首页 > 最新文献

Finite Fields and Their Applications最新文献

英文 中文
Several classes of permutation polynomials based on the AGW criterion over the finite field F22m 基于有限域 F22m 的 AGW 准则的几类置换多项式
IF 1 3区 数学 Q1 Mathematics Pub Date : 2024-02-01 DOI: 10.1016/j.ffa.2024.102378
Guanghui Li , Xiwang Cao

Let Fq denote the finite field with q elements. Permutation polynomials and complete permutation polynomials over finite fields have been widely investigated in recent years due to their applications in cryptography, coding theory and combinatorial design. In this paper, several classes of (complete) permutation polynomials with the form (Trmn(x)k+δ)s+L(x) and (Trmn(x)k1+δ1)s1+(Trmn(x)k2+δ2)s2+L(x) are proposed based on the AGW criterion and some techniques in solving equations over the finite field F2n, where L(x)=aTrmn(x)+bx, aF2n and bF2m. We also determine the compositional inverse of these polynomials in some special cases. Besides, Mesnager (2014) [13] proposed a construction of bent functions by finding some triples of permutation polynomials satisfying a particular property named (An). With the help of this approach, several classes of bent functions are presented.

让 Fq 表示有 q 个元素的有限域。近年来,有限域上的置换多项式和完全置换多项式因其在密码学、编码理论和组合设计中的应用而被广泛研究。本文基于 AGW 准则和有限域 F2n 上方程求解的一些技术,提出了几类形式为 (Trmn(x)k+δ)s+L(x) 和 (Trmn(x)k1+δ1)s1+(Trmn(x)k2+δ2)s2+L(x) 的(完全)置换多项式、其中,L(x)=aTrmn(x)+bx,a∈F2n,b∈F2m⁎。我们还确定了这些多项式在某些特殊情况下的组成逆。此外,Mesnager(2014)[13] 提出了一种弯曲函数的构造方法,即找到一些满足名为(An)的特定性质的置换多项式三元组。借助这种方法,提出了几类弯曲函数。
{"title":"Several classes of permutation polynomials based on the AGW criterion over the finite field F22m","authors":"Guanghui Li ,&nbsp;Xiwang Cao","doi":"10.1016/j.ffa.2024.102378","DOIUrl":"10.1016/j.ffa.2024.102378","url":null,"abstract":"<div><p>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> denote the finite field with <em>q</em><span> elements. Permutation<span> polynomials and complete permutation polynomials over finite fields have been widely investigated in recent years due to their applications in cryptography, coding theory and combinatorial design. In this paper, several classes of (complete) permutation polynomials with the form </span></span><span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>Tr</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msubsup><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msup><mo>+</mo><mi>δ</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mo>+</mo><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>Tr</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msubsup><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>+</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><msubsup><mrow><mi>Tr</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msubsup><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>+</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>+</mo><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> are proposed based on the AGW criterion and some techniques in solving equations over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>, where <span><math><mi>L</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>a</mi><msubsup><mrow><mi>Tr</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>b</mi><mi>x</mi></math></span>, <span><math><mi>a</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> and <span><math><mi>b</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. We also determine the compositional inverse of these polynomials in some special cases. Besides, Mesnager (2014) <span>[13]</span> proposed a construction of bent functions by finding some triples of permutation polynomials satisfying a particular property named <span><math><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>. With the help of this approach, several classes of bent functions are presented.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139657722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superzeta functions on function fields 函数场上的超兹塔函数
IF 1 3区 数学 Q1 Mathematics Pub Date : 2024-02-01 DOI: 10.1016/j.ffa.2024.102367
Kajtaz H. Bllaca , Jawher Khmiri , Kamel Mazhouda , Bouchaïb Sodaïgui

We study the superzeta functions on function fields as constructed by Voros (see [11, Chapter 10, p.91]) in the case of the classical Riemann zeta function. Furthermore, we study special values of those functions, relate them to the Li coefficients, deduce some interesting summation formulas, and prove some results about the regularized product of the zeros of zeta functions on function fields.

