Pub Date : 2025-01-25DOI: 10.1007/s12034-024-03391-1
Doan Dinh Phuong, Do Chi Linh, Pham Hong Hanh, Nguyen Quoc Thinh, Luong Van Duong
Porous transport layers (PTL) are used in the proton exchange membrane water electrolyzers to facilitate the gas/water transport and the electric charge transfer. As a result, the PTL is critical in ensuring the efficiency of the electrolyzing process. This work aims to produce titanium PTLs through the spark plasma sintering process. The sintering temperature was varied from 500 to 650°C to investigate the characteristics of the titanium PTL samples while maintaining the sintering pressure and holding time at 10 MPa and 10 min, respectively. The phase structure and morphology of the samples were investigated by X-ray diffraction and scanning electron microscopy analyses. The compressive strength and the corrosion behaviour of the samples were investigated by the compressive testing and the electrochemical corrosion testing, respectively. The experimental results showed that there were no new phases formed when the Ti PTLs were sintered at different temperatures. With an increase in the sintering temperature, the porosity of the samples considerably decreased, while their compressive strength, electrical conductivity and corrosion resistance increased. It is suggested that selecting the optimum sintering temperature for sintered samples can improve the mass transport behaviour in PEM electrolyzers and produce superior PTLs.
{"title":"Influence of sintering temperature on microstructure and electrical properties of titanium porous-transport layers for proton exchange membrane water electrolyzer applications","authors":"Doan Dinh Phuong, Do Chi Linh, Pham Hong Hanh, Nguyen Quoc Thinh, Luong Van Duong","doi":"10.1007/s12034-024-03391-1","DOIUrl":"10.1007/s12034-024-03391-1","url":null,"abstract":"<div><p>Porous transport layers (PTL) are used in the proton exchange membrane water electrolyzers to facilitate the gas/water transport and the electric charge transfer. As a result, the PTL is critical in ensuring the efficiency of the electrolyzing process. This work aims to produce titanium PTLs through the spark plasma sintering process. The sintering temperature was varied from 500 to 650°C to investigate the characteristics of the titanium PTL samples while maintaining the sintering pressure and holding time at 10 MPa and 10 min, respectively. The phase structure and morphology of the samples were investigated by X-ray diffraction and scanning electron microscopy analyses. The compressive strength and the corrosion behaviour of the samples were investigated by the compressive testing and the electrochemical corrosion testing, respectively. The experimental results showed that there were no new phases formed when the Ti PTLs were sintered at different temperatures. With an increase in the sintering temperature, the porosity of the samples considerably decreased, while their compressive strength, electrical conductivity and corrosion resistance increased. It is suggested that selecting the optimum sintering temperature for sintered samples can improve the mass transport behaviour in PEM electrolyzers and produce superior PTLs.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-25DOI: 10.1007/s12034-024-03393-z
Y Guner, K B Dermenci, A T Guner, S Turan
Carbon-derived materials are suitable for use as anodes in lithium-ion batteries due to low production cost and abundance. However, there is a need to improve the electrochemical performance with various modifications due to the limited capacity. In this study, a porous carbon is modified with anionic sodium dodecyl sulphate (SDS) and cationic cetyl trimethyl ammonium bromide (CTAB) surfactants and prepared as an anode for use in lithium-ion batteries. Morphological and structural properties change with the addition of surfactants, and the use of only one or two of them together has different effects. The morphology formed by adding only SDS is homogeneous and only CTAB is heterogeneous. When both surfactants are used SDS also provides homogeneous dispersion of CTAB. The changes in I2D/IG and ID/IG ratios obtained from Raman analyses show that the layer arrangement and the ratio of defects in the structure have changed. Electrochemical performances with different surfactant amounts are compared by using charge/discharge tests, cyclic voltammetric tests and differential capacity analysis (dQ/dV). The combined use of SDS and CTAB creates a synergetic effect (catanionic) and increases the capacity nearly 1.5 times by improving wetting, amount of lithium-ion storage areas and reducing the irreversible loss of capacity caused by solid electrolyte interface.
