Pub Date : 2024-09-30DOI: 10.1007/s12034-024-03319-9
{"title":"Materials for Energy and Sustainable Development","authors":"","doi":"10.1007/s12034-024-03319-9","DOIUrl":"10.1007/s12034-024-03319-9","url":null,"abstract":"","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1007/s12034-024-03329-7
Aranganathan Viswanathan, Adka Nityananda Shetty
The green energy storage of polyaniline, without major wastages excreted into the environment is effectively demonstrated by using the polyaniline as supercapacitor electrode and the by-product obtained during the synthesis of polyaniline as its electrolyte. This green approach to the energy storage properties of sulphuric acid doped polyaniline (H-PANI) exhibited a substantial improvement in its energy storage, compared to the conventional approach of using an ionically conducting liquid as electrolyte like 1 M H2SO4 (SA), separately. The amelioration of 40.44% was achieved when the by-product obtained as supernatant liquid (SL) was used as electrolyte compared to SA. The H-PANI provided a specific capacity (Q) of 146.4 C g−1, a specific energy (E) of 24.40 W h kg−1 and a specific power (P) of 1.200 kW kg−1 at 1 A g−1 in the presence of SA. The Q of 205.6 C g−1, E of 34.26 W h kg−1 (similar range of E of Pb-acid batteries), P of 1.200 kW kg−1 were achieved in the presence of SL at 1 A g−1 and a high rate capability of 29.18% retention of initial Q up to 25 A g−1 was also achieved. This approach is useful to harvest high energy characters from PANI.
通过使用聚苯胺作为超级电容器电极,并使用聚苯胺合成过程中产生的副产品作为电解质,有效证明了聚苯胺的绿色储能功能,且不会向环境中排出大量废物。与分别使用离子导电液体(如 1 M H2SO4 (SA))作为电解质的传统方法相比,这种掺杂硫酸的聚苯胺(H-PANI)的绿色储能方法大大提高了其储能性能。与 SA 相比,使用副产品上清液 (SL) 作为电解质可提高 40.44%。在 SA 存在的情况下,H-PANI 的比容量(Q)为 146.4 C g-1,比能量(E)为 24.40 W h kg-1,比功率(P)为 1.200 kW kg-1(1 A g-1)。在 1 A g-1 的条件下,SL 存在时的 Q 值为 205.6 C g-1,E 值为 34.26 W h kg-1(与铅酸蓄电池的 E 值范围相似),P 值为 1.200 kW kg-1,并且在 25 A g-1 的条件下还能保持 29.18% 的初始 Q 值。这种方法有助于从 PANI 中获得高能量特性。
{"title":"A green approach to energy storage properties of polyaniline","authors":"Aranganathan Viswanathan, Adka Nityananda Shetty","doi":"10.1007/s12034-024-03329-7","DOIUrl":"10.1007/s12034-024-03329-7","url":null,"abstract":"<div><p>The green energy storage of polyaniline, without major wastages excreted into the environment is effectively demonstrated by using the polyaniline as supercapacitor electrode and the by-product obtained during the synthesis of polyaniline as its electrolyte. This green approach to the energy storage properties of sulphuric acid doped polyaniline (H-PANI) exhibited a substantial improvement in its energy storage, compared to the conventional approach of using an ionically conducting liquid as electrolyte like 1 M H<sub>2</sub>SO<sub>4</sub> (SA), separately. The amelioration of 40.44% was achieved when the by-product obtained as supernatant liquid (SL) was used as electrolyte compared to SA. The H-PANI provided a specific capacity (<i>Q</i>) of 146.4 C g<sup>−1</sup>, a specific energy (<i>E</i>) of 24.40 W h kg<sup>−1</sup> and a specific power (<i>P</i>) of 1.200 kW kg<sup>−1</sup> at 1 A g<sup>−1</sup> in the presence of SA. The <i>Q</i> of 205.6 C g<sup>−1</sup>, <i>E</i> of 34.26 W h kg<sup>−1</sup> (similar range of <i>E</i> of Pb-acid batteries), <i>P</i> of 1.200 kW kg<sup>−1</sup> were achieved in the presence of SL at 1 A g<sup>−1</sup> and a high rate capability of 29.18% retention of initial <i>Q</i> up to 25 A g<sup>−1</sup> was also achieved. This approach is useful to harvest high energy characters from PANI.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1007/s12034-024-03299-w
Ashwini Devidas, T Sankarappa, Amarkumar Malge, Mohansingh Heerasingh, Jamadar Pallavi
Lead-free glasses of composition, (ZnO)0.3–(V2O5)0.3-x–(B2O3)0.4–(La2O3)x; x = 0.01–0.05 were made by melt-quenching procedure. Their amorphous nature was established. FTIR studies revealed that functional groups are present in the glasses. Band (indirect) gaps obtained from UV–Vis absorption spectra, increased with increase in La2O3 content from 2.505 to 2.828 eV. Urbach energy and refractive index were decreased from 0.397 to 0.292 eV and 2.544–2.440, respectively, with La2O3. Various optical parameters have been estimated. These suggest the suitability of these glasses for photoelectronic applications. Using Phy-X/PSD and XCOM softwares, gamma- and neutron-shielding parameters were evaluated for photon energy range of 0.15–15 MeV. Mass and linear attenuation coefficients were found to increase with increase in La2O3 mole fractions. Minimum