我们在经典黎曼zeta函数的情况下,研究沃罗斯构造的函数场上的超zeta函数(见[11,第10章,第91页])。此外,我们还研究了这些函数的特殊值,将它们与李系数联系起来,推导出一些有趣的求和公式,并证明了关于函数场上zeta函数零点的正则积的一些结果。
{"title":"Superzeta functions on function fields","authors":"Kajtaz H. Bllaca ,&nbsp;Jawher Khmiri ,&nbsp;Kamel Mazhouda ,&nbsp;Bouchaïb Sodaïgui","doi":"10.1016/j.ffa.2024.102367","DOIUrl":"10.1016/j.ffa.2024.102367","url":null,"abstract":"<div><p>We study the superzeta functions on function fields as constructed by Voros (see <span>[11, Chapter 10, p.91]</span><span><span>) in the case of the classical Riemann zeta function. Furthermore, we study special values of those functions, relate them to the Li coefficients, deduce some interesting summation formulas, and prove some results about the regularized product of the zeros of </span>zeta functions on function fields.</span></p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139659469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On LCD codes from skew symmetric Toeplitz matrices 关于来自倾斜对称托普利兹矩阵的 LCD 代码
IF 1 3区 数学 Q1 Mathematics Pub Date : 2024-02-01 DOI: 10.1016/j.ffa.2024.102380
Kaimin Cheng

A linear code with complementary dual (or an LCD code) is defined to be a linear code which intersects its dual code trivially. Let I be an identity matrix and T be a Toeplitz matrix of the same order over a finite field. A Double Toeplitz code (or a DT code) is a linear code generated by a generator matrix of the form (I,T). In 2021, Shi et al. obtained necessary and sufficient conditions for a Double Toeplitz code to be LCD when T is symmetric and tridiagonal. In this paper, by using a result on factoring Dickson polynomials over finite fields, we determine when a Double Toeplitz code is LCD for T being a skew symmetric and tridiagonal matrix. In addition, using a concatenation, we construct LCD codes with arbitrary minimum distance from DT codes over extension fields, provided the length of which is increased if necessary.

具有互补对偶码的线性码(或称 LCD 码)被定义为与其对偶码相交的线性码。假设 I 是有限域上的同阶同性矩阵,T 是有限域上的同阶托普利兹矩阵。双托普利兹码(或 DT 码)是由形式为 (I,T) 的生成矩阵生成的线性码。2021 年,Shi 等人获得了当 T 是对称和三对角时双 Toeplitz 码是 LCD 的必要条件和充分条件。本文利用有限域上狄克森多项式因式分解的结果,确定了当 T 为倾斜对称三对角矩阵时,双托普利茨码是 LCD。此外,我们还利用串联法,构建了与扩展域上的 DT 码具有任意最小距离的 LCD 码,前提是必要时增加其长度。
{"title":"On LCD codes from skew symmetric Toeplitz matrices","authors":"Kaimin Cheng","doi":"10.1016/j.ffa.2024.102380","DOIUrl":"10.1016/j.ffa.2024.102380","url":null,"abstract":"<div><p>A linear code with complementary dual (or an LCD code) is defined to be a linear code which intersects its dual code trivially. Let <em>I</em><span> be an identity matrix and </span><em>T</em><span> be a Toeplitz matrix<span> of the same order over a finite field. A Double Toeplitz code (or a DT code) is a linear code generated by a generator matrix of the form </span></span><span><math><mo>(</mo><mi>I</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span><span>. In 2021, Shi et al. obtained necessary and sufficient conditions for a Double Toeplitz code to be LCD when </span><em>T</em> is symmetric and tridiagonal. In this paper, by using a result on factoring Dickson polynomials over finite fields, we determine when a Double Toeplitz code is LCD for <em>T</em><span> being a skew symmetric and tridiagonal matrix. In addition, using a concatenation, we construct LCD codes with arbitrary minimum distance from DT codes over extension fields, provided the length of which is increased if necessary.</span></p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139657678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hausdorff dimension for sets of continued fractions of formal Laurent series 形式劳伦数列续分数集的豪斯多夫维度
IF 1 3区 数学 Q1 Mathematics Pub Date : 2024-02-01 DOI: 10.1016/j.ffa.2024.102377
Mumtaz Hussain, Nikita Shulga