{"title":"Catanionic synergetic effect of sodium dodecyl sulphate and cetyl trimethyl ammonium bromide surfactants on the electrochemical performance of porous carbon anodes in lithium-ion batteries","authors":"Y Guner, K B Dermenci, A T Guner, S Turan","doi":"10.1007/s12034-024-03393-z","DOIUrl":"10.1007/s12034-024-03393-z","url":null,"abstract":"<div><p>Carbon-derived materials are suitable for use as anodes in lithium-ion batteries due to low production cost and abundance. However, there is a need to improve the electrochemical performance with various modifications due to the limited capacity. In this study, a porous carbon is modified with anionic sodium dodecyl sulphate (SDS) and cationic cetyl trimethyl ammonium bromide (CTAB) surfactants and prepared as an anode for use in lithium-ion batteries. Morphological and structural properties change with the addition of surfactants, and the use of only one or two of them together has different effects. The morphology formed by adding only SDS is homogeneous and only CTAB is heterogeneous. When both surfactants are used SDS also provides homogeneous dispersion of CTAB. The changes in <i>I</i><sub>2D</sub>/<i>I</i><sub>G</sub> and <i>I</i><sub>D</sub>/<i>I</i><sub>G</sub> ratios obtained from Raman analyses show that the layer arrangement and the ratio of defects in the structure have changed. Electrochemical performances with different surfactant amounts are compared by using charge/discharge tests, cyclic voltammetric tests and differential capacity analysis (d<i>Q</i>/d<i>V</i>). The combined use of SDS and CTAB creates a synergetic effect (catanionic) and increases the capacity nearly 1.5 times by improving wetting, amount of lithium-ion storage areas and reducing the irreversible loss of capacity caused by solid electrolyte interface.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-24DOI: 10.1007/s12034-024-03374-2
Harsha Chouhan, Sushil Kumar Behera, Maheswar Panda
ZnFe2O4 was thermally synthesised through the mediation of different polymers such as Poly(vinyl alcohol), Poly(vinyl pyrrolidone) and Poly(ethylene glycol) to prevent the unwanted agglomeration. The Rietveld refinement of the XRD spectra confirmed the sample to be fcc, while the FESEM/TEM micrographs exhibited the formation of spherical nanoparticles. The TGA/DSC analysis confirmed that the sample is stable up to 500°C. The dielectric, impedance and modulus spectroscopy as a function of temperature up to 200°C and within the frequency range of 20 Hz to 2 MHz confirm a single non-Debye type relaxation behaviour at different temperatures (well fitted by the KWW (Kohlrausch–Williams–Watts) function) attributed to the grain boundary/MWS polarisation present in the samples. The modulus and impedance master curve confirmed the distribution of relaxation times being independent of temperature. The AC conductivity phenomenon is explained using the CBH (correlated barrier hopping) model, satisfying Jonscher's universal power law with exponents in the range of [0,1] with an activation energy in the range of 0.4–0.8 eV. The obtained optical spectra of the samples with the help of UV-visible/PL spectra evaluate the direct energy band gap to be from 1.7 eV to 2.8 eV and these ferrites may be suitable for high-frequency as well as for optoelectronic applications.
