Myocardial injury is a common complication of sepsis. MicroRNA (miRNA) miR-214-3p is protective against myocardial injury caused by sepsis, but its mechanism in lipopolysaccharide (LPS)- induced cardiomyocyte injury is still unclear. An AC16 cell injury model was induced by LPS treatment. Cell Counting Kit-8 and flow cytometry assay showed decreased cell viability and increased apoptosis in LPS-treated AC16 cells. The levels of caspase- 3, Bax, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), myosin 6 (Myh6), myosin 7 (Myh7), reactive oxygen species (ROS), and malondialdehyde (MDA) were increased in LPS-treated AC16 cells, but the levels of Bcl-2 and superoxide dismutase (SOD) were decreased. MiR-214-3p was down-regulated and cathepsin B (CTSB) was upregulated in LPS-treated AC16 cells. At the same time, miR-214-3p could target CTSB and reduce its expression. We also found that a miR-214-3p mimic or CTSB silencing could significantly reduce LPSinduced apoptosis, decrease ROS, MDA, caspase-3, and Bax and increase SOD and Bcl-2. CTSB silencing could significantly reduce ANP, BNP, Myh6, and Myh7 in LPS-treated AC16 cells. The effects of CTSB silencing were reversed by a miR-214-3p inhibitor. In summary, miR-214-3p could inhibit LPSinduced myocardial injury by targeting CTSB, which provides a new idea for myocardial damage caused by sepsis.
The phenomenon of antibiotic resistance has been recognized as one of the greatest threats to humanity. Therefore, there is an enormous need to introduce new antibiotics to the medical practice that will effectively eradicate the resistant bacterial strains threatening human health and life. One solution currently being considered as an alternative to antibiotics involves secondary metabolites of plants that can be used in modern antibacterial therapy. Polyphenols represent a broad and diversified group of plant-derived aromatic compounds. Their antibacterial potential has been recognized via specific mechanisms of action, e.g., by inhibition of bacterial biofilm formation, through synergistic effects with the action of currently used antibiotics, and by inhibition of the activity of bacterial virulence factors.
We compared the efficiency of real-time PCR analysis of FII (c.*97G>A, G20210A) and FV Leiden (c.1601G>A) thrombophilic mutations in the samples obtained from venous blood treated with various anti coagulant agents (EDTA, heparin, and sodium fluoride with potassium oxalate), or from clotted venous blood; one hundred samples of wild-type subjects were tested. Genomic DNA extracts and whole blood specimens modified by 90 °C heating were analysed by real-time PCR analysis; cycle threshold values were subsequently evaluated. Real-time PCR analysis for the FII gene assay performed in DNA extracts from EDTA blood samples revealed a median Ct value of 19.3. Similar Ct values were apparent in the DNA extracts obtained from the heparinized blood and sodium fluoride with potassium oxalatetreated samples: 18.5 and 18.9, respectively. Significantly higher Ct values were found in extracts from clotted blood with medians of 20.6 (tubes with inert separation gel) and 20.5 (tubes without the gel, both P < 0.001). The data on the FV real-time PCR analysis were very comparable to the FII assay. In the modified whole blood, the samples treated with heparin salts showed significantly lower Ct values (P < 0.001) in both assays when compared with the samples with EDTA, sodium fluoride with potassium oxalate, and with the samples with clotted blood. Our results indicate that real-time PCR analyses of thrombophilic mutations were not negatively influenced by the presence of heparin salts in collection tubes. Blood samples with various anticoagulants might be exchangeable for each other when DNA analysis of thrombophilic mutations is required.
Clear cell renal cell carcinoma (ccRCC) is very common and accounts for most kidney cancer deaths. While many studies are being conducted in finding the prognostic signatures of ccRCC, we believe that ferroptosis, which involves programmed cell death dependent on iron accumulation, has therapeutic potential in ccRCC. Recent research has shown that long noncoding RNAs (lncRNAs) are involved in ferroptosis-related tumour processes and are closely related to survival in patients with ccRCC. Hence, in this study we aim to further explore the role of ferroptosis-related lncRNAs (FRLs) in ccRCC, hoping to establish a signature to predict the survival outcome of ccRCC. We analysed transcriptome data from The Cancer Genome Atlas database (TCGA) and ferroptosis-related genes (FRGs) from FerrDb to identify FRLs using Pearson's correlation. Lasso Cox regression analysis and multivariate Cox proportional hazards models screened seventeen optimal FRLs for developing prognostic signatures. Kaplan-Meier survival curves and ROC curves were then plotted for validating the sensitivity, specificity, and accuracy of the identified signatures. Gene Set Enrichment Analysis and CIBERSORT algorithm were deployed to explore the role of these FRLs in the tumour microenvironment. It was concluded that these models demonstrate excellent performance in predicting prognosis among patients with ccRCC, also indicating association with the clinicopathologic parameters such as tumour grade, tumour stage and tumour immune infiltration. In conclusion, our findings provide novel insights into ferroptosis-related lncRNAs in ccRCC, which are important targets for investigating the tumorigenesis of ccRCC.