We prove the Hausdorff dimension of various limsup sets over the field of formal power series. Typically, the upper bound is easier to establish by considering the natural covering of the underlying set. To establish the lower bound, we identify a suitable set that serves as a subset of several limsup sets by selecting appropriate values for the involved parameters. To be precise, given a fixed integer m and for all integers 0im1, let αi>0 be a real number. Define the setFm(α0,,αm1)=def{xI:degAn+i=nαi+ci,0im1=def{xIfor infinitely manynN}, where ciN are fixed, and the partial quotients Ai(x) are polynomials of strictly positive degree. We then determine the Hausdorff dimension of this set which establishes an optimal lower bound for various sets of interest, including the key results in [6], [8], [9]. Some new applications of our theorem include the lower bound of the Hausdorff dimension of the formal power series analogues of the sets considered in [2], [20]. We also prove their upper bounds to provide the comprehensive Hausdorff dimension analysis of these sets.

The main ingredient of the proof lies in the introduction of m probability measures consistently distributed over the Cantor-type subset of Fm(α0,,α
我们证明了形式幂级数域上各种极限集的豪斯多夫维度。通常,通过考虑底层集合的自然覆盖,上界更容易建立。要建立下界,我们需要为相关参数选择合适的值,从而找出一个合适的集合,作为多个limsup集合的子集。确切地说,给定一个固定整数 m,对于所有整数 0≤i≤m-1,设 αi>0 为实数。定义集合Fm(α0,...,αm-1)=def{x∈I:degAn+i=⌊nαi⌋+ci,0≤i≤m-1=def{x∈I for infinitely manyn∈N},其中ci∈N是固定的,偏商Ai(x)是严格正度的多项式。然后,我们确定了这个集合的豪斯多夫维度,从而为各种感兴趣的集合建立了最优下限,包括 [6]、[8]、[9] 中的关键结果。我们定理的一些新应用包括 [2], [20] 中考虑的集合的形式幂级数类似集的 Hausdorff 维的下界。我们还证明了它们的上界,从而对这些集合进行了全面的豪斯多夫维度分析。证明的主要内容在于引入 m 个一致分布于 Fm(α0,...,αm-1) 的康托尔型子集上的概率度量。
{"title":"Hausdorff dimension for sets of continued fractions of formal Laurent series","authors":"Mumtaz Hussain,&nbsp;Nikita Shulga","doi":"10.1016/j.ffa.2024.102377","DOIUrl":"10.1016/j.ffa.2024.102377","url":null,"abstract":"<div><p>We prove the Hausdorff dimension of various limsup sets over the field of formal power series. Typically, the upper bound is easier to establish by considering the natural covering of the underlying set. To establish the lower bound, we identify a suitable set that serves as a subset of several limsup sets by selecting appropriate values for the involved parameters. To be precise, given a fixed integer <em>m</em> and for all integers <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>m</mi><mo>−</mo><mn>1</mn></math></span>, let <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> be a real number. Define the set<span><span><span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo><mspace></mspace><mover><mrow><mo>=</mo></mrow><mrow><mtext>def</mtext></mrow></mover><mo>{</mo><mi>x</mi><mo>∈</mo><mi>I</mi><mo>:</mo><mspace></mspace><mi>deg</mi><mo>⁡</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>i</mi></mrow></msub><mo>=</mo><mo>⌊</mo><mi>n</mi><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>⌋</mo><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mspace></mspace><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>m</mi><mo>−</mo><mn>1</mn><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mphantom><mspace></mspace><mover><mrow><mo>=</mo></mrow><mrow><mtext>def</mtext></mrow></mover><mo>{</mo><mi>x</mi><mo>∈</mo><mi>I</mi></mphantom><mtext>for infinitely many</mtext><mspace></mspace><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>N</mi></math></span> are fixed, and the partial quotients <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> are polynomials of strictly positive degree. We then determine the Hausdorff dimension of this set which establishes an optimal lower bound for various sets of interest, including the key results in <span>[6]</span>, <span>[8]</span>, <span>[9]</span>. Some new applications of our theorem include the lower bound of the Hausdorff dimension of the formal power series analogues of the sets considered in <span>[2]</span>, <span>[20]</span>. We also prove their upper bounds to provide the comprehensive Hausdorff dimension analysis of these sets.</p><p>The main ingredient of the proof lies in the introduction of <em>m</em> probability measures consistently distributed over the Cantor-type subset of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1071579724000170/pdfft?md5=9c99cf37af3b2658475a1b77cc04137c&pid=1-s2.0-S1071579724000170-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139657562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new direction on constructing irreducible polynomials over finite fields 构建有限域上不可约多项式的新方向
IF 1 3区 数学 Q1 Mathematics Pub Date : 2024-01-25 DOI: 10.1016/j.ffa.2024.102368
Kaimin Cheng

