the cylinder surface. The numerical model employs the Reynolds equation with mass-conserving cavitation to calculate the inter-asperity fluid pressure. The rough contact model utilizes the Hertz theory for elastic contact to calculate the contact pressure at each asperity between the piston liner surface and the admitted smooth and rigid ring surface. Surface texturing demonstrated remarkable effectiveness, particularly in the hydrodynamic lubrication regime, with a maximum friction reduction of 38.5% observed for an area coverage of 50%. This was accompanied by a notable shift in the transition from the boundary to the mixed lubrication regime. The textured surfaces exhibited consistent efficiency in reducing fluid pressure and shear stress as the coverage of the textured areas increased. The incorporation of dimples on these surfaces played a crucial role by augmenting the lubricant storage capacity while concurrently reducing the real shear and contact areas. This study offers valuable insights into the nuanced friction-reducing mechanisms of surface textures, illuminating their influence on the coefficient of friction and the formation of lubricant films across various lubrication regimes.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"55 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139388308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}