{"title":"Impedance and modulus spectroscopy of thermally synthesised ZnFe2O4 prepared through the mediation of different polymers","authors":"Harsha Chouhan, Sushil Kumar Behera, Maheswar Panda","doi":"10.1007/s12034-024-03374-2","DOIUrl":"10.1007/s12034-024-03374-2","url":null,"abstract":"<div><p>ZnFe<sub>2</sub>O<sub>4</sub> was thermally synthesised through the mediation of different polymers such as Poly(vinyl alcohol), Poly(vinyl pyrrolidone) and Poly(ethylene glycol) to prevent the unwanted agglomeration. The Rietveld refinement of the XRD spectra confirmed the sample to be fcc, while the FESEM/TEM micrographs exhibited the formation of spherical nanoparticles. The TGA/DSC analysis confirmed that the sample is stable up to 500°C. The dielectric, impedance and modulus spectroscopy as a function of temperature up to 200°C and within the frequency range of 20 Hz to 2 MHz confirm a single non-Debye type relaxation behaviour at different temperatures (well fitted by the KWW (Kohlrausch–Williams–Watts) function) attributed to the grain boundary/MWS polarisation present in the samples. The modulus and impedance master curve confirmed the distribution of relaxation times being independent of temperature. The AC conductivity phenomenon is explained using the CBH (correlated barrier hopping) model, satisfying Jonscher's universal power law with exponents in the range of [0,1] with an activation energy in the range of 0.4–0.8 eV. The obtained optical spectra of the samples with the help of UV-visible/PL spectra evaluate the direct energy band gap to be from 1.7 eV to 2.8 eV and these ferrites may be suitable for high-frequency as well as for optoelectronic applications.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.1007/s12034-024-03378-y
V S S Venkatesh, Prabhakara Rao Ganji, Sunil Kumar, Lokeswar Patnaik
This study investigates the effects of sintering parameters on the mechanical properties and microstructure of spark plasma sintered aluminium hybrid composites reinforced with 10 wt% SiC and 4 wt% kaolin. Using Taguchi–grey relational analysis (TGRA), the sintering temperature, compaction time, and compaction pressure were optimized based on their influence on density, ultimate tensile strength (UTS), and compression strength. Experiments were designed using an L9 orthogonal array, and ANOVA analysis was performed to determine the percentage contribution of each parameter. The optimal sintering conditions were found to be at a temperature of 570°C, a compaction time of 5 min, and a pressure of 20 MPa, resulting in a maximum density of 2.72 g/cc, UTS of 313 MPa, and compression strength of 379 MPa. Microstructural analysis through SEM revealed a homogeneous distribution of reinforcements at the optimal conditions, while the presence of Al2Cu intermetallic compounds was detected near the grain boundaries at non-optimal conditions. These results confirm that optimized sintering parameters significantly enhance the mechanical properties of the composite.
{"title":"Optimization of spark plasma sintered parameters of Al–SiC–kaolin hybrid composite using Taguchi–grey relational analysis","authors":"V S S Venkatesh, Prabhakara Rao Ganji, Sunil Kumar, Lokeswar Patnaik","doi":"10.1007/s12034-024-03378-y","DOIUrl":"10.1007/s12034-024-03378-y","url":null,"abstract":"<div><p>This study investigates the effects of sintering parameters on the mechanical properties and microstructure of spark plasma sintered aluminium hybrid composites reinforced with 10 wt% SiC and 4 wt% kaolin. Using Taguchi–grey relational analysis (TGRA), the sintering temperature, compaction time, and compaction pressure were optimized based on their influence on density, ultimate tensile strength (UTS), and compression strength. Experiments were designed using an L<sub>9</sub> orthogonal array, and ANOVA analysis was performed to determine the percentage contribution of each parameter. The optimal sintering conditions were found to be at a temperature of 570°C, a compaction time of 5 min, and a pressure of 20 MPa, resulting in a maximum density of 2.72 g/cc, UTS of 313 MPa, and compression strength of 379 MPa. Microstructural analysis through SEM revealed a homogeneous distribution of reinforcements at the optimal conditions, while the presence of Al<sub>2</sub>Cu intermetallic compounds was detected near the grain boundaries at non-optimal conditions. These results confirm that optimized sintering parameters significantly enhance the mechanical properties of the composite.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-11DOI: 10.1007/s12034-024-03371-5
Hiromichi Aono, Ami Takahashi, Takumi Miyamoto, Yoshiteru Itagaki
The Na-P1 type zeolites were synthesized using coal fly ash (FA-Na-P1) and also using chemical reagents (CA-Na-P1) for comparison. Both Na-P1 type zeolites showed a superior adsorption ability for the non-radioactive metal ions of Cs, Sr, Mn, Zn, Co, or Fe, assuming radioisotopes with relatively long half-lives. These zeolites were heat-treated for the immobilization of the adsorbed metal ions in the decomposed zeolite. The elution ratio of the metal ions in the deionized water and seawater for 14 days showed a low elution when the sample was heated at 1000°C and higher temperature for both zeolites. In particular, the elution of the 1100°C heated sample for the zeolite from fly ash significantly decreased compared with that from the chemical reagents. The reaction between the adsorbed cation and zeolite was confirmed to form polymetallic oxide. The formation of the reacted oxide phase suppressed the elution ratio for the FA-Na-P1 zeolite.