Let q be a power of a prime p and Fq be the finite field of order q. Let ϕ(x) be any polynomial in Fq[x] and Φ(x):=1ϕ(x). For any positive integer n, denote Φ(n) to be the n-th iterate of Φ and dn,ϕ to be the denominator of Φ(n). We call ϕ(x)Fq[x] inversely stable over Fq if dn,ϕ are distinct and irreducible over Fq for all n. In this paper, we aim to find a class of inversely stable polynomials over Fq. Actually, let ϕ(x):=xp+ax+bFp[x], it is proved that ϕ(x) is inversely stable over Fp if and only if a=1 and b0; moreover, if ϕ(x) is inversely stable over Fp, then dn,ϕ is of degree pn for any positive integer n. Consequently, an infinite family of irreducible polynomials over Fp is obtained.

设 q 是素数 p 的幂,Fq 是阶为 q 的有限域。设 φ(x) 是 Fq[x] 中的任意多项式,且 Φ(x):=1 φ(x) 。对于任意正整数 n,表示 Φ(n) 为 Φ 的第 n 次迭代,dn,j 为 Φ(n) 的分母。本文旨在寻找一类反向稳定的 Fq 多项式。实际上,设 ϕ(x):=xp+ax+b∈Fp[x], 已证明当且仅当 a=-1 且 b≠0 时,ϕ(x) 在 Fp 上是反向稳定的;此外,如果 ϕ(x) 在 Fp 上是反向稳定的,那么对于任意正整数 n,dn,j 的阶数为 pn。
{"title":"A new direction on constructing irreducible polynomials over finite fields","authors":"Kaimin Cheng","doi":"10.1016/j.ffa.2024.102368","DOIUrl":"10.1016/j.ffa.2024.102368","url":null,"abstract":"<div><p>Let <em>q</em> be a power of a prime <em>p</em> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> be the finite field of order <em>q</em>. Let <span><math><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> be any polynomial in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> and <span><math><mi>Φ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mfrac></math></span>. For any positive integer <em>n</em>, denote <span><math><msup><mrow><mi>Φ</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> to be the <em>n</em>-th iterate of Φ and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>ϕ</mi></mrow></msub></math></span> to be the denominator of <span><math><msup><mrow><mi>Φ</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span>. We call <span><math><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> inversely stable over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> if <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>ϕ</mi></mrow></msub></math></span> are distinct and irreducible over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> for all <em>n</em>. In this paper, we aim to find a class of inversely stable polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Actually, let <span><math><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, it is proved that <span><math><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is inversely stable over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> if and only if <span><math><mi>a</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>b</mi><mo>≠</mo><mn>0</mn></math></span>; moreover, if <span><math><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is inversely stable over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, then <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>ϕ</mi></mrow></msub></math></span> is of degree <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for any positive integer <em>n</em><span>. Consequently, an infinite family of irreducible polynomials over </span><span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is obtained.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139579630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New constructions of optimal (r,δ)-LRCs via good polynomials 通过良好多项式构建最优 (r,δ)-LRC 的新方法
IF 1 3区 数学 Q1 Mathematics Pub Date : 2024-01-24 DOI: 10.1016/j.ffa.2024.102362
Yuan Gao, Siman Yang

