Pub Date : 2024-04-11DOI: 10.15376/biores.19.2.3249-3270
A. Khusro, C. Aarti, M. Almutairi, Bader O. Almutairi
Inulinase is an inulin degrading enzyme that exhibits versatility in disparate bioresource and bioprocess industries. In this study, invertase-free exoinulinase was initially produced from Glutamicibacter arilaitensis strain ALA4 using diversified inexpensive substrates under solid state fermentation. Strain ALA4 revealed maximum production of inulinase using goat dung as quintessential feedstock. Inulinase activity of strain ALA4 was further optimized by one-factor-at-a-time method, followed by response surface methodology, which showed enhanced inulinase activity of 4678.34±34.67 U/g at 96 h using goat dung medium of pH 8.0 with 100% of moisture content. Furthermore, crude inulinase was not only thermo-alkali stable but also exhibited tolerance towards varied metal ions, organic solvents, surfactants, and inhibitors with satisfactory residual activities. Additionally, fructose produced due to the hydrolysis of inulin present in goat dung was analyzed by osazone and HPTLC tests which further confirmed exoinulinase nature of enzyme. In a nutshell, the study evidenced the first report on invertase-free exoinulinase production from G. arilaitensis using goat dung as proficient feedstock and demonstrated its quiescent applications in bioprocessing industries in future.
{"title":"Production and statistical optimization of invertase-free exoinulinase from Glutamicibacter arilaitensis using goat dung as ideal feedstock","authors":"A. Khusro, C. Aarti, M. Almutairi, Bader O. Almutairi","doi":"10.15376/biores.19.2.3249-3270","DOIUrl":"https://doi.org/10.15376/biores.19.2.3249-3270","url":null,"abstract":"Inulinase is an inulin degrading enzyme that exhibits versatility in disparate bioresource and bioprocess industries. In this study, invertase-free exoinulinase was initially produced from Glutamicibacter arilaitensis strain ALA4 using diversified inexpensive substrates under solid state fermentation. Strain ALA4 revealed maximum production of inulinase using goat dung as quintessential feedstock. Inulinase activity of strain ALA4 was further optimized by one-factor-at-a-time method, followed by response surface methodology, which showed enhanced inulinase activity of 4678.34±34.67 U/g at 96 h using goat dung medium of pH 8.0 with 100% of moisture content. Furthermore, crude inulinase was not only thermo-alkali stable but also exhibited tolerance towards varied metal ions, organic solvents, surfactants, and inhibitors with satisfactory residual activities. Additionally, fructose produced due to the hydrolysis of inulin present in goat dung was analyzed by osazone and HPTLC tests which further confirmed exoinulinase nature of enzyme. In a nutshell, the study evidenced the first report on invertase-free exoinulinase production from G. arilaitensis using goat dung as proficient feedstock and demonstrated its quiescent applications in bioprocessing industries in future.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"45 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140716018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-11DOI: 10.15376/biores.19.2.3271-3289
Sivasubramanian Palanisamy, Tabrej Khan, Omar Shabbir, Shien Ming, Wu
Natural fibers along with glass fibers were used as the reinforcement of an epoxy matrix for the betterment of mechanical and wear applications. The combination of overall wt% up to 20 resulted in 23.8 MPa of tensile strength compared to 15.5 MPa for untreated fibers. The wt% of areca fiber (AF) (20 wt%)/glass fibers (GF) (20 wt%) with 5% alkali treatment yielded a maximum tensile strength up to 62.6% in comparison to untreated fiber at lowest percentage of 10 wt%. The increase in flexural strength with alkali treatment was observed from 20 to 50 wt% hybrid fiber incorporation. The alkali treated fibers, untreated fiber combinations achieved 33.8% and 26.8% improvement with impact properties. A decrease in the wear loss was shown with the increase in wt% of hybrid fiber incorporation from 20 to 40 wt%. The interfacial adhesion of fiber with matrix created a pressure absorbing zone that was positively influenced with applying higher loads. The frictional rate was highly increasing with increase in hybrid fiber wt% and also with higher loads applied. The SEM results for treated 20 wt% AF+20 wt% GF with hybrid fiber incorporation observed better results due to improved adhesion of fiber with matrix phase.