{"title":"Immobilization and solid reaction of adsorbed metal ions using heat treatment of synthesized Na-P1 type zeolite from coal fly ash","authors":"Hiromichi Aono, Ami Takahashi, Takumi Miyamoto, Yoshiteru Itagaki","doi":"10.1007/s12034-024-03371-5","DOIUrl":"10.1007/s12034-024-03371-5","url":null,"abstract":"<div><p>The Na-P1 type zeolites were synthesized using coal fly ash (FA-Na-P1) and also using chemical reagents (CA-Na-P1) for comparison. Both Na-P1 type zeolites showed a superior adsorption ability for the non-radioactive metal ions of Cs, Sr, Mn, Zn, Co, or Fe, assuming radioisotopes with relatively long half-lives. These zeolites were heat-treated for the immobilization of the adsorbed metal ions in the decomposed zeolite. The elution ratio of the metal ions in the deionized water and seawater for 14 days showed a low elution when the sample was heated at 1000°C and higher temperature for both zeolites. In particular, the elution of the 1100°C heated sample for the zeolite from fly ash significantly decreased compared with that from the chemical reagents. The reaction between the adsorbed cation and zeolite was confirmed to form polymetallic oxide. The formation of the reacted oxide phase suppressed the elution ratio for the FA-Na-P1 zeolite.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-11DOI: 10.1007/s12034-024-03360-8
Shikha Marwaha
In this work, a comprehensive analysis was performed on the perovskite solar cells (PSCs) considering MoS2 as the electron transport layer. For the initial calculations, numerical simulations obtained through SCAPS-1D were matched with experimental results. Further, multi-faceted exploration of material parameters was performed to obtain better performing PSC device. Electron affinity values of MoS2 layer were varied to obtain an optimum value to quantify its n-type behaviour. Furthermore, the impact of charge density and thickness of MoS2, Spiro-OMeTAD, thickness of perovskite layer, interface engineering of perovskite/charge transport layers and temperature were investigated in detail. Incorporation of optimized parameters has resulted in an improved device with Jsc, Voc, FF and η values as 23.7 mA cm−2, 1.15 V, 83.04 and 22.76%, respectively. To ensure higher stability, MoTe2 and WSe2 as hole transport layers were also investigated in this work. The obtained results point to the applicability of these HTLs as an optimum replacement for the commonly employed transport layers. Analysis conducted in this work provides a pathway to explore prospective options for improving the efficiency and sustainability of PSCs for commercial applications.
本文以二硫化钼为电子传输层,对钙钛矿太阳能电池(PSCs)进行了综合分析。对于初始计算,通过SCAPS-1D得到的数值模拟结果与实验结果相匹配。为了获得性能更好的PSC器件,对材料参数进行了多方面的探索。通过改变二硫化钼层的电子亲和值来获得量化其n型行为的最佳值。此外,还研究了MoS2的电荷密度和厚度、Spiro-OMeTAD、钙钛矿层厚度、钙钛矿/电荷输运层的界面工程和温度的影响。优化后的器件Jsc、Voc、FF和η值分别为23.7 mA cm−2、1.15 V、83.04和22.76%。为了保证更高的稳定性,本工作还研究了MoTe2和WSe2作为空穴传输层。所获得的结果表明,这些html可作为常用传输层的最佳替代品。在这项工作中进行的分析为探索提高PSCs的商业应用效率和可持续性的潜在选择提供了一条途径。
{"title":"Performance evaluation of transition metal dichalcogenide-based perovskite solar cells","authors":"Shikha Marwaha","doi":"10.1007/s12034-024-03360-8","DOIUrl":"10.1007/s12034-024-03360-8","url":null,"abstract":"<div><p>In this work, a comprehensive analysis was performed on the perovskite solar cells (PSCs) considering MoS<sub>2</sub> as the electron transport layer. For the initial calculations, numerical simulations obtained through SCAPS-1D were matched with experimental results. Further, multi-faceted exploration of material parameters was performed to obtain better performing PSC device. Electron affinity values of MoS<sub>2</sub> layer were varied to obtain an optimum value to quantify its n-type