{"title":"Complete and homogeneous monthly temperature series for construction of the new 1981-2010 climatological normals for Croatia","authors":"Irena Nimac, M. P. Tadić","doi":"10.15233/gfz.2017.34.13","DOIUrl":"https://doi.org/10.15233/gfz.2017.34.13","url":null,"abstract":"","PeriodicalId":50419,"journal":{"name":"Geofizika","volume":"34 1","pages":"225-249"},"PeriodicalIF":1.0,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47258630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study presents the spatial interpolation procedure from snow depth measurements at weather stations implying the following stages: (1) Spatial interpolation at 1 km × 1 km resolution of the mean multiannual values (20052015) corresponding to each month, computed from the data extracted from the climatological database; (2) Computation of the daily deviations against the multiannual monthly mean for every day and year over 2005–2015 and their spatial interpolation; (3) Spatio-temporal datasets were obtained through merging the two surfaces obtained in stages 1 and 2. The anomalies were considered to be the ratio between the daily snow depth values and the climatology. The spatial variability of the data used in the first stage was accounted for through the use of a series of predictors derived from the digital elevation model (DEM). To plot the maps with the climatological normals (multiannual means), the Regression-Kriging (RK) spatial interpolation method was used. In order to choose the optimum method applied in spatializing deviations, four interpolation methods were tested using a cross-validation procedure: Multiquadratic, Ordinary Kriging (separated and pooled variograms) and 3d Kriging.
本文提出了气象站雪深测量数据的空间插值过程,包括以下几个阶段:(1)从气候学数据库提取的数据中计算出每个月对应的多年均值(2005 - 2015)的1 km × 1 km分辨率的空间插值;(2) 2005-2015年逐日、逐年相对多年月均值的日偏差计算及其空间插值;(3)将阶段1和阶段2的两个曲面合并得到时空数据集。这些异常被认为是日雪深值与气候的比值。通过使用一系列来自数字高程模型(DEM)的预测因子来解释第一阶段使用的数据的空间变异性。采用回归-克里格(RK)空间插值方法绘制气候正态线(多年平均值)图。为了选择最适合偏差空间化的插值方法,采用交叉验证方法对4种插值方法进行了测试:多重二次插值法、普通克里格插值法(分离变量和混合变量)和三维克里格插值法。
{"title":"A Romanian daily high-resolution gridded dataset of snow depth (2005-2015)","authors":"A. Dumitrescu, M. Birsan, Ion-Andrei Nita","doi":"10.15233/GFZ.2017.34.14","DOIUrl":"https://doi.org/10.15233/GFZ.2017.34.14","url":null,"abstract":"This study presents the spatial interpolation procedure from snow depth measurements at weather stations implying the following stages: (1) Spatial interpolation at 1 km × 1 km resolution of the mean multiannual values (20052015) corresponding to each month, computed from the data extracted from the climatological database; (2) Computation of the daily deviations against the multiannual monthly mean for every day and year over 2005–2015 and their spatial interpolation; (3) Spatio-temporal datasets were obtained through merging the two surfaces obtained in stages 1 and 2. The anomalies were considered to be the ratio between the daily snow depth values and the climatology. The spatial variability of the data used in the first stage was accounted for through the use of a series of predictors derived from the digital elevation model (DEM). To plot the maps with the climatological normals (multiannual means), the Regression-Kriging (RK) spatial interpolation method was used. In order to choose the optimum method applied in spatializing deviations, four interpolation methods were tested using a cross-validation procedure: Multiquadratic, Ordinary Kriging (separated and pooled variograms) and 3d Kriging.","PeriodicalId":50419,"journal":{"name":"Geofizika","volume":"34 1","pages":"275-295"},"PeriodicalIF":1.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67353258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Adetokunbo, O. Sanuade, P. Edigbue, K. Adegbola, Toluwani Daramola
The delay time method has gained attention in shallow seismic refraction survey because it has the capability to map the lateral thickness of overburden and relief of bedrock. This study addresses the comparison between the performances of the plus-minus and conventional reciprocal methods using a synthetic data. The interpretations obtained from both methods are reasonably comparable to the actual geophysical models. This suggests that either of the methods can be used to construct a geologic section. However, the result of randomized complete block design (RCBD) experiment shows a significant difference in the type of method used and this necessitate the need for further test. The pairwise comparison suggests that the plus-minus method produces a model that better mimics the actual data than the conventional reciprocal method.