{"title":"Mechanical, morphological and wear resistance of natural fiber / glass fiber-based polymer composites","authors":"Sivasubramanian Palanisamy, Tabrej Khan, Omar Shabbir, Shien Ming, Wu","doi":"10.15376/biores.19.2.3271-3289","DOIUrl":"https://doi.org/10.15376/biores.19.2.3271-3289","url":null,"abstract":"Natural fibers along with glass fibers were used as the reinforcement of an epoxy matrix for the betterment of mechanical and wear applications. The combination of overall wt% up to 20 resulted in 23.8 MPa of tensile strength compared to 15.5 MPa for untreated fibers. The wt% of areca fiber (AF) (20 wt%)/glass fibers (GF) (20 wt%) with 5% alkali treatment yielded a maximum tensile strength up to 62.6% in comparison to untreated fiber at lowest percentage of 10 wt%. The increase in flexural strength with alkali treatment was observed from 20 to 50 wt% hybrid fiber incorporation. The alkali treated fibers, untreated fiber combinations achieved 33.8% and 26.8% improvement with impact properties. A decrease in the wear loss was shown with the increase in wt% of hybrid fiber incorporation from 20 to 40 wt%. The interfacial adhesion of fiber with matrix created a pressure absorbing zone that was positively influenced with applying higher loads. The frictional rate was highly increasing with increase in hybrid fiber wt% and also with higher loads applied. The SEM results for treated 20 wt% AF+20 wt% GF with hybrid fiber incorporation observed better results due to improved adhesion of fiber with matrix phase.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"10 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140713984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.15376/biores.19.2.3191-3207
Shulan Yu, Zehui Wu
The elaboration likelihood model (ELM) and regression analysis were used to investigate the impact of furniture brands’ communication strategies on consumer behavior through short video platforms. The work examined a set of representative short videos, analyzing how key features—such as content theme, duration (16-60 seconds), graphics, subtitles, background music, and title style—affected communication effectiveness. The ELM model uncovered the correlation between these video characteristics and the Communication Effect Index (DCI), with statistical significance confirmed by regression. Findings indicated that live broadcasts, graphical presentations, subtitles/topics, upbeat music, and exclamatory titles significantly enhanced communication efficiency. Limitations, including time-period sampling bias, sample size, and item duplication in the ELM application, were also considered. Based on these findings, the research offers optimization suggestions and future directions for furniture enterprises in leveraging short video marketing.
本研究采用了阐述可能性模型(ELM)和回归分析法来研究家具品牌的传播策略通过短视频平台对消费者行为的影响。研究考察了一组具有代表性的短视频,分析了视频的关键特征--如内容主题、时长(16-60 秒)、画面、字幕、背景音乐和标题风格--如何影响传播效果。ELM 模型揭示了这些视频特征与传播效果指数(DCI)之间的相关性,并通过回归确认了统计意义。研究结果表明,现场直播、图形演示、字幕/主题、欢快的音乐和感叹式标题能显著提高传播效率。研究还考虑了一些局限性,包括时间段抽样偏差、样本大小和 ELM 应用中的项目重复。基于这些发现,研究为家具企业利用短视频营销提供了优化建议和未来方向。
{"title":"Research on the influence mechanism of short video communication effect of furniture brand: Based on ELM model and regression analysis","authors":"Shulan Yu, Zehui Wu","doi":"10.15376/biores.19.2.3191-3207","DOIUrl":"https://doi.org/10.15376/biores.19.2.3191-3207","url":null,"abstract":"The elaboration likelihood model (ELM) and regression analysis were used to investigate the impact of furniture brands’ communication strategies on consumer behavior through short video platforms. The work examined a set of representative short videos, analyzing how key features—such as content theme, duration (16-60 seconds), graphics, subtitles, background music, and title style—affected communication effectiveness. The ELM model uncovered the correlation between these video characteristics and the Communication Effect Index (DCI), with statistical significance confirmed by regression. Findings indicated that live broadcasts, graphical presentations, subtitles/topics, upbeat music, and exclamatory titles significantly enhanced communication efficiency. Limitations, including time-period sampling bias, sample size, and item duplication in the ELM application, were also considered. Based on these findings, the research offers optimization suggestions and future directions for furniture enterprises in leveraging short video marketing.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"14 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140736904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.15376/biores.19.2.3164-3179
