首页 > 最新文献

Finite Fields and Their Applications最新文献

英文 中文
Design of concatenative complete complementary codes for CCC-CDMA via specific sequences and extended Boolean functions 通过特定序列和扩展布尔函数为 CCC-CDMA 设计串联完整互补码
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2024-08-13 DOI: 10.1016/j.ffa.2024.102489
Rong Luo , Bingsheng Shen , Yang Yang , Zhengchun Zhou

A complete complementary code (CCC) consists of M sequence sets with size M. The sum of the auto-correlation functions of each sequence set is an impulse function, and the sum of cross-correlation functions of the different sequence sets is equal to zero. Thanks to their excellent correlation, CCCs received extensive use in engineering. In addition, they are strongly connected to orthogonal matrices. In some application scenarios, additional requirements are made for CCCs, such as recently proposed for concatenative CCC (CCCC) division multiple access (CCC-CDMA) technologies. In fact, CCCCs are a special kind of CCCs which requires that each sequence set in CCC be concatenated to form a zero-correlation-zone (ZCZ) sequence set. However, this requirement is challenging, and the literature is thin since there is only one construction in this context. We propose to go beyond the literature through this contribution to reduce the gap between their interest and our limited knowledge of CCCCs. This paper will employ novel methods for designing CCCCs and precisely derive two constructions of these objects. The first is based on perfect cross Z-complementary pair and Hadamard matrices, and the second relies on extended Boolean functions. Specifically, we highlight that optimal and asymptotic optimal CCCCs could be obtained through the proposed constructions. Besides, we shall present a comparison analysis with former structures in the literature and examples to illustrate our main results.

每个序列集的自相关函数之和为脉冲函数,不同序列集的交叉相关函数之和等于零。由于其出色的相关性,CCC 在工程领域得到了广泛应用。此外,它们还与正交矩阵密切相关。在某些应用场景中,对 CCC 还提出了额外的要求,例如最近提出的并行 CCC(CCCC)分多路存取(CCC-CDMA)技术。事实上,CCCC 是一种特殊的 CCC,它要求 CCC 中的每个序列集必须串联起来形成一个零相关区(ZCZ)序列集。然而,这一要求极具挑战性,而且文献资料也很少,因为在这种情况下只有一种构造。我们建议通过本文超越文献,缩小他们的兴趣与我们对 CCCC 有限知识之间的差距。本文将采用新颖的方法设计 CCCC,并精确推导出这些对象的两种构造。第一种方法基于完美交叉 Z 互补对和哈达玛矩阵,第二种方法依赖于扩展布尔函数。具体来说,我们强调通过所提出的构造可以得到最优和渐近最优的 CCCC。此外,我们还将介绍与文献中的前述结构的比较分析,并举例说明我们的主要结果。
{"title":"Design of concatenative complete complementary codes for CCC-CDMA via specific sequences and extended Boolean functions","authors":"Rong Luo ,&nbsp;Bingsheng Shen ,&nbsp;Yang Yang ,&nbsp;Zhengchun Zhou","doi":"10.1016/j.ffa.2024.102489","DOIUrl":"10.1016/j.ffa.2024.102489","url":null,"abstract":"<div><p>A complete complementary code (CCC) consists of <em>M</em> sequence sets with size <em>M</em>. The sum of the auto-correlation functions of each sequence set is an impulse function, and the sum of cross-correlation functions of the different sequence sets is equal to zero. Thanks to their excellent correlation, CCCs received extensive use in engineering. In addition, they are strongly connected to orthogonal matrices. In some application scenarios, additional requirements are made for CCCs, such as recently proposed for concatenative CCC (CCCC) division multiple access (CCC-CDMA) technologies. In fact, CCCCs are a special kind of CCCs which requires that each sequence set in CCC be concatenated to form a zero-correlation-zone (ZCZ) sequence set. However, this requirement is challenging, and the literature is thin since there is only one construction in this context. We propose to go beyond the literature through this contribution to reduce the gap between their interest and our limited knowledge of CCCCs. This paper will employ novel methods for designing CCCCs and precisely derive two constructions of these objects. The first is based on perfect cross Z-complementary pair and Hadamard matrices, and the second relies on extended Boolean functions. Specifically, we highlight that optimal and asymptotic optimal CCCCs could be obtained through the proposed constructions. Besides, we shall present a comparison analysis with former structures in the literature and examples to illustrate our main results.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102489"},"PeriodicalIF":1.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designs with a simple automorphism group 具有简单自变群的设计
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2024-08-09 DOI: 10.1016/j.ffa.2024.102488
Alessandro Montinaro , Yanwei Zhao , Zhilin Zhang , Shenglin Zhou

The classification of the 2-designs with λ=2 admitting a flag-transitive automorphism groups with socle PSL(2,q) is completed by settling the two open cases in [2]. The result is achieved by using conics and hyperovals of PG(2,q).