behaviour. Furthermore, the impact of charge density and thickness of MoS<sub>2</sub>, Spiro-OMeTAD, thickness of perovskite layer, interface engineering of perovskite/charge transport layers and temperature were investigated in detail. Incorporation of optimized parameters has resulted in an improved device with <i>J</i><sub>sc</sub>, <i>V</i><sub>oc</sub>, FF and <i>η</i> values as 23.7 mA cm<sup>−2</sup>, 1.15 V, 83.04 and 22.76%, respectively. To ensure higher stability, MoTe<sub>2</sub> and WSe<sub>2</sub> as hole transport layers were also investigated in this work. The obtained results point to the applicability of these HTLs as an optimum replacement for the commonly employed transport layers. Analysis conducted in this work provides a pathway to explore prospective options for improving the efficiency and sustainability of PSCs for commercial applications.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-11DOI: 10.1007/s12034-024-03376-0
Meenakshi, R Kapoor, S Dash, R Bansal, A Vij, H K Chourasiya, N Kumar, Ramovatar, S Kumar
In this study, EuCrO3 (ECO) and Eu0.9Dy0.10CrO3 (EDCO) rare-earth orthochromite compositions were synthesized through the traditional solid-state reaction technique. A comprehensive investigation was conducted to analyse the effect of the substitution of 10 wt% Dy3+ ions on the structural, optical and magnetic properties of EuCrO3. The X-ray diffraction results along with Rietveld refinement confirm the monophasic nature with an orthorhombic distorted perovskite structure for both compositions. Field emission scanning electron microscopy reveals polycrystalline microstructures with average grain sizes ranging from 269 to 327 nm for both compounds. The optical bandgap is evaluated by Tauc’s relation and is observed to slightly increase from 2.24 to 2.33 eV with Dy3+ ions substitution. Optical parameters, including skin depth, extinction coefficient, refractive index and optical conductivity are determined and their variations with Dy substitution are analysed. Temperature-dependent magnetic analysis reveals a Néel temperature (TN) of 177 K in EDCO composition, lower than that of pristine EuCrO3 (TN ~181 K). The magnetocaloric effect of the EDCO compound demonstrates a magnetic entropy change (ΔS) and relative cooling power of –0.27 J kg−1 K and 4.4 J kg−1, respectively, near TN under the application of 7 Tesla field. This study highlights the tunability of EuCrO3 properties through Dy ion substitution for customized applications.
{"title":"Tuning the structural, magnetic and optical properties of EuCrO3 orthochromites through Dy3+ substitution","authors":"Meenakshi, R Kapoor, S Dash, R Bansal, A Vij, H K Chourasiya, N Kumar, Ramovatar, S Kumar","doi":"10.1007/s12034-024-03376-0","DOIUrl":"10.1007/s12034-024-03376-0","url":null,"abstract":"<div><p>In this study, EuCrO<sub>3</sub> (ECO) and Eu<sub>0.9</sub>Dy<sub>0.10</sub>CrO<sub>3</sub> (EDCO) rare-earth orthochromite compositions were synthesized through the traditional solid-state reaction technique. A comprehensive investigation was conducted to analyse the effect of the substitution of 10 wt% Dy<sup>3+</sup> ions on the structural, optical and magnetic properties of EuCrO<sub>3</sub>. The X-ray diffraction results along with Rietveld refinement confirm the monophasic nature with an orthorhombic distorted perovskite structure for both compositions. Field emission scanning electron microscopy reveals polycrystalline microstructures with average grain sizes ranging from 269 to 327 nm for both compounds. The optical bandgap is evaluated by Tauc’s relation and is observed to slightly increase from 2.24 to 2.33 eV with Dy<sup>3+</sup> ions substitution. Optical parameters, including skin