Zhenjiang Li, Ting Wang, Shengyun Liu, Yafeng Yang, Liu Yang, Chenyi Yu, Guanjie Wang, Yi Hui, Zongshan Li, Ximei Li
Long-term dynamics of biogenic volatile organic compounds (BVOCs) in trees are rarely reported, despite environmental factors (such as climate change) influencing their growth and the subsequent chemical accumulation. For this, tree growth rings provide a promising biological proxy for the long-time variation and correlation with environmental changes. Therefore, tree rings from Pinus tabuliformis (two stem disks and 40 tree cores) were collected in the Taihang Mountain Macaque National Nature Reserve of China. These samples were divided into seven 5-year resolutions over the 34-year period 1985 to 2018. This enabled analysis of multi-decadal variations of compounds and their correlation with climate variability. A total of 292 BVOCs were detected; however, only 18 compounds were found together across all the 7 growth-periods. Temporal analyses showed decreasing trends for monoterpenes (0.026%/yr) and diterpenes (0.120%/yr), whereas alcohols and oxygenated monoterpenes showed increasing trends at 0.031%/yr and 0.042%/yr, respectively. Correlation analyses showed no obvious link to yearly precipitation, while seasonal temperature had a negative effect on monoterpenes and diterpenes but positive effects on alcohols and oxygenated monoterpenes (all P < 0.05). The present study showed that dendrochronology is a suitable method for re-establishing the biological effects from historical climate variability on key tree species.
{"title":"Climate-affected multi-decadal variations of biogenic volatile organic compounds in Pinus tabuliformis growth rings","authors":"Zhenjiang Li, Ting Wang, Shengyun Liu, Yafeng Yang, Liu Yang, Chenyi Yu, Guanjie Wang, Yi Hui, Zongshan Li, Ximei Li","doi":"10.15376/biores.19.2.3164-3179","DOIUrl":"https://doi.org/10.15376/biores.19.2.3164-3179","url":null,"abstract":"Long-term dynamics of biogenic volatile organic compounds (BVOCs) in trees are rarely reported, despite environmental factors (such as climate change) influencing their growth and the subsequent chemical accumulation. For this, tree growth rings provide a promising biological proxy for the long-time variation and correlation with environmental changes. Therefore, tree rings from Pinus tabuliformis (two stem disks and 40 tree cores) were collected in the Taihang Mountain Macaque National Nature Reserve of China. These samples were divided into seven 5-year resolutions over the 34-year period 1985 to 2018. This enabled analysis of multi-decadal variations of compounds and their correlation with climate variability. A total of 292 BVOCs were detected; however, only 18 compounds were found together across all the 7 growth-periods. Temporal analyses showed decreasing trends for monoterpenes (0.026%/yr) and diterpenes (0.120%/yr), whereas alcohols and oxygenated monoterpenes showed increasing trends at 0.031%/yr and 0.042%/yr, respectively. Correlation analyses showed no obvious link to yearly precipitation, while seasonal temperature had a negative effect on monoterpenes and diterpenes but positive effects on alcohols and oxygenated monoterpenes (all P < 0.05). The present study showed that dendrochronology is a suitable method for re-establishing the biological effects from historical climate variability on key tree species.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"48 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140742829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.15376/biores.19.2.3149-3163
Xiaoyu Gu, Qiyun Xu, Benjamin Mwamba, Zheng Wang, Liang Qi, Jun Wang, Liming Song, Jinliang Wu
This paper proposes an improvement in the test method for determining the flexural dynamic modulus of elasticity of strawboard with two triangular prisms as supports, for quality control and classification. Free-plate modal and free-plate transient excitation methods were used to test the elastic modulus of 1/4-plate and whole-plate strawboards. The dynamic test results were verified with the four-point bending method and tensile method. The results show that the elastic moduli of strawboards is approximately 2 GPa. The dynamic test method proposed is efficient, simple, repeatable, and accurate. This method is more suitable for factory applications than existing dynamic testing methods. The framed cases produced by the strawboard all meet the performance requirements in GB/T 7284 (2016).