通过解决[2]中的两个未决问题,我们完成了λ=2 的 2-设计的分类,这些 2-设计允许一个具有社群 PSL(2,q)的旗跨自变群。这一结果是通过使用 PG(2,q) 的圆锥曲线和双曲面得到的。
{"title":"Designs with a simple automorphism group","authors":"Alessandro Montinaro ,&nbsp;Yanwei Zhao ,&nbsp;Zhilin Zhang ,&nbsp;Shenglin Zhou","doi":"10.1016/j.ffa.2024.102488","DOIUrl":"10.1016/j.ffa.2024.102488","url":null,"abstract":"<div><p>The classification of the 2-designs with <span><math><mi>λ</mi><mo>=</mo><mn>2</mn></math></span> admitting a flag-transitive automorphism groups with socle <span><math><mi>P</mi><mi>S</mi><mi>L</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> is completed by settling the two open cases in <span><span>[2]</span></span>. The result is achieved by using conics and hyperovals of <span><math><mi>P</mi><mi>G</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102488"},"PeriodicalIF":1.2,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized point configurations in Fqd Fqd 中的广义点配置
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2024-08-08 DOI: 10.1016/j.ffa.2024.102472
Paige Bright, Xinyu Fang, Barrett Heritage, Alex Iosevich, Tingsong Jiang, Hans Parshall, Maxwell Sun

In this paper, we generalize [6], [1], [5] and [3] by allowing the distance between two points in a finite field vector space to be defined by a general non-degenerate bilinear form or quadratic form. We prove the same bounds on the sizes of large subsets of Fqd for them to contain distance graphs with a given maximal vertex degree, under the more general notion of distance. We also prove the same results for embedding paths, trees and cycles in the general setting.

在本文中,我们对 [6]、[1]、[5] 和 [3] 进行了概括,允许有限域向量空间中两点之间的距离由一般的非退化双线性方程或二次方程定义。在更一般的距离概念下,我们证明了 Fqd 大子集的大小的相同边界,即这些子集包含具有给定最大顶点度的距离图。我们还证明了一般情况下嵌入路径、树和循环的相同结果。
{"title":"Generalized point configurations in Fqd","authors":"Paige Bright,&nbsp;Xinyu Fang,&nbsp;Barrett Heritage,&nbsp;Alex Iosevich,&nbsp;Tingsong Jiang,&nbsp;Hans Parshall,&nbsp;Maxwell Sun","doi":"10.1016/j.ffa.2024.102472","DOIUrl":"10.1016/j.ffa.2024.102472","url":null,"abstract":"<div><p>In this paper, we generalize <span><span>[6]</span></span>, <span><span>[1]</span></span>, <span><span>[5]</span></span> and <span><span>[3]</span></span> by allowing the <em>distance</em> between two points in a finite field vector space to be defined by a general non-degenerate bilinear form or quadratic form. We prove the same bounds on the sizes of large subsets of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> for them to contain distance graphs with a given maximal vertex degree, under the more general notion of distance. We also prove the same results for embedding paths, trees and cycles in the general setting.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102472"},"PeriodicalIF":1.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primality proving using elliptic curves with complex multiplication by imaginary quadratic fields of class number three 利用椭圆曲线与三类虚二次域的复乘法证明初等性
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2024-08-08 DOI: 10.1016/j.ffa.2024.102490
Hiroshi Onuki

In 2015, Abatzoglou, Silverberg, Sutherland, and Wong presented a framework for primality proving algorithms for special sequences of integers using an elliptic curve with complex multiplication. They applied their framework to obtain algorithms for elliptic curves with complex multiplication by imaginary quadratic field of class numbers one and two, but, they were not able to obtain primality proving algorithms in cases of higher class number. In this paper, we present a method to apply their framework to imaginary quadratic fields of class number three. In particular, our method provides a more efficient primality proving algorithm for special sequences of integers than the existing algorithms by using an imaginary quadratic field of class number three in which 2 splits. As an application, we give two special sequences of integers derived from Q(23) and Q(31), which are all the imaginary quadratic fields of class number three in which 2 splits. Finally, we give a computational result for the primality of these sequences.