depth, extinction coefficient, refractive index and optical conductivity are determined and their variations with Dy substitution are analysed. Temperature-dependent magnetic analysis reveals a Néel temperature (<i>T</i><sub>N</sub>) of 177 K in EDCO composition, lower than that of pristine EuCrO<sub>3</sub> (<i>T</i><sub>N</sub> ~181 K). The magnetocaloric effect of the EDCO compound demonstrates a magnetic entropy change (Δ<i>S</i>) and relative cooling power of –0.27 J kg<sup>−1</sup> K and 4.4 J kg<sup>−1</sup>, respectively, near <i>T</i><sub>N</sub> under the application of 7 Tesla field. This study highlights the tunability of EuCrO<sub>3</sub> properties through Dy ion substitution for customized applications.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-11DOI: 10.1007/s12034-024-03387-x
Sushama Kumari, S K Sharma, Ramcharan Meena, Vijay Kumar Goel, Swati Bugalia
The effect of the grain size on the dielectric properties and electrical conductivity was studied for single-phase solid solution of the ZrO2–CeO2 system with 75% CeO2. The bi-ceramic composition of ZrO2–CeO2 as Ce0.75Zr0.25O2 was prepared through a solid-state reaction to synthesize single-phasic material followed by high-energy ball milling to make finer particle size. Structural properties were confirmed through advanced analytical techniques such as XRD and Raman spectroscopy. SEM confirmed large porosity with a grain size of 204 ± 3 nm, which is larger than the crystallite size of 22.64 ± 8.6 nm calculated from the XRD analysis for Ce0.75Zr0.25O2. The dielectric measurements were performed as a function of temperature by impedance spectroscopy. The relative dielectric constant decreases on increasing frequency for all temperatures, which validates the polar nature of nanocrystalline Ce0.75Zr0.25O2 ceramic. In addition, temperature-dependent enhancement in ({varepsilon }_{text{r}}) is more pronounced in low-frequency regions due to low-frequency dielectric dispersion phenomena. The dielectric loss also increases with increasing temperature over the frequency region from 100 Hz to 2 MHz. The electrical conductivity of nanocrystalline Ce0.75Zr0.25O2 was found to be smaller than the micron-sized sample of Ce0.75Zr0.25O2. The present study revealed the crucial role of grain size in tuning the dielectric properties of Ce0.75Zr0.25O2 along with ac conductivity.
研究了晶粒尺寸对ZrO2-CeO2体系单相固溶体介电性能和电导率的影响% CeO2. The bi-ceramic composition of ZrO2–CeO2 as Ce0.75Zr0.25O2 was prepared through a solid-state reaction to synthesize single-phasic material followed by high-energy ball milling to make finer particle size. Structural properties were confirmed through advanced analytical techniques such as XRD and Raman spectroscopy. SEM confirmed large porosity with a grain size of 204 ± 3 nm, which is larger than the crystallite size of 22.64 ± 8.6 nm calculated from the XRD analysis for Ce0.75Zr0.25O2. The dielectric measurements were performed as a function of temperature by impedance spectroscopy. The relative dielectric constant decreases on increasing frequency for all temperatures, which validates the polar nature of nanocrystalline Ce0.75Zr0.25O2 ceramic. In addition, temperature-dependent enhancement in ({varepsilon }_{text{r}}) is more pronounced in low-frequency regions due to low-frequency dielectric dispersion phenomena. The dielectric loss also increases with increasing temperature over the frequency region from 100 Hz to 2 MHz. The electrical conductivity of nanocrystalline Ce0.75Zr0.25O2 was found to be smaller than the micron-sized sample of Ce0.75Zr0.25O2. The present study revealed the crucial role of grain size in tuning the dielectric properties of Ce0.75Zr0.25O2 along with ac conductivity.
