Saeideh Sheikhpur, Mahdi Taheri, Mohammad Saeed Ansari, Ali Mahani
Digital data transmission is day by day more vulnerable to both malicious and natural faults. With an aim to assure reliability, security and privacy in communication, a low-cost fault resilient architecture for Advanced Encryption Standard (AES) is proposed. In order not to degrade the reliability of our AES architecture, the reliability of voter is very important, for which reason we have introduced a novel voting scheme include a majority voter (named TMR voter) and an error barrier element (named DMR voter). In this paper, a reliable and secure 32-bit data-path AES implementation based on our robust fault resilient approach is developed. We illustrate that the proposed architecture can tolerate up to triple-bit (byte) simultaneous faults at each pipeline stage’s logic and verify our claim through extensive error simulations. Error simulation results also show that our architecture achieves close to 100% fault-masking capability for multiple-bit (byte) faults. Finally, it is shown that the Application-Specific Integrated Circuit implementation of the fault-tolerant architectures using the composite field-based S-box, CFB-AES, and ROM-based S-box, RB-AES allows better area usage, throughput and fault resilience trade-off compared to their counterparts. So, it provides the most appropriate features to be used in highly-secure resource-constraint applications.
{"title":"Strengthened 32-bit AES implementation: Architectural error correction configuration with a new voting scheme","authors":"Saeideh Sheikhpur, Mahdi Taheri, Mohammad Saeed Ansari, Ali Mahani","doi":"10.1049/cdt2.12031","DOIUrl":"10.1049/cdt2.12031","url":null,"abstract":"<p>Digital data transmission is day by day more vulnerable to both malicious and natural faults. With an aim to assure reliability, security and privacy in communication, a low-cost fault resilient architecture for Advanced Encryption Standard (AES) is proposed. In order not to degrade the reliability of our AES architecture, the reliability of voter is very important, for which reason we have introduced a novel voting scheme include a majority voter (named TMR voter) and an error barrier element (named DMR voter). In this paper, a reliable and secure 32-bit data-path AES implementation based on our robust fault resilient approach is developed. We illustrate that the proposed architecture can tolerate up to triple-bit (byte) simultaneous faults at each pipeline stage’s logic and verify our claim through extensive error simulations. Error simulation results also show that our architecture achieves close to 100% fault-masking capability for multiple-bit (byte) faults. Finally, it is shown that the Application-Specific Integrated Circuit implementation of the fault-tolerant architectures using the composite field-based S-box, CFB-AES, and ROM-based S-box, RB-AES allows better area usage, throughput and fault resilience trade-off compared to their counterparts. So, it provides the most appropriate features to be used in highly-secure resource-constraint applications.</p>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"15 6","pages":"395-408"},"PeriodicalIF":1.2,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72733828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently, the finite state machine (FSM)-based digital controllers are susceptible to fault-injection and side-channel attacks, which makes FSM security a more prominent factor. FSM optimality is another crucial element when designed. A state encoding approach is applied for FSM security and optimization. This article proposes the security-dominated FSM state assignment technique (SD-SHO), which obtains a satisfactory level of FSM optimization as well. It is a deterministic algorithm and consists of two key techniques, such as state assignment using an improved quadratic sum code, and state assignment using a gradient-based interior point method. A fuzzy bi-level programming logic is introduced in the proposed approach for regulating the constituting algorithms optimally. Experiments are conducted to evaluate the FSM security and optimality using the MCNC FSM benchmarks. Results indicate a substantial reduction in the error masking probability using SD-SHO. It also demonstrates that SD-SHO achieves a satisfactory level of area and power reduction compared with other existing works.
{"title":"SD-SHO: Security-dominated finite state machine state assignment technique with a satisfactory level of hardware optimization","authors":"Nitish Das, Aruna Priya Panchanathan","doi":"10.1049/cdt2.12029","DOIUrl":"10.1049/cdt2.12029","url":null,"abstract":"<p>Recently, the finite state machine (FSM)-based digital controllers are susceptible to fault-injection and side-channel attacks, which makes FSM security a more prominent factor. FSM optimality is another crucial element when designed. A state encoding approach is applied for FSM security and optimization. This article proposes the security-dominated FSM state assignment technique (SD-SHO), which obtains a satisfactory level of FSM optimization as well. It is a deterministic algorithm and consists of two key techniques, such as state assignment using an improved quadratic sum code, and state assignment using a gradient-based interior point method. A fuzzy bi-level programming logic is introduced in the proposed approach for regulating the constituting algorithms optimally. Experiments are conducted to evaluate the FSM security and optimality using the MCNC FSM benchmarks. Results indicate a substantial reduction in the error masking probability using SD-SHO. It also demonstrates that SD-SHO achieves a satisfactory level of area and power reduction compared with other existing works.</p>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"15 5","pages":"372-392"},"PeriodicalIF":1.2,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82415061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fault detection and diagnosis of a Field-Programmable Gate Array (FPGA) in a short period is vital particularly in reducing the dead time of critical applications that are running on FPGAs. Thus, this paper proposes a new technique that is able to uniquely identify any single stuck-at fault's location along with the type of fault. Also, the presented technique is able to locate any single pair-wise bridging fault and distinguish between the two types of common faults. The presented technique uses the Walsh Code method to significantly reduce the number of test configurations when compared with previous methods. Extensive testing of the proposed method is carried out on a series of ISCAS’89 benchmark circuits being implemented in different FPGA families. From the simulation results, the maximum number of configurations needed for interconnect fault detection and diagnosis is