2015 年,Abatzoglou、Silverberg、Sutherland 和 Wong 提出了一个使用带复数乘法的椭圆曲线对特殊整数序列进行原始性证明算法的框架。他们利用这个框架获得了第一和第二类数虚二次域复乘椭圆曲线的算法,但是,他们无法获得更高类数情况下的原始性证明算法。在本文中,我们提出了一种方法,将他们的框架应用于三类数的虚二次域。特别是,与现有算法相比,我们的方法通过使用类数为三的虚二次域(其中 2 分裂),为特殊整数序列提供了更有效的原始性证明算法。作为应用,我们给出了由 Q(-23) 和 Q(-31) 衍生出的两个特殊整数序列,它们都是 2 分裂的三类虚二次域。最后,我们给出了这些序列原始性的计算结果。
{"title":"Primality proving using elliptic curves with complex multiplication by imaginary quadratic fields of class number three","authors":"Hiroshi Onuki","doi":"10.1016/j.ffa.2024.102490","DOIUrl":"10.1016/j.ffa.2024.102490","url":null,"abstract":"<div><p>In 2015, Abatzoglou, Silverberg, Sutherland, and Wong presented a framework for primality proving algorithms for special sequences of integers using an elliptic curve with complex multiplication. They applied their framework to obtain algorithms for elliptic curves with complex multiplication by imaginary quadratic field of class numbers one and two, but, they were not able to obtain primality proving algorithms in cases of higher class number. In this paper, we present a method to apply their framework to imaginary quadratic fields of class number three. In particular, our method provides a more efficient primality proving algorithm for special sequences of integers than the existing algorithms by using an imaginary quadratic field of class number three in which 2 splits. As an application, we give two special sequences of integers derived from <span><math><mi>Q</mi><mo>(</mo><msqrt><mrow><mo>−</mo><mn>23</mn></mrow></msqrt><mo>)</mo></math></span> and <span><math><mi>Q</mi><mo>(</mo><msqrt><mrow><mo>−</mo><mn>31</mn></mrow></msqrt><mo>)</mo></math></span>, which are all the imaginary quadratic fields of class number three in which 2 splits. Finally, we give a computational result for the primality of these sequences.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102490"},"PeriodicalIF":1.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the stable polynomials of degrees 2,3,4 关于 2、3、4 度的稳定多项式
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2024-08-08 DOI: 10.1016/j.ffa.2024.102474
Tong Lin, Qiang Wang

Let q be a prime power. For m=2,3,4, we construct stable polynomials of the form bm1(x+a)m+c(x+a)+d over Fq by Capelli's lemma. Moreover, when m=2 and q1(mod4), we improve a lower bound for the number of stable quadratic polynomials over Fq due to Goméz-Pérez and Nicolás [4]. When m=3, we prove Ahmadi and Monsef-Shokri's conjecture [2] that x3+x2+1 is stable over F2.

设 q 为质幂。对于 m=2,3,4,我们通过卡佩利定理构造出 Fq 上 bm-1(x+a)m+c(x+a)+d形式的稳定多项式。此外,当 m=2 且 q≡1(mod4)时,我们改进了由 Goméz-Pérez 和 Nicolás [4] 提出的 Fq 上稳定二次多项式数量的下限。当 m=3 时,我们证明了 Ahmadi 和 Monsef-Shokri 的猜想 [2],即 x3+x2+1 在 F2 上是稳定的。
{"title":"On the stable polynomials of degrees 2,3,4","authors":"Tong Lin,&nbsp;Qiang Wang","doi":"10.1016/j.ffa.2024.102474","DOIUrl":"10.1016/j.ffa.2024.102474","url":null,"abstract":"<div><p>Let <em>q</em> be a prime power. For <span><math><mi>m</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span>, we construct stable polynomials of the form <span><math><msup><mrow><mi>b</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mi>a</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mi>c</mi><mo>(</mo><mi>x</mi><mo>+</mo><mi>a</mi><mo>)</mo><mo>+</mo><mi>d</mi></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> by Capelli's lemma. Moreover, when <span><math><mi>m</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>, we improve a lower bound for the number of stable quadratic polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> due to Goméz-Pérez and Nicolás <span><span>[4]</span></span>. When <span><math><mi>m</mi><mo>=</mo><mn>3</mn></math></span>, we prove Ahmadi and Monsef-Shokri's conjecture <span><span>[2]</span></span> that <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></math></span> is stable over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102474"},"PeriodicalIF":1.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the computation of r-th roots in finite fields 关于有限域中 r 次根的计算
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2024-08-05 DOI: 10.1016/j.ffa.2024.102479
Gook Hwa Cho , Soonhak Kwon

Let q be a power of a prime such that q1(modr). Let c be an r-th power residue over Fq. In this paper, we present a new r-th root formula which generalizes G.H. Cho et al.'s cube root algorithm, and which provides a refinement of Williams' Cipolla-Lehmer based procedure. Our algorithm which is based on the recurrence relations arising from irreducible polynomial h(x)=xr+(1)r+1(b+(1)rr)(x1) with b=c+(1)r+1r requires only O(r2logq+r4) multiplications for r>1. The multiplications for computation of the main exponentiation of our algorithm are half of that of the Williams' Cipolla-Lehmer type algorithms.