{"title":"Flexural vibration test method for determining the dynamic elastic modulus of full-size strawboards for use in transportation framed cases","authors":"Xiaoyu Gu, Qiyun Xu, Benjamin Mwamba, Zheng Wang, Liang Qi, Jun Wang, Liming Song, Jinliang Wu","doi":"10.15376/biores.19.2.3149-3163","DOIUrl":"https://doi.org/10.15376/biores.19.2.3149-3163","url":null,"abstract":"This paper proposes an improvement in the test method for determining the flexural dynamic modulus of elasticity of strawboard with two triangular prisms as supports, for quality control and classification. Free-plate modal and free-plate transient excitation methods were used to test the elastic modulus of 1/4-plate and whole-plate strawboards. The dynamic test results were verified with the four-point bending method and tensile method. The results show that the elastic moduli of strawboards is approximately 2 GPa. The dynamic test method proposed is efficient, simple, repeatable, and accurate. This method is more suitable for factory applications than existing dynamic testing methods. The framed cases produced by the strawboard all meet the performance requirements in GB/T 7284 (2016).","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"15 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140745024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Several commercial wood-based composites (softwood plywood [SWP], hardwood plywood [HWP], medium-density fiberboard [MDF], oriented strand board [OSB], and particleboard) [PB]) were post-treated with alkaline copper quat and copper azole at two different retention levels. The treated specimens were installed on concrete blocks covered with 5-sided PVC boxes simulating the crawl space conditions (protected above-ground) in Japanese houses in Southern Japan where decay and termite activity are high. The experimental variables are a comparison of treated versus untreated, preservative type and retention levels. During 14 years of exposure, the specimens were biannually visually rated. In general, termite damage became visible earlier and the harshness of attack was higher when compared to decay damage. The untreated and treated MDFs were the most resistant under the protected above ground conditions at the end of 14 years exposure. Particleboard durability performance followed the MDF rating during the same period. The untreated OSB, HWP, and SWP were the least resistant composite types. The treatments substantially increased the durability of the mentioned composite types by 317.6%, 80.5%, and 133% higher termite grading when correlated to their untreated controls, respectfully, yet they failed to maintain full protection. Based on statistical analysis, preservative types and retention levels did not significantly affect decay and termite ratings.
{"title":"Durability ratings of post-treated wood-based composites after 14 years of field exposure","authors":"Cihat Taşçioğlu, Tsuyoshi Yoshimura, Wakako Ohmura","doi":"10.15376/biores.19.2.3180-3190","DOIUrl":"https://doi.org/10.15376/biores.19.2.3180-3190","url":null,"abstract":"Several commercial wood-based composites (softwood plywood [SWP], hardwood plywood [HWP], medium-density fiberboard [MDF], oriented strand board [OSB], and particleboard) [PB]) were post-treated with alkaline copper quat and copper azole at two different retention levels. The treated specimens were installed on concrete blocks covered with 5-sided PVC boxes simulating the crawl space conditions (protected above-ground) in Japanese houses in Southern Japan where decay and termite activity are high. The experimental variables are a comparison of treated versus untreated, preservative type and retention levels. During 14 years of exposure, the specimens were biannually visually rated. In general, termite damage became visible earlier and the harshness of attack was higher when compared to decay damage. The untreated and treated MDFs were the most resistant under the protected above ground conditions at the end of 14 years exposure. Particleboard durability performance followed the MDF rating during the same period. The untreated OSB, HWP, and SWP were the least resistant composite types. The treatments substantially increased the durability of the mentioned composite types by 317.6%, 80.5%, and 133% higher termite grading when correlated to their untreated controls, respectfully, yet they failed to maintain full protection. Based on statistical analysis, preservative types and retention levels did not significantly affect decay and termite ratings.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140745952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-02DOI: 10.15376/biores.19.2.3138-3148