Locally repairable codes (LRCs) are a class of erasure codes that are widely used in distributed storage systems, which allow for efficient recovery of data in the case of node failures or data loss. In 2014, Tamo and Barg introduced Reed-Solomon-like (RS-like) Singleton-optimal (r,δ)-LRCs based on polynomial evaluation. These constructions rely on the existence of so-called good polynomial that is constant on each of some pairwise disjoint subsets of Fq. In this paper, we extend the aforementioned constructions of RS-like LRCs and propose new constructions of (r,δ)-LRCs whose code length can be larger. These new (r,δ)-LRCs are all distance-optimal, namely, they attain an upper bound on the minimum distance that will be established in this paper. This bound is sharper than the Singleton-type bound in some cases owing to the extra conditions, it coincides with the Singleton-type bound for certain cases. Combining our constructions with known explicit good polynomials of special forms, we can get various explicit Singleton-optimal (r,δ)-LRCs with new parameters, whose code lengths are all larger than that constructed by the RS-like (r,δ)-LRCs introduced by Tamo and Barg. Note that the code length of classical RS codes and RS-like LRCs are both bounded by the field size. We explicitly construct the Singleton-optimal (r,δ)-LRCs with length n=q1+δ for any positive integers r,δ2 and (r+δ1)|(q1). We also show the existence of Singleton-optimal (r,δ)-LRCs with length q+δ over Fq=Fpa (a3) provided p2|(r+δ1), (r+δ1)|

局部可修复码(LRC)是分布式存储系统中广泛使用的一类擦除码,可在节点故障或数据丢失的情况下高效恢复数据。2014 年,Tamo 和 Barg 推出了基于多项式评估的类里德-索罗门(RS)辛格顿最优 (r,δ)-LRC。这些构造依赖于所谓的好多项式的存在,该多项式在 Fq 的某些成对相离子集上都是常数。在本文中,我们扩展了上述类 RS LRC 的构造,并提出了代码长度可以更大的(r,δ)-LRC 的新构造。这些新的(r,δ)-LRC 都是距离最优的,即它们达到了本文将建立的最小距离的上界。在某些情况下,由于额外的条件,这个上界比 Singleton-type 上界更尖锐,在某些情况下,它与 Singleton-type 上界重合。把我们的构造与已知的特殊形式的显式好多项式结合起来,我们可以得到各种带有新参数的显式辛格利顿最优 (r,δ)-LRCs ,它们的码长都比塔莫和巴格提出的类 RS (r,δ)-LRCs 构造的码长大。请注意,经典 RS 码和类 RS LRC 的码长都受场大小的限制。对于任意正整数 r,δ≥2 和 (r+δ-1)|(q-1) ,我们明确地构造了长度为 n=q-1+δ 的 Singleton-optimal (r,δ)-LRC。我们还证明,在 p2|(r+δ-1)、(r+δ-1)|pa-1 和 p|δ 条件下,存在长度为 q+δ 的 Fq=Fpa (a≥3) 的单子最优 (r,δ)-LRC 。当 δ 与 q 成正比时,它们比通过椭圆曲线构造的渐近长,而椭圆曲线的长度最多为 q+2q。此外,它们在 r 和 δ 的取值上有更大的灵活性。
{"title":"New constructions of optimal (r,δ)-LRCs via good polynomials","authors":"Yuan Gao,&nbsp;Siman Yang","doi":"10.1016/j.ffa.2024.102362","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102362","url":null,"abstract":"<div><p>Locally repairable codes (LRCs) are a class of erasure codes that are widely used in distributed storage systems, which allow for efficient recovery of data in the case of node failures or data loss. In 2014, Tamo and Barg introduced Reed-Solomon-like (RS-like) Singleton-optimal <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span><span>-LRCs based on polynomial evaluation<span>. These constructions rely on the existence of so-called good polynomial that is constant on each of some pairwise disjoint subsets of </span></span><span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. In this paper, we extend the aforementioned constructions of RS-like LRCs and propose new constructions of <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRCs whose code length can be larger. These new <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRCs are all distance-optimal, namely, they attain an upper bound on the minimum distance that will be established in this paper. This bound is sharper than the Singleton-type bound in some cases owing to the extra conditions, it coincides with the Singleton-type bound for certain cases. Combining our constructions with known explicit good polynomials of special forms, we can get various explicit Singleton-optimal <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRCs with new parameters, whose code lengths are all larger than that constructed by the RS-like <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRCs introduced by Tamo and Barg. Note that the code length of classical RS codes and RS-like LRCs are both bounded by the field size. We explicitly construct the Singleton-optimal <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRCs with length <span><math><mi>n</mi><mo>=</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>+</mo><mi>δ</mi></math></span> for any positive integers <span><math><mi>r</mi><mo>,</mo><mi>δ</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mo>(</mo><mi>r</mi><mo>+</mo><mi>δ</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>|</mo><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. We also show the existence of Singleton-optimal <span><math><mo>(</mo><mi>r</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-LRCs with length <span><math><mi>q</mi><mo>+</mo><mi>δ</mi></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>a</mi></mrow></msup></mrow></msub></math></span> (<span><math><mi>a</mi><mo>≥</mo><mn>3</mn></math></span>) provided <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>|</mo><mo>(</mo><mi>r</mi><mo>+</mo><mi>δ</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, <span><math><mo>(</mo><mi>r</mi><mo>+</mo><mi>δ</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>|</mo><m","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139548935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on t-designs in isodual codes 关于等元码中的 t 设计的说明
IF 1 3区 数学 Q1 Mathematics Pub Date : 2024-01-24 DOI: 10.1016/j.ffa.2024.102366
Madoka Awada , Tsuyoshi Miezaki , Akihiro Munemasa , Hiroyuki Nakasora