half value and tenth value layers (HVL, TVL) of the glasses at 0.015 MeV, are found to lie between 0.007 and 0.006 cm, and 0.0260 and 0.0211 cm, respectively. Maximum exposure build-up factors (EBF) at 0.4 MeV for 40 mean free path (MFP) were found in the range of 199.37–110.26 and energy absorption build-up factors (EABF) in the range of 407.98–220.11. Removal cross-sections for fast neutrons were estimated to be in the range of 0.1001–0.1036 cm−1. Radiation-shielding parameters, such as HVL, TVL, MFP, Zeff, Zeq, EBF and EABF values were found to be lesser and ΣR values were greater than reported values for several boro-vanadate glasses, commercial glasses, IL, HSC, BM, ordinary concrete and ilmenite concretes. Radiation-protection efficiency of the present glasses was found to increase with La2O3 content and decrease with photon energy. Therefore, these glasses are proposed for both gamma- and neutron-shielding applications.
{"title":"Optical and radiation shielding studies on La2O3-mixed zinc-borovanadate glasses","authors":"Ashwini Devidas, T Sankarappa, Amarkumar Malge, Mohansingh Heerasingh, Jamadar Pallavi","doi":"10.1007/s12034-024-03299-w","DOIUrl":"10.1007/s12034-024-03299-w","url":null,"abstract":"<div><p>Lead-free glasses of composition, (ZnO)<sub>0.3</sub>–(V<sub>2</sub>O<sub>5</sub>)<sub>0.3-<i>x</i></sub>–(B<sub>2</sub>O<sub>3</sub>)<sub>0.4</sub>–(La<sub>2</sub>O<sub>3</sub>)<sub><i>x</i></sub>; <i>x</i> = 0.01–0.05 were made by melt-quenching procedure. Their amorphous nature was established. FTIR studies revealed that functional groups are present in the glasses. Band (indirect) gaps obtained from UV–Vis absorption spectra, increased with increase in La<sub>2</sub>O<sub>3</sub> content from 2.505 to 2.828 eV. Urbach energy and refractive index were decreased from 0.397 to 0.292 eV and 2.544–2.440, respectively, with La<sub>2</sub>O<sub>3</sub>. Various optical parameters have been estimated. These suggest the suitability of these glasses for photoelectronic applications. Using Phy-X/PSD and XCOM softwares, gamma- and neutron-shielding parameters were evaluated for photon energy range of 0.15–15 MeV. Mass and linear attenuation coefficients were found to increase with increase in La<sub>2</sub>O<sub>3</sub> mole fractions. Minimum half value and tenth value layers (HVL, TVL) of the glasses at 0.015 MeV, are found to lie between 0.007 and 0.006 cm, and 0.0260 and 0.0211 cm, respectively. Maximum exposure build-up factors (EBF) at 0.4 MeV for 40 mean free path (MFP) were found in the range of 199.37–110.26 and energy absorption build-up factors (EABF) in the range of 407.98–220.11. Removal cross-sections for fast neutrons were estimated to be in the range of 0.1001–0.1036 cm<sup>−1</sup>. Radiation-shielding parameters, such as HVL, TVL, MFP, <i>Z</i><sub>eff</sub>, <i>Z</i><sub>eq</sub>, EBF and EABF values were found to be lesser and Σ<sub>R</sub> values were greater than reported values for several boro-vanadate glasses, commercial glasses, IL, HSC, BM, ordinary concrete and ilmenite concretes. Radiation-protection efficiency of the present glasses was found to increase with La<sub>2</sub>O<sub>3</sub> content and decrease with photon energy. Therefore, these glasses are proposed for both gamma- and neutron-shielding applications.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1007/s12034-024-03336-8
Amit Kumar Singh, Saurabh Yadav, Y S Katharria
In this study, the impact of Si4+ substitution on the structural and dielectric properties of Ga2O3 powder was investigated in detail. High-temperature solid-state chemical reaction method was employed to prepare pure and Si-mixed Ga2O3 compounds. The formation of the monoclinic structure of Ga2O3 was confirmed through X-ray diffraction pattern. Field emission scanning electron microscopy micrographs revealed agglomerated particles. All prepared samples consisted of particles with sizes in the range of 0.191 to 0.202 µm. The X-ray photoelectron spectroscopy (XPS) analysis of Ga 2p reveals a positive shift as compared to metallic Ga due to the interaction between the electron cloud of adjacent ions. XPS analyses, which considered the Ga 2p doublet (Ga 2p3/2 and Ga 2p1/2 peaks), also indicate that Ga exists in its highest chemical valence state (Ga3+) in the sample. The frequency dependence of the dielectric constant, ac conductivity and dielectric loss of the synthesized samples was investigated at room temperature (RT). The dielectric constant increases with an increase in Si concentration at RT.