{"title":"Statistical analysis of data processing in some seismic refraction methods: A synthetic data example","authors":"P. Adetokunbo, O. Sanuade, P. Edigbue, K. Adegbola, Toluwani Daramola","doi":"10.15233/GFZ.2017.34.2","DOIUrl":"https://doi.org/10.15233/GFZ.2017.34.2","url":null,"abstract":"The delay time method has gained attention in shallow seismic refraction survey because it has the capability to map the lateral thickness of overburden and relief of bedrock. This study addresses the comparison between the performances of the plus-minus and conventional reciprocal methods using a synthetic data. The interpretations obtained from both methods are reasonably comparable to the actual geophysical models. This suggests that either of the methods can be used to construct a geologic section. However, the result of randomized complete block design (RCBD) experiment shows a significant difference in the type of method used and this necessitate the need for further test. The pairwise comparison suggests that the plus-minus method produces a model that better mimics the actual data than the conventional reciprocal method.","PeriodicalId":50419,"journal":{"name":"Geofizika","volume":"34 1","pages":"93-105"},"PeriodicalIF":1.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67353417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Krušić, M. Marjanović, M. Samardzic-Petrovic, B. Abolmasov, Katarina Andrejev, A. Miladinović
Landslide Susceptibility Assessment is becoming a very productive research area, wherein different modeling approaches are practiced to delineate zones of the high-low likelihood of landslide occurrence. However, there is no strong consensus on which approach is the most adequate. The reason behind the lack of the general view on the performance of different approaches could be partially explained by the particularity of each study. To evaluate the efficiency of different approaches they need to be applied under the same conditions for the same study area. Herein, we examined three different approaches, including expert, deterministic and Machine Learning, on the example of Ljubo-vija Municipality in western Serbia. The study area has been known as susceptible to landslides, and represents good ground for assessing the chosen methods. It is represented by complex geology, prone to landslides that are commonly hosted in thick weathering crust of Paleozoic formations, composed of schists and meta-sediments. Under extreme triggering conditions, such as the one that unfolded in May 2014, these thick weathering crusts saturate, and give way to a variety of landslide and flash-flood processes that we will be focusing on in this study. The application of the expert-approach, through Analytical Hierarchy Process provided a rough assessment map. The deterministic model, which couples simple infinite slope and hydrological model, provided us with lower quality results, when compared to the expert-based one. This could be explained by the assumptions used in the model are too simplistic to generically model a wide range of landslide typology. Finally, Machine Learning approach, using the Random Forest algorithm, provided significantly better results and showed that it can cope with versatile landslide typology over larger scales. Its AUC performance is about 0.75 which is considerably outperforming the AUC values of the other two models, which were up to 0.55, i.e. at the level of random guess.
