Repeated high-g shocks and whole-body vibration (WBV) as experienced by operators of High-Speed Craft (HSC) increase the risk of fatigue, back pain, and acute and chronic injuries, especially in the lumbar region of the spine. Studies on abdominal belts have suggested their beneficial effects on lumbar torso stabilisation and back pain mitigation in both weight lifting and HSC scenarios. This paper presents a human musculoskeletal model to simulate belt effects for occupants on HSC under high-g shocks. Parameters included the shock severity with peak acceleration ranging from 3 g to 10 g, human dimensions and muscle strengths, the belt width and belt forces are investigated. The results show an average of 120% increase in the intra-abdominal pressure (IAP), a 9% reduction in the transverse abdominis activities, and a 12% reduction in the spinal compressive force at the L4/L5 joints when the abdominal belt is added to the human model. In conclusion, wearing an abdominal belt significantly assists abdominal muscles and maintains a solid core during intense WBV generated in different shock severity levels. It may cause a small negative influence on the neck region with a 2.4% increase in the shear force at the C4/C5 joints.