In the present paper, we construct 3-designs using extended binary quadratic residue codes and their dual codes.

在本文中,我们使用扩展的二进制二次残差码及其对偶码来构建 3 设计。
{"title":"A note on t-designs in isodual codes","authors":"Madoka Awada ,&nbsp;Tsuyoshi Miezaki ,&nbsp;Akihiro Munemasa ,&nbsp;Hiroyuki Nakasora","doi":"10.1016/j.ffa.2024.102366","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102366","url":null,"abstract":"<div><p>In the present paper, we construct 3-designs using extended binary quadratic residue codes and their dual codes.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139548937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Permutation rational functions over quadratic extensions of finite fields 有限域二次展开上的置换有理函数
IF 1 3区 数学 Q1 Mathematics Pub Date : 2024-01-23 DOI: 10.1016/j.ffa.2024.102365
Ruikai Chen , Sihem Mesnager

Permutation rational functions over finite fields have attracted much attention in recent years. In this paper, we introduce a class of permutation rational functions over Fq2, whose numerators are so-called q-quadratic polynomials. To this end, we will first determine the exact number of zeros of a special q-quadratic polynomial in Fq2, by calculating character sums related to quadratic forms of Fq2/Fq. Then given some rational function, we can demonstrate whether it induces a permutation of Fq2.

有限域上的置换有理函数近年来备受关注。在本文中,我们将介绍一类 Fq2 上的置换有理函数,它们的分子是所谓的 q 二次多项式。为此,我们将首先通过计算与 Fq2/Fq 二次形式相关的特征和,确定 Fq2 中特殊 q 二次多项式的确切零点个数。然后,给定某个有理函数,我们就可以证明它是否引起了 Fq2 的置换。
{"title":"Permutation rational functions over quadratic extensions of finite fields","authors":"Ruikai Chen ,&nbsp;Sihem Mesnager","doi":"10.1016/j.ffa.2024.102365","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102365","url":null,"abstract":"<div><p><span>Permutation rational functions over finite fields have attracted much attention in recent years. In this paper, we introduce a class of permutation rational functions over </span><span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span><span>, whose numerators are so-called </span><em>q</em>-quadratic polynomials. To this end, we will first determine the exact number of zeros of a special <em>q</em>-quadratic polynomial in <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span><span>, by calculating character sums related to quadratic forms of </span><span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>/</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Then given some rational function, we can demonstrate whether it induces a permutation of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139548943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing permutation polynomials over Fq3 from bijections of PG(2,q) 从 PG(2,q) 的双射构建 Fq3 上的置换多项式
IF 1 3区 数学 Q1 Mathematics Pub Date : 2024-01-23 DOI: 10.1016/j.ffa.2024.102364
Longjiang Qu , Kangquan Li

Over the past several years, there are numerous papers about permutation polynomials of the form xrh(xq1) over Fq2. A bijection between the multiplicative subgroup μq+1 of Fq2 and the projective line PG(1,q)=Fq{} plays a very important role in the research. In this paper, we mainly construct permutation polynomials of the form xrh(xq1) over Fq3 from bijections of the projective plane PG(2,q). A bijection from the multiplicative subgroup μq2+q+1 of Fq3 to PG(2,q) is studied, which is a key theorem of this paper. On this basis, some explicit permutation polynomials of the form xrh(xq1) over Fq3 are constructed from the collineation of PG(2,q), d-homogeneous monomials, 2-homogeneous permutations. It is worth noting that although the bijections of PG(2,q) are simple, the corresponding permutation polynomials over F<