{"title":"Comparison of expert, deterministic and Machine Learning approach for landslide susceptibility assessment in Ljubovija Municipality, Serbia","authors":"J. Krušić, M. Marjanović, M. Samardzic-Petrovic, B. Abolmasov, Katarina Andrejev, A. Miladinović","doi":"10.15233/GFZ.2017.34.15","DOIUrl":"https://doi.org/10.15233/GFZ.2017.34.15","url":null,"abstract":"Landslide Susceptibility Assessment is becoming a very productive research area, wherein different modeling approaches are practiced to delineate zones of the high-low likelihood of landslide occurrence. However, there is no strong consensus on which approach is the most adequate. The reason behind the lack of the general view on the performance of different approaches could be partially explained by the particularity of each study. To evaluate the efficiency of different approaches they need to be applied under the same conditions for the same study area. Herein, we examined three different approaches, including expert, deterministic and Machine Learning, on the example of Ljubo-vija Municipality in western Serbia. The study area has been known as susceptible to landslides, and represents good ground for assessing the chosen methods. It is represented by complex geology, prone to landslides that are commonly hosted in thick weathering crust of Paleozoic formations, composed of schists and meta-sediments. Under extreme triggering conditions, such as the one that unfolded in May 2014, these thick weathering crusts saturate, and give way to a variety of landslide and flash-flood processes that we will be focusing on in this study. The application of the expert-approach, through Analytical Hierarchy Process provided a rough assessment map. The deterministic model, which couples simple infinite slope and hydrological model, provided us with lower quality results, when compared to the expert-based one. This could be explained by the assumptions used in the model are too simplistic to generically model a wide range of landslide typology. Finally, Machine Learning approach, using the Random Forest algorithm, provided significantly better results and showed that it can cope with versatile landslide typology over larger scales. Its AUC performance is about 0.75 which is considerably outperforming the AUC values of the other two models, which were up to 0.55, i.e. at the level of random guess.","PeriodicalId":50419,"journal":{"name":"Geofizika","volume":"34 1","pages":"251-273"},"PeriodicalIF":1.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67353330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atmospheric drought in lowlands in Slovakia is analyzed on the bases of Standardised Precipitation Index (SPI) and Standardised Precipitation Evapotranspiration Index (SPEI). This paper gives information about the dynamic, intensity, seasonal and territorial differences in occurrence of drought with various intensity: mild (near to normal), moderate, severe and extreme for the period 1961–2011. Future changes in occurrence of drought are determined on the basis of model data (regional circulation models KNMI and MPI) for temperature and precipitation for two periods: 2001–2050 and 2051–2100.
{"title":"Temporal variability and spatial distribution of drought events in the lowlands of Slovakia","authors":"N. Nikolova, P. Nejedlík, M. Lapin","doi":"10.15233/GFZ.2016.33.10","DOIUrl":"https://doi.org/10.15233/GFZ.2016.33.10","url":null,"abstract":"Atmospheric drought in lowlands in Slovakia is analyzed on the bases of Standardised Precipitation Index (SPI) and Standardised Precipitation Evapotranspiration Index (SPEI). This paper gives information about the dynamic, intensity, seasonal and territorial differences in occurrence of drought with various intensity: mild (near to normal), moderate, severe and extreme for the period 1961–2011. Future changes in occurrence of drought are determined on the basis of model data (regional circulation models KNMI and MPI) for temperature and precipitation for two periods: 2001–2050 and 2051–2100.","PeriodicalId":50419,"journal":{"name":"Geofizika","volume":"33 1","pages":"119-135"},"PeriodicalIF":1.0,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67352812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Jeričević, V. Grgičin, M. T. Prtenjak, S. Vidič, H. Bloemen
{"title":"Analyses of urban and rural particulate matter mass concentrations in Croatia in the period 2006–2014","authors":"A. Jeričević, V. Grgičin, M. T. Prtenjak, S. Vidič, H. Bloemen","doi":"10.15233/GFZ.2016.33.8","DOIUrl":"https://doi.org/10.15233/GFZ.2016.33.8","url":null,"abstract":"","PeriodicalId":50419,"journal":{"name":"Geofizika","volume":"33 1","pages":"157-181"},"PeriodicalIF":1.0,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67352965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Mid-Poland Uplands Belt is a vast area characterized by the presence of carbonate and sulphate rocks. In some parts of this region karst forming and developing processes are dynamic in character. The studied area is the terrain around a historic church in a small village of Szydlow. The building is situated on a hill which is formed by Sarmatian detrital limestone undergoing karst processes. At the foot of the hill there is a number of small caves. Characteristic geological structure and land transformations that are present due to the karst processes prompted the authors to conduct a GPR survey. The aim of this study was to verify whether there is a continuation of caves in the area around the monument. An analysis was made to estimate the risk of damaging the historic building due to the ongoing karst processes. The authors obtained good quality results from GPR measurements. The results confirmed the existence of unknown voids and loosening in rock structure. On radargrams, the authors recorded stratum mapping which confirms the existence of gravitational loosening of the rock mass near the cave ceilings and walls. The results prove that the GPR is an appropriate instrument for mapping some of the karst structures and evaluation of the orogen stability.