{"title":"Impedance spectroscopic study on nanocrystalline Ce0.75Zr0.25O2 ceramics","authors":"Sushama Kumari, S K Sharma, Ramcharan Meena, Vijay Kumar Goel, Swati Bugalia","doi":"10.1007/s12034-024-03387-x","DOIUrl":"10.1007/s12034-024-03387-x","url":null,"abstract":"<div><p>The effect of the grain size on the dielectric properties and electrical conductivity was studied for single-phase solid solution of the ZrO<sub>2</sub>–CeO<sub>2</sub> system with 75% CeO<sub>2</sub>. The bi-ceramic composition of ZrO<sub>2</sub>–CeO<sub>2</sub> as Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub> was prepared through a solid-state reaction to synthesize single-phasic material followed by high-energy ball milling to make finer particle size. Structural properties were confirmed through advanced analytical techniques such as XRD and Raman spectroscopy. SEM confirmed large porosity with a grain size of 204 ± 3 nm, which is larger than the crystallite size of 22.64 ± 8.6 nm calculated from the XRD analysis for Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub>. The dielectric measurements were performed as a function of temperature by impedance spectroscopy. The relative dielectric constant decreases on increasing frequency for all temperatures, which validates the polar nature of nanocrystalline Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub> ceramic. In addition, temperature-dependent enhancement in <span>({varepsilon }_{text{r}})</span> is more pronounced in low-frequency regions due to low-frequency dielectric dispersion phenomena. The dielectric loss also increases with increasing temperature over the frequency region from 100 Hz to 2 MHz. The electrical conductivity of nanocrystalline Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub> was found to be smaller than the micron-sized sample of Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub>. The present study revealed the crucial role of grain size in tuning the dielectric properties of Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub> along with ac conductivity.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water contamination by hazardous heavy metal ions and organic compounds causes environmental damage towards aquatic species and human health. Thus the evolution of highly selective, affordable, rapid and effective analytical tools for the removal and detection of toxic heavy metal ions and organic compounds in aqueous environments is a challenging objective. Electrochemical detection of metal ions and organic compounds is a very useful and effective method, where modified electrodes with metal nanocomposite particles are used. Materials with high porosity, low-charge transfer resistance and large electroactive area are desirable for electrode modification in order to act as an efficient electrochemical sensor. It has been established that natural polysaccharide-based graft copolymers with acrylic monomers can be efficiently used as ‘bio-template’ for preparing mono and bimetallic/metal oxide composite nanoparticles for sensing and catalytic applications. This is because of the fact that polysaccharide-based graft copolymers are eco-friendly in nature and have the potential to act as reducing and stabilizing agents. The bio-template-based metal/metal oxide nanocomposites are successfully used for the electrochemical sensing of some heavy metal ions, like Hg2+, Cd2+, Th4+, Zn2+, Pb2+, etc., and toxic phenolic compounds, and also show efficient catalytic application in azo dye degradation and p-nitrophenol reduction. The developed electrochemical sensors are selective, sensitive and effective for the detection of toxic heavy metal ions in real water samples. Here we summarize the various investigations carried out using metal/metal oxide nanocomposite particles (mono and bimetallic) in electrochemical sensing of toxic heavy metal ions and catalytic applications.
{"title":"Natural polysaccharide-based polymeric materials used as bio-templates for the synthesis of metal/metal oxide nanocomposite particles and their sensing and catalytic applications","authors":"Jagabandhu Ray, Barun Mondal, Rakesh Kumar Saren, Tridib Tripathy","doi":"10.1007/s12034-024-03390-2","DOIUrl":"10.1007/s12034-024-03390-2","url":null,"abstract":"<div><p>Water contamination by hazardous heavy metal ions and organic compounds causes environmental damage towards aquatic species and human health. Thus the evolution of highly selective, affordable, rapid and effective analytical tools for the removal and detection of toxic heavy metal ions and organic compounds in aqueous environments is a challenging objective. Electrochemical detection of metal ions and organic compounds is a very useful and effective method, where modified electrodes with metal nanocomposite particles