本研究详细探讨了 Si4+ 取代对 Ga2O3 粉末结构和介电性能的影响。采用高温固态化学反应方法制备了纯 Ga2O3 和混有 Si 的 Ga2O3 化合物。通过 X 射线衍射图样证实了 Ga2O3 单斜结构的形成。场发射扫描电子显微镜显微照片显示了团聚颗粒。所有制备的样品都由大小在 0.191 至 0.202 微米之间的颗粒组成。Ga 2p 的 X 射线光电子能谱(XPS)分析表明,与金属镓相比,由于相邻离子电子云之间的相互作用,Ga 2p 出现了正偏移。考虑到 Ga 2p 双重(Ga 2p3/2 和 Ga 2p1/2 峰)的 XPS 分析还表明,样品中的镓以最高化合价态(Ga3+)存在。在室温(RT)下,研究了合成样品的介电常数、交流电导率和介电损耗的频率依赖性。在室温下,介电常数随着硅浓度的增加而增加。
{"title":"Impact of Si4+ substitution on structural and dielectric properties of Si-mixed Ga2O3 compounds","authors":"Amit Kumar Singh, Saurabh Yadav, Y S Katharria","doi":"10.1007/s12034-024-03336-8","DOIUrl":"10.1007/s12034-024-03336-8","url":null,"abstract":"<div><p>In this study, the impact of Si<sup>4+</sup> substitution on the structural and dielectric properties of Ga<sub>2</sub>O<sub>3</sub> powder was investigated in detail. High-temperature solid-state chemical reaction method was employed to prepare pure and Si-mixed Ga<sub>2</sub>O<sub>3</sub> compounds. The formation of the monoclinic structure of Ga<sub>2</sub>O<sub>3</sub> was confirmed through X-ray diffraction pattern. Field emission scanning electron microscopy micrographs revealed agglomerated particles. All prepared samples consisted of particles with sizes in the range of 0.191 to 0.202 µm. The X-ray photoelectron spectroscopy (XPS) analysis of Ga 2p reveals a positive shift as compared to metallic Ga due to the interaction between the electron cloud of adjacent ions. XPS analyses, which considered the Ga 2p doublet (Ga 2p<sub>3/2</sub> and Ga 2p<sub>1/2</sub> peaks), also indicate that Ga exists in its highest chemical valence state (Ga<sup>3+</sup>) in the sample. The frequency dependence of the dielectric constant, ac conductivity and dielectric loss of the synthesized samples was investigated at room temperature (RT). The dielectric constant increases with an increase in Si concentration at RT.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1007/s12034-024-03320-2
M Rahrah, N Lebga, A Latreche, S Daoud
First principle calculations of the elastic constants of perovskite-type hydride NaBeH3 material have been accomplished using the density functional theory (DFT) within the local density approximation (LDA) and the pseudopotential plane-wave method. The elastic constants were compared fairly well with those previously calculated. We have also calculated the dependence of the elastic constants on hydrostatic pressure from 0 up to 96.55 GPa. We have found that the elastic constants follow a quadratic law with respect to the pressure. In this study, the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, acoustic wave speed and Debye temperature of cubic NaBeH3 material are also determined as a function of pressure. Both the acoustic wave speed and the Debye temperature of NaBeH3 material change monotonously and non-linearly with increasing the pressure from 0 up to 96.55 GPa.