在过去的几年里,有许多关于 Fq2 上 xrh(xq-1) 形式的置换多项式的论文。Fq2 的乘法子群 μq+1 与投影线 PG(1,q)=Fq∪{∞} 之间的双射关系在研究中起着非常重要的作用。本文主要从投影面 PG(2,q) 的双射出发,在 Fq3 上构造形式为 xrh(xq-1) 的置换多项式。本文研究了从 Fq3 的乘法子群 μq2+q+1 到 PG(2,q) 的双射,这是本文的一个关键定理。在此基础上,从 PG(2,q)、d-同次单项式、2-同次置换的联立中构造了 Fq3 上一些形式为 xrh(xq-1) 的显式置换多项式。值得注意的是,虽然 PG(2,q) 的双射是简单的,但 Fq3 上相应的置换多项式通常是复杂的。
{"title":"Constructing permutation polynomials over Fq3 from bijections of PG(2,q)","authors":"Longjiang Qu ,&nbsp;Kangquan Li","doi":"10.1016/j.ffa.2024.102364","DOIUrl":"https://doi.org/10.1016/j.ffa.2024.102364","url":null,"abstract":"<div><p><span>Over the past several years, there are numerous papers about permutation polynomials of the form </span><span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mi>h</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span><span>. A bijection between the multiplicative subgroup </span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> and the projective line <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span> plays a very important role in the research. In this paper, we mainly construct permutation polynomials of the form <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mi>h</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span><span> from bijections of the projective plane </span><span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>. A bijection from the multiplicative subgroup <span><math><msub><mrow><mi>μ</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span> to <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> is studied, which is a key theorem of this paper. On this basis, some explicit permutation polynomials of the form <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mi>h</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msub></math></span> are constructed from the collineation of <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, <em>d</em><span>-homogeneous monomials, 2-homogeneous permutations. It is worth noting that although the bijections of </span><span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> are simple, the corresponding permutation polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139548936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Matrices in M2[Fq[T]] with quadratic minimal polynomial M2[Fq[T]] 中具有二次最小多项式的矩阵
IF 1 3区 数学 Q1 Mathematics Pub Date : 2024-01-16 DOI: 10.1016/j.ffa.2024.102361
Jacobus Visser van Zyl

By a result of Latimer and MacDuffee, there are a finite number of equivalence classes of n×n matrices over Fq[T] with minimum polynomial p(X), where p is an nth degree polynomial, irreducible over Fq[T]. In this paper, we develop an algorithm for finding a canonical representative of each matrix class, for p(X)=X2ΓXΔFq[T][X].

根据 Latimer 和 MacDuffee 的一个结果,Fq[T] 上 n×n 矩阵有有限个等价类,其最小多项式为 p(X),其中 p 是 Fq[T] 上不可约的 n 次多项式。本文开发了一种算法,用于为 p(X)=X2-ΓX-∈ΔFq[T][X] 找到每个矩阵类的典型代表。
{"title":"Matrices in M2[Fq[T]] with quadratic minimal polynomial","authors":"Jacobus Visser van Zyl","doi":"10.1016/j.ffa.2024.102361","DOIUrl":"10.1016/j.ffa.2024.102361","url":null,"abstract":"<div><p>By a result of Latimer and MacDuffee, there are a finite number of equivalence classes of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>T</mi><mo>]</mo></math></span> with minimum polynomial <span><math><mi>p</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span>, where <em>p</em> is an <span><math><msup><mrow><mi>n</mi></mrow><mrow><mtext>th</mtext></mrow></msup></math></span> degree polynomial, irreducible over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>T</mi><mo>]</mo></math></span>. In this paper, we develop an algorithm for finding a canonical representative of each matrix class, for <span><math><mi>p</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>Γ</mi><mi>X</mi><mo>−</mo><mi>Δ</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>T</mi><mo>]</mo><mo>[</mo><mi>X</mi><mo>]</mo></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1071579724000017/pdfft?md5=c8dd8335361741fc6c65ac182f4475aa&pid=1-s2.0-S1071579724000017-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139475554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Finite Fields and Their Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1