are used. Materials with high porosity, low-charge transfer resistance and large electroactive area are desirable for electrode modification in order to act as an efficient electrochemical sensor. It has been established that natural polysaccharide-based graft copolymers with acrylic monomers can be efficiently used as ‘bio-template’ for preparing mono and bimetallic/metal oxide composite nanoparticles for sensing and catalytic applications. This is because of the fact that polysaccharide-based graft copolymers are eco-friendly in nature and have the potential to act as reducing and stabilizing agents. The bio-template-based metal/metal oxide nanocomposites are successfully used for the electrochemical sensing of some heavy metal ions, like Hg<sup>2+</sup>, Cd<sup>2+</sup>, Th<sup>4+</sup>, Zn<sup>2+</sup>, Pb<sup>2+</sup>, etc., and toxic phenolic compounds, and also show efficient catalytic application in azo dye degradation and p-nitrophenol reduction. The developed electrochemical sensors are selective, sensitive and effective for the detection of toxic heavy metal ions in real water samples. Here we summarize the various investigations carried out using metal/metal oxide nanocomposite particles (mono and bimetallic) in electrochemical sensing of toxic heavy metal ions and catalytic applications.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigates the current–voltage (I–V) characteristics of a Schottky Metal-Insulator-Semiconductor (MIS) structure, specifically featuring a titanium nitride (TiN) electrode interfaced with p-type silicon (p-Si) and a high-k aluminum oxide (Al2O3) layer with a thickness of 17 nm, enabling a detailed analysis of its influence on device performance. Conducted over a temperature range of 270 to 450 K, the research employs thermionic emission (TE) theory to extract critical electrical parameters, including reverse saturation current (I0), ideality factor (n), zero bias barrier height ((Phi_{B0})), series resistance (Rs) and rectification rate (RR). The analysis reveals a mean barrier height (BH) of 0.274 eV and a Richardson constant (A*) of 42.19 A (cm K)−1, both of which closely align with theoretical predictions for p-type silicon, suggesting that the thermionic emission mechanism, characterised by a Gaussian distribution of barrier heights, effectively describes the I–V–T behaviour of the fabricated Schottky structure. These findings elucidate the complex interplay between temperature and diode performance, offering significant insights for the optimisation and design of thermally-sensitive electronic devices leveraging this advanced Schottky MIS configuration.
本研究研究了肖特基金属-绝缘体-半导体(MIS)结构的电流-电压(I-V)特性,特别是氮化钛(TiN)电极与p型硅(p-Si)和厚度为17 nm的高k氧化铝(Al2O3)层的界面,从而详细分析了其对器件性能的影响。该研究在270 ~ 450 K的温度范围内进行,采用热离子发射(TE)理论提取关键电气参数,包括反向饱和电流(I0)、理想因数(n)、零偏置势垒高度((Phi_{B0}))、串联电阻(Rs)和整流速率(RR)。分析表明,平均势垒高度(BH)为0.274 eV,理查德森常数(a *)为42.19 a (cm K)−1,两者都与p型硅的理论预测密切相关,这表明以势垒高度高斯分布为特征的热离子发射机制有效地描述了制备的肖特基结构的I-V-T行为。这些发现阐明了温度和二极管性能之间复杂的相互作用,为利用这种先进的肖特基MIS配置优化和设计热敏电子器件提供了重要的见解。
{"title":"Thermal influence on the current–voltage characteristics of TiN/Al2O3/p-Si MIS devices for emerging nanotechnology applications","authors":"Slah Hlali, Neila Hizem, Liviu Militaru, Adel Kalboussi, Abdelkader Souifi","doi":"10.1007/s12034-024-03375-1","DOIUrl":"10.1007/s12034-024-03375-1","url":null,"abstract":"<div><p>This study investigates the current–voltage (<i>I–V</i>) characteristics of a Schottky Metal-Insulator-Semiconductor (MIS) structure, specifically featuring a titanium nitride (TiN) electrode interfaced with p-type silicon (p-Si) and a high-k aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) layer with a thickness of 17 nm, enabling a detailed analysis of its influence on device performance. Conducted over a temperature range of 270 to 450 K, the research employs thermionic emission (TE) theory to extract critical electrical parameters, including reverse saturation current (<i>I</i><sub>0</sub>), ideality factor (n), zero bias barrier height (<span>(Phi_{B0})</span>), series resistance (Rs) and rectification rate (RR). The analysis reveals a mean barrier height (BH) of 0.274 eV and a Richardson constant (A*) of 42.19 A (cm K)<sup>−1</sup>, both of which closely align with theoretical predictions for p-type silicon, suggesting that the thermionic emission mechanism, characterised by a Gaussian distribution of barrier heights, effectively describes the <i>I–V–T</i> behaviour of the fabricated Schottky structure. These findings elucidate the complex interplay between temperature and diode performance, offering significant insights for the optimisation and design of thermally-sensitive electronic devices leveraging this advanced Schottky MIS configuration.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}