{"title":"GPR mapping of karst formations under a historic building in Szydłów, Poland","authors":"A. Zieliński, E. Mazurkiewicz, Mikołaj Łyskowski","doi":"10.15233/GFZ.2016.33.4","DOIUrl":"https://doi.org/10.15233/GFZ.2016.33.4","url":null,"abstract":"The Mid-Poland Uplands Belt is a vast area characterized by the presence of carbonate and sulphate rocks. In some parts of this region karst forming and developing processes are dynamic in character. The studied area is the terrain around a historic church in a small village of Szydlow. The building is situated on a hill which is formed by Sarmatian detrital limestone undergoing karst processes. At the foot of the hill there is a number of small caves. Characteristic geological structure and land transformations that are present due to the karst processes prompted the authors to conduct a GPR survey. The aim of this study was to verify whether there is a continuation of caves in the area around the monument. An analysis was made to estimate the risk of damaging the historic building due to the ongoing karst processes. The authors obtained good quality results from GPR measurements. The results confirmed the existence of unknown voids and loosening in rock structure. On radargrams, the authors recorded stratum mapping which confirms the existence of gravitational loosening of the rock mass near the cave ceilings and walls. The results prove that the GPR is an appropriate instrument for mapping some of the karst structures and evaluation of the orogen stability.","PeriodicalId":50419,"journal":{"name":"Geofizika","volume":"33 1","pages":"101-111"},"PeriodicalIF":1.0,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67352841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modelling origin and transport fate of waste materials on the southeastern Adriatic coast (Croatia)","authors":"M. Tudor, I. Janeković","doi":"10.15233/GFZ.2016.33.3","DOIUrl":"https://doi.org/10.15233/GFZ.2016.33.3","url":null,"abstract":"","PeriodicalId":50419,"journal":{"name":"Geofizika","volume":"8 1","pages":"53-77"},"PeriodicalIF":1.0,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67352641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A campaign of high-frequency measurements of water level was carried in the two largest of the Plitvice Lakes, Prosce and Kozjak, to study seiches in the lakes. Measurements were performed at 1-min sampling rate during a 46-day interval, at two opposite ends in each lake, which also provided information on the phase relations. Power spectra were calculated to determine the periods of the normal modes. The observed peaks in the spectra were interpreted with the help of theoretical results obtained by the simple numerical method of Defant, where two different historical bathymetries were used. The lake Prosce oscillates at the periods of 8.5 min, 5.0 min, 3.3 min and 2.2 min, the oscillations being related respectively to uni-, bi-, three- and five-nodal seiche modes, whereas the four-nodal mode (2.5-2.7 min) was not significant during the experiment. The lake Kozjak oscillates at 9.0 min, 4.9 min and 2.6 min, which corresponds respectively to the uni-, bi- and four-nodal mode, the five-nodal mode is likely at the period of 1.9 min, while the three-nodal mode (~ 3.4 min) was not generated ; the deeper sub-basin displays its own principal mode at the period of 2.3 min. The discrepancy between the observed and the calculated periods is attributed to poor representation of the basin by the historical bathymetries, especially at Prosce, but also to changes in basin depth, due to continuous process of tufa growth.