设 q 是一个质数的幂,使得 q≡1(modr)。设 c 是 Fq 上的 r 次幂残差。在本文中,我们提出了一个新的 r-th 根公式,它概括了 G.H. Cho 等人的立方根算法,并对 Williams 基于 Cipolla-Lehmer 的程序进行了改进。我们的算法基于不可还原多项式 h(x)=xr+(-1)r+1(b+(-1)rr)(x-1) 所产生的递推关系,其中 b=c+(-1)r+1r 对于 r>1 只需要 O(r2logq+r4) 次乘法。
{"title":"On the computation of r-th roots in finite fields","authors":"Gook Hwa Cho ,&nbsp;Soonhak Kwon","doi":"10.1016/j.ffa.2024.102479","DOIUrl":"10.1016/j.ffa.2024.102479","url":null,"abstract":"<div><p>Let <em>q</em> be a power of a prime such that <span><math><mi>q</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>r</mi><mo>)</mo></math></span>. Let <em>c</em> be an <em>r</em>-th power residue over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. In this paper, we present a new <em>r</em>-th root formula which generalizes G.H. Cho et al.'s cube root algorithm, and which provides a refinement of Williams' Cipolla-Lehmer based procedure. Our algorithm which is based on the recurrence relations arising from irreducible polynomial <span><math><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>b</mi><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup><mi>r</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> with <span><math><mi>b</mi><mo>=</mo><mi>c</mi><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mi>r</mi></math></span> requires only <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>q</mi><mo>+</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>)</mo></math></span> multiplications for <span><math><mi>r</mi><mo>&gt;</mo><mn>1</mn></math></span>. The multiplications for computation of the main exponentiation of our algorithm are half of that of the Williams' Cipolla-Lehmer type algorithms.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102479"},"PeriodicalIF":1.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On linear representation, complexity and inversion of maps over finite fields 论有限域上映射的线性表示、复杂性和反演
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2024-08-05 DOI: 10.1016/j.ffa.2024.102475
Ramachandran Ananthraman , Virendra Sule

This paper defines a linear representation for nonlinear maps F:FnFn where F is a finite field, in terms of matrices over F. This linear representation of the map F associates a unique number N and a unique matrix M in FN×N, called the Linear Complexity and the Linear Representation of F respectively, and shows that the compositional powers F(k) are represented by matrix powers Mk. It is shown that for a permutation map F with representation M, the inverse map has the linear representation M1. This framework of representation is extended to a parameterized family of maps Fλ(x):FF, defined in terms of a parameter λF, leading to the definition of an analogous linear complexity of the map Fλ(x), and a parameter-dependent matrix representation Mλ defined over the univariate polynomial ring F[λ]. Such a representation leads to the construction of a parametric inverse of such maps where the condition for invertibility is expressed through the unimodularity of this matrix representation Mλ. Apart from computing the compositional inverses of permutation polynomials, this linear representation is also used to compute the cycle structures of the permutation map. Lastly, this representation is extended to a representation of the cyclic group generated by a permutation map F, and to the group generated by a finite number of permutation maps over F.