Mehmet Gunes, Çağatay Ersin, M. Altunok
Wood, as the oldest building material, provides some of the basic needs of human beings, including shelter and protection. Wood is used in exterior cladding, carrier systems, joinery, ceiling-floor coverings, windows, doors, and furniture production. When wooden material is exposed to external weather conditions, due to its hygroscopic structure, its physical and mechanical properties deteriorate from exposure to moisture, temperature, and biological organisms. The bending modulus of elasticity of Scots pine (Pinus sylvestris L.), oak (Quercus petraea L.), and chestnut (Castanea sativa M.) wood that was tannin-impregnated and heat-treated at 160 °C, was investigated using Taguchi L9 (33). The sequence was optimized. After heat treatment, the carrier elements were subjected to artificial climate conditions. In the optimization of the data obtained, it was understood that the highest impact factor was the tree type. In contrast, the climate on the elastic modulus was the lowest impact factor. In Taguchi analysis, a mathematical prediction model was created using actual and predicted data using the S/N ratio’s biggest-best equation. The R2 of the model can be predicted with an accuracy rate of 98.6%.
{"title":"Effect of climate and wood type on elastic modulus of heat-treated wood and its optimization by the Taguchi method","authors":"Mehmet Gunes, Çağatay Ersin, M. Altunok","doi":"10.15376/biores.19.2.3138-3148","DOIUrl":"https://doi.org/10.15376/biores.19.2.3138-3148","url":null,"abstract":"Wood, as the oldest building material, provides some of the basic needs of human beings, including shelter and protection. Wood is used in exterior cladding, carrier systems, joinery, ceiling-floor coverings, windows, doors, and furniture production. When wooden material is exposed to external weather conditions, due to its hygroscopic structure, its physical and mechanical properties deteriorate from exposure to moisture, temperature, and biological organisms. The bending modulus of elasticity of Scots pine (Pinus sylvestris L.), oak (Quercus petraea L.), and chestnut (Castanea sativa M.) wood that was tannin-impregnated and heat-treated at 160 °C, was investigated using Taguchi L9 (33). The sequence was optimized. After heat treatment, the carrier elements were subjected to artificial climate conditions. In the optimization of the data obtained, it was understood that the highest impact factor was the tree type. In contrast, the climate on the elastic modulus was the lowest impact factor. In Taguchi analysis, a mathematical prediction model was created using actual and predicted data using the S/N ratio’s biggest-best equation. The R2 of the model can be predicted with an accuracy rate of 98.6%.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140753788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-14DOI: 10.15376/biores.19.2.2736-2748
Hongguang Zhang, Aiguo Wang, Ruixuan Zhao, Jinguang Hu
Solar-driven lignocellulosic biomass photoreforming holds significant promise for the production of value-added chemicals and fuels. The cleavage of the β-1,4-glycosidic bond is crucial for the effective conversion of lignocellulosic biomass. Polymeric carbon nitride (PCN) with acid-base pairs (M-C sites) is developed through heteroatomic carbon incorporation and cation insertion. It can be used for the gentle oxidation of cellobiose to monosaccharides, bypassing the formation of organic acids such as gluconic acid and glucaric acid. A series of different alkaline/alkaline-earth cation for regulation of acid-base pairs exhibited a negative correlation between β-1,4-glycosidic bond cleavage and cation radii. In particular, the introduction of short-radius cations (such as Li) into PCN enabled the formation of acid-base (M-C) pairs characterized by strong acidity. It also enhanced electron delocalization around M-C sites, potentially promoting the generation of reactive radicals in the reaction. Electron paramagnetic resonance analysis confirmed the presence of •OH radicals. The mild oxidative species, are the primary reactive radicals responsible for β-1,4-glycosidic bond cleavage in cellobiose. This study provides insightful evidence for the rational regulation of acid-base sites in facilitating β-1,4-glycosidic bond cleavage. It sheds light on the oxidative cleavage mechanisms integral to lignocellulosic biomass photoreforming, offering insights for advancing sustainable biomass conversion technologies.