{"title":"Seiches in the Plitvice Lakes","authors":"M. Pasarić, L. Slaviček","doi":"10.15233/GFZ.2016.33.6","DOIUrl":"https://doi.org/10.15233/GFZ.2016.33.6","url":null,"abstract":"A campaign of high-frequency measurements of water level was carried in the two largest of the Plitvice Lakes, Prosce and Kozjak, to study seiches in the lakes. Measurements were performed at 1-min sampling rate during a 46-day interval, at two opposite ends in each lake, which also provided information on the phase relations. Power spectra were calculated to determine the periods of the normal modes. The observed peaks in the spectra were interpreted with the help of theoretical results obtained by the simple numerical method of Defant, where two different historical bathymetries were used. The lake Prosce oscillates at the periods of 8.5 min, 5.0 min, 3.3 min and 2.2 min, the oscillations being related respectively to uni-, bi-, three- and five-nodal seiche modes, whereas the four-nodal mode (2.5-2.7 min) was not significant during the experiment. The lake Kozjak oscillates at 9.0 min, 4.9 min and 2.6 min, which corresponds respectively to the uni-, bi- and four-nodal mode, the five-nodal mode is likely at the period of 1.9 min, while the three-nodal mode (~ 3.4 min) was not generated ; the deeper sub-basin displays its own principal mode at the period of 2.3 min. The discrepancy between the observed and the calculated periods is attributed to poor representation of the basin by the historical bathymetries, especially at Prosce, but also to changes in basin depth, due to continuous process of tufa growth.","PeriodicalId":50419,"journal":{"name":"Geofizika","volume":"33 1","pages":"35-52"},"PeriodicalIF":1.0,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67352880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natural disasters can be defined as hazardous and usually large scale natural incidents that may cause loss of lifes and property and that occur mainly or completely out of human control. Due to climatic changes draughts are being experienced in various parts of the world in the recent years. Floods are also observed to take place more frequently and severely in some regions. As it is reported by many scientific studies, flood modeling can only be possible through the designation of flood risk management strategies and the determination of the dynamic behaviors of rivers. In this context, the city of Edirne located downstream of Meriç River Basin, which runs through Turkish, Bulgarian and Greek soils, is frequently exposed to flooding. The majority of the currents that cause this take place within the Bulgarian borders, which covers 66% of the basin. This part of Meriç River Basin has a mountainous geography, it has a rather high average slope of 12.5% within Bulgarian lands, while in Edirne it is quite low with a bottom slope of 0,00036. In the present study, 2D flood modeling of the Meriç and Tunca Rivers that passes through Edirne city center were made and flood inundation maps were generated. With the analysis of the results obtained from flood inundation maps, a drainage channel capable of discharging flood rates that exceed the maximum rate Meriç River main bed can accommodate was designed, and the downstream conditions of the channel were evaluated.
{"title":"Generation of 2D flood inundation maps of Meriç and Tunca Rivers passing through Edirne city center","authors":"U. Akkaya, E. Doğan","doi":"10.15233/GFZ.2016.33.7","DOIUrl":"https://doi.org/10.15233/GFZ.2016.33.7","url":null,"abstract":"Natural disasters can be defined as hazardous and usually large scale natural incidents that may cause loss of lifes and property and that occur mainly or completely out of human control. Due to climatic changes draughts are being experienced in various parts of the world in the recent years. Floods are also observed to take place more frequently and severely in some regions. As it is reported by many scientific studies, flood modeling can only be possible through the designation of flood risk management strategies and the determination of the dynamic behaviors of rivers. In this context, the city of Edirne located downstream of Meriç River Basin, which runs through Turkish, Bulgarian and Greek soils, is frequently exposed to flooding. The majority of the currents that cause this take place within the Bulgarian borders, which covers 66% of the basin. This part of Meriç River Basin has a mountainous geography, it has a rather high average slope of 12.5% within Bulgarian lands, while in Edirne it is quite low with a bottom slope of 0,00036. In the present study, 2D flood modeling of the Meriç and Tunca Rivers that passes through Edirne city center were made and flood inundation maps were generated. With the analysis of the results obtained from flood inundation maps, a drainage channel capable of discharging flood rates that exceed the maximum rate Meriç River main bed can accommodate was designed, and the downstream conditions of the channel were evaluated.","PeriodicalId":50419,"journal":{"name":"Geofizika","volume":"33 1","pages":"15-34"},"PeriodicalIF":1.0,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67352944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}