It is known that intracellular pathogens interact and react with the cellular immune system through exosomes produced by macrophages. This study aimed to determine whether co-culture of macrophages and Talaromyces marneffei induces exosomes and leads to immune responses. T. marneffei was incubated to collect conidia, co-cultured with human macrophages, which then induced exosomes. In cellular experiments, after extraction and purification, the exosomes were then observed by electron microscopy and detected by flow cytometry and mass spectrometry. In animal experiments, flow cytometry and enzyme-linked immunosorbent assay were used to examine whether exosomes were antigenpresenting. The results showed that purified exosomes produced a pro-inflammatory response and stimulated production of TNF-α in non-fungal-treated macrophages. Protein mass spectrometry analysis of exosomes also indicated their potential ability to activate the internal immune response system and the pro-inflammatory response. Translation and ribosomes were the most abundant GO terms in proteins, and the most relevant KEGG pathway was the biosynthesis of secondary metabolites. Furthermore, in vivo experiments revealed that exosomes induced activation of lymphocytes and increased expression of TNF-α and IL-12 in the lung, mediastinum, and spleen area. In conclusion, exosomes can be released by co-culture of T. marneffei and macrophages, having antigen-presenting functions, promoting macrophage inflammation, and initiating adaptive immune responses. These processes are inextricably linked to the translation of secondary metabolites, ribosomes and biosynthesis.
Ulcerative colitis is caused by various external factors and is an inflammatory disease that causes decreased intestinal function. Tenebrio molitor larvae contain more than 30 % fat, and the fat component consists of 45 % oleic acid, 20 % linoleic acid and 20 % polyunsaturated fatty acids. In this study, after administering Tenebrio molitor larva oil (TMLO) in a dextran sodium sulphate (DSS)-induced ulcerative colitis mouse model, the pathological findings and inflammatory markers of colitis were analysed to assess whether a colitis mitigation effect was achieved. In the TMLO-administered group, the colon length increased, the spleen weight decreased, and the body weight increased compared with that in the DSS group. In addition, the disease activity index level decreased, the mRNA expression level of inflammatory cytokines in the colon decreased, and the myeloperoxidase activity level significantly decreased. Also, the activity of the NF-κB pathway involved in the regulation of the inflammatory response was lower in the TMLO group than in the DSS group. Taken together, these results suggest that TMLO suppresses occurrence of acute ulcerative colitis in the DSS mouse model. Therefore, TMLO has the potential to be developed as a health food for the prevention and treatment of ulcerative colitis.
Epithelial-mesenchymal transition (EMT) plays a crucial role in the development of cataract. This study aimed to explore the effects of TRPM7 on the proliferation and differentiation of human lens epithelial cells. TRPM7 was over-expressed in LECs treated with TGF-β2. Down-regulation of TRPM7 attenuated the increase in cell viability and cell proliferation induced by TGF-β2. The LEC migration induced by TGF-β2 was also repressed by down-regulation of TRPM7. Epithelial-specific protein E-cadherin was up-regulated through knock-down of TRPM7. EMT-specific proteins, α-SMA, fibronectin and vimentin, were down-regulated through knockdown of TRPM7. Moreover, phosphorylation of Smad2 and Smad3 was also prevented by inhibition of TRPM7. Therefore, TRPM7 elicited LEC proliferation and EMT through enhancing activation of the TGF-β/Smad pathways, implying a new therapeutic target for cataract.
Non-small cell lung cancer (NSCLC) results in high mortality and has gained increasing attention. C-Phycocyanin (C-PC) has been identified as a potential therapeutic inhibitor for NSCLC, but its underlying mechanism remains obscure. The gene expression of the long noncoding RNA neighbour of BRCAI RNA 2 (NBR2) in NSCLC cells was evaluated by quantitative reverse transcription-PCR. The cell capacity for proliferation and migration was examined by EdU and wound-healing assays. Furthermore, the viability and apoptosis of cells was measured with CCK-8 and annexin V/PI, respectively. Next, the protein level of activation of adenosine monophosphate- activated protein kinase and the rapamycin kinase (mTOR) signalling pathway-associated molecules was evaluated by western blotting. H292 cells were pre-treated with C-PC or transfected with plasmids encoding NBR2 or the shNBR2 plasmid, to over-express or knock down NBR2 expression, respectively. NBR2 expression was robustly down-regulated in NSCLC cell lines compared with a normal cell line (BEAS-2B). NBR2 over-expression inhibited migration and promoted apoptosis of H292 cells. Treatment of H292 cells with C-PC enhanced NBR2 levels in a dose- and time-dependent manner. Downregulation of NBR2 in H292 cells inhibited the activity of C-PC on cell proliferation, viability and clone formation. Further mechanistic investigation showed that the down-regulation of NBR2 abolished the modulatory effects of C-PC on the AMPK/mTOR signalling pathway. In conclusion, C-PC inhibits H292 cell growth by enhancing the NBR2/AMPK signalling pathway.