{"title":"Cation-mediated acid-base pairs for mild oxidative cleavage of lignocellulosic β-1,4-glycosidic bonds","authors":"Hongguang Zhang, Aiguo Wang, Ruixuan Zhao, Jinguang Hu","doi":"10.15376/biores.19.2.2736-2748","DOIUrl":"https://doi.org/10.15376/biores.19.2.2736-2748","url":null,"abstract":"Solar-driven lignocellulosic biomass photoreforming holds significant promise for the production of value-added chemicals and fuels. The cleavage of the β-1,4-glycosidic bond is crucial for the effective conversion of lignocellulosic biomass. Polymeric carbon nitride (PCN) with acid-base pairs (M-C sites) is developed through heteroatomic carbon incorporation and cation insertion. It can be used for the gentle oxidation of cellobiose to monosaccharides, bypassing the formation of organic acids such as gluconic acid and glucaric acid. A series of different alkaline/alkaline-earth cation for regulation of acid-base pairs exhibited a negative correlation between β-1,4-glycosidic bond cleavage and cation radii. In particular, the introduction of short-radius cations (such as Li) into PCN enabled the formation of acid-base (M-C) pairs characterized by strong acidity. It also enhanced electron delocalization around M-C sites, potentially promoting the generation of reactive radicals in the reaction. Electron paramagnetic resonance analysis confirmed the presence of •OH radicals. The mild oxidative species, are the primary reactive radicals responsible for β-1,4-glycosidic bond cleavage in cellobiose. This study provides insightful evidence for the rational regulation of acid-base sites in facilitating β-1,4-glycosidic bond cleavage. It sheds light on the oxidative cleavage mechanisms integral to lignocellulosic biomass photoreforming, offering insights for advancing sustainable biomass conversion technologies.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"17 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140244121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-14DOI: 10.15376/biores.19.2.kuok
K. Kuok, Muhammad Khusairy bin Bakri, Chiu Po Chan, Md. Rezaur Rahman, Murtala Namakka, Khairul Anwar Mohamad Said, Chin Mei Yun, Mohammed Muzibur Rahman
This paper reviews the positive attributes and challenges of bamboo usage in carbon absorption, water, and wastewater purification. Bamboo can serve as a habitat for a variety of creatures and supports a diversified ecology. Bamboo roots can cast a fibrous net into the ground to prevent soil erosion and degradation. As the water passes through this woven mesh, the bamboo roots act as a filter, drawing toxins and other contaminants out of the water. Bamboo can treat wastewater effectively in free-water surface, horizontal flow, and vertical flow constructed wetlands. Bamboo charcoal has exceptional filtering properties for cleaner drinking water and better air quality. Additionally, bamboo can be used to form cellulose-based membranes. Bamboo is a renewable resource for creating paper, furniture, and building materials. Bamboo has various benefits. Thus, bamboo forests offer opportunities for rural communities to thrive economically
{"title":"Merits of bamboo utilization in earth preservation, water, and wastewater treatment: A mini review","authors":"K. Kuok, Muhammad Khusairy bin Bakri, Chiu Po Chan, Md. Rezaur Rahman, Murtala Namakka, Khairul Anwar Mohamad Said, Chin Mei Yun, Mohammed Muzibur Rahman","doi":"10.15376/biores.19.2.kuok","DOIUrl":"https://doi.org/10.15376/biores.19.2.kuok","url":null,"abstract":"This paper reviews the positive attributes and challenges of bamboo usage in carbon absorption, water, and wastewater purification. Bamboo can serve as a habitat for a variety of creatures and supports a diversified ecology. Bamboo roots can cast a fibrous net into the ground to prevent soil erosion and degradation. As the water passes through this woven mesh, the bamboo roots act as a filter, drawing toxins and other contaminants out of the water. Bamboo can treat wastewater effectively in free-water surface, horizontal flow, and vertical flow constructed wetlands. Bamboo charcoal has exceptional filtering properties for cleaner drinking water and better air quality. Additionally, bamboo can be used to form cellulose-based membranes. Bamboo is a renewable resource for creating paper, furniture, and building materials. Bamboo has various benefits. Thus, bamboo forests offer opportunities for rural communities to thrive economically","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"44 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140244885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-14DOI: 10.15376/biores.19.2.2749-2762
Yuan Yuan, Xiang Sun, Dong Xu, Jianyu He, Xuansong Wang, Donghua Wu, Sidan Li
This study demonstrated an effective method to enhance the dimensional stability of straw-based biocomposites with modified lignosulfonate as a binder. The ultraviolet (UV) light-curable nanosol was prepared by adding 3-(trimethoxysilyl)propyl methacrylate (MEMO) as sol–gel precursor into polyvinyl alcohol (PVA) solution. The MEMO/PVA coatings were generated using 2-hydroxy-2-methyl-1-phenylpropan-1-one (Darocur 1173) as radical photo-initiator and chitosan (CS) as additive, on straw-based biocomposites via UV-curing process. The effects of the crucial steps, such as the UV-curing process, hydrolysis time, Darocur 1173 dosage, and CS dosage on the dimensional stability of straw-based biocomposites, were evaluated. The optimum preparation parameters, obtained using the Box–Behnken design, were 31.9 min hydrolysis time, 4.5% Darocur 1173 dosage, and 2.7% CS dosage. Moisture resistance of minimum TS of CS-MEMO/PVA-coated straw-based biocomposites resulted in ~23.1% reduction in dimensional stability without significant decline in the mechanical properties when compared with those without UV curing. Moreover, the glossy spherical particles underwent arrangement in a fish-scale shape with scales closely linked with each other and no agglomeration occurred in CS-MEMO/PVA hybrid film. The CS promoted the cross-linking of MEMO/PVA coating on the biocomposite surface. The resulting biocomposites can be directly applied to public humid-environment applications such as bath furniture and bathroom partitions.
{"title":"Enhanced dimensional stability of straw-based biocomposites modified with UV light-cured coatings","authors":"Yuan Yuan, Xiang Sun, Dong Xu, Jianyu He, Xuansong Wang, Donghua Wu, Sidan Li","doi":"10.15376/biores.19.2.2749-2762","DOIUrl":"https://doi.org/10.15376/biores.19.2.2749-2762","url":null,"abstract":"This study demonstrated an effective method to enhance the dimensional stability of straw-based biocomposites with modified lignosulfonate as a binder. The ultraviolet (UV) light-curable nanosol was prepared by adding 3-(trimethoxysilyl)propyl methacrylate (MEMO) as sol–gel precursor into polyvinyl alcohol (PVA) solution. The MEMO/PVA coatings were generated using 2-hydroxy-2-methyl-1-phenylpropan-1-one (Darocur 1173) as radical photo-initiator and chitosan (CS) as additive, on straw-based biocomposites via UV-curing process. The effects of the crucial steps, such as the UV-curing process, hydrolysis time, Darocur 1173 dosage, and CS dosage on the dimensional stability of straw-based biocomposites, were evaluated. The optimum preparation parameters, obtained using the Box–Behnken design, were 31.9 min hydrolysis time, 4.5% Darocur 1173 dosage, and 2.7% CS dosage. Moisture resistance of minimum TS of CS-MEMO/PVA-coated straw-based biocomposites resulted in ~23.1% reduction in dimensional stability without significant decline in the mechanical properties when compared with those without UV curing. Moreover, the glossy spherical particles underwent arrangement in a fish-scale shape with scales closely linked with each other and no agglomeration occurred in CS-MEMO/PVA hybrid film. The CS promoted the cross-linking of MEMO/PVA coating on the biocomposite surface. The resulting biocomposites can be directly applied to public humid-environment applications such as bath furniture and bathroom partitions.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"5 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140243895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}