本文定义了非线性映射 F:Fn→Fn 的线性表示,其中 F 是有限域,用 F 上的矩阵表示。映射 F 的这种线性表示关联了 FN×N 中唯一的数 N 和唯一的矩阵 M,分别称为 F 的线性复杂性和线性表示,并表明组成幂 F(k) 由矩阵幂 Mk 表示。这个表示框架被扩展到参数化的映射 Fλ(x):F→F 系列,以参数 λ∈F 定义,从而定义了映射 Fλ(x) 的类似线性复杂性,以及定义在单变量多项式环 F[λ] 上的与参数相关的矩阵表示 Mλ。通过这种表示,可以构建这种映射的参数逆,其中可逆性的条件是通过这种矩阵表示 Mλ 的单调性来表达的。除了计算置换多项式的组成逆之外,这种线性表示还用于计算置换映射的循环结构。最后,这一表示法被扩展为由置换映射 F 生成的循环群的表示法,以及由 F 上有限个置换映射生成的群的表示法。
{"title":"On linear representation, complexity and inversion of maps over finite fields","authors":"Ramachandran Ananthraman ,&nbsp;Virendra Sule","doi":"10.1016/j.ffa.2024.102475","DOIUrl":"10.1016/j.ffa.2024.102475","url":null,"abstract":"<div><p>This paper defines a linear representation for nonlinear maps <span><math><mi>F</mi><mo>:</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> where <span><math><mi>F</mi></math></span> is a finite field, in terms of matrices over <span><math><mi>F</mi></math></span>. This linear representation of the map <em>F</em> associates a unique number <em>N</em> and a unique matrix <em>M</em> in <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>N</mi><mo>×</mo><mi>N</mi></mrow></msup></math></span>, called the Linear Complexity and the Linear Representation of <em>F</em> respectively, and shows that the compositional powers <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> are represented by matrix powers <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>. It is shown that for a permutation map <em>F</em> with representation <em>M</em>, the inverse map has the linear representation <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. This framework of representation is extended to a parameterized family of maps <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mi>F</mi><mo>→</mo><mi>F</mi></math></span>, defined in terms of a parameter <span><math><mi>λ</mi><mo>∈</mo><mi>F</mi></math></span>, leading to the definition of an analogous linear complexity of the map <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, and a parameter-dependent matrix representation <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> defined over the univariate polynomial ring <span><math><mi>F</mi><mo>[</mo><mi>λ</mi><mo>]</mo></math></span>. Such a representation leads to the construction of a parametric inverse of such maps where the condition for invertibility is expressed through the unimodularity of this matrix representation <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span>. Apart from computing the compositional inverses of permutation polynomials, this linear representation is also used to compute the cycle structures of the permutation map. Lastly, this representation is extended to a representation of the cyclic group generated by a permutation map <em>F</em>, and to the group generated by a finite number of permutation maps over <span><math><mi>F</mi></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102475"},"PeriodicalIF":1.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Representations of group actions and their applications in cryptography 群作用表示及其在密码学中的应用
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2024-08-01 DOI: 10.1016/j.ffa.2024.102476
Giuseppe D'Alconzo, Antonio J. Di Scala

Cryptographic group actions provide a flexible framework that allows the instantiation of several primitives, ranging from key exchange protocols to PRFs and digital signatures. The security of such constructions is based on the intractability of some computational problems. For example, given the group action (G,X,), the weak unpredictability assumption (Alamati et al. (2020) [1]) requires that, given random xi's in X, no probabilistic polynomial time algorithm can compute, on input {(xi,gxi)}i=1,,Q and y, the set element gy.

In this work, we study such assumptions, aided by the definition of group action representations and a new metric, the q-linear dimension, that estimates the “linearity” of a group action, or in other words, how much it is far from being linear. We show that under some hypotheses on the group action representation, and if the q-linear dimension is polynomial in the security parameter, then the weak unpredictability and other related assumptions cannot hold. This technique is applied to some actions from cryptography, like the ones arising from the equivalence of linear codes, as a result, we obtain the impossibility of using such actions for the instantiation of certain primitives.

As an additional result, some bounds on the q-linear dimension are given for classical groups, such as Sn, GL(Fn) and the cyclic group Zn acting on itself.

加密群组行为提供了一个灵活的框架,可以将从密钥交换协议到 PRF 和数字签名等多种基本原理实例化。这种结构的安全性基于某些计算问题的难解性。例如,给定群动作 (G,X,⋆),弱不可预测性假设(Alamati 等人 (2020) [1])要求,给定 X 中的随机 xi,任何概率多项式时间算法都无法在输入 {(xi,g⋆xi)}i=1,...Q 和 y 的情况下计算集合元素 g⋆y。在这项工作中,我们借助群作用表示的定义和一种新度量--q-线性维度--来研究这些假设,q-线性维度可以估算群作用的 "线性度",或者换句话说,它离线性有多远。我们证明,在群体行动表示的某些假设下,如果 q 线性维度是安全参数的多项式,那么弱不可预测性和其他相关假设就不成立。我们将这一技术应用于密码学中的一些作用,如线性编码等价性中产生的作用,结果发现不可能使用这些作用来实例化某些基元。
{"title":"Representations of group actions and their applications in cryptography","authors":"Giuseppe D'Alconzo,&nbsp;Antonio J. Di Scala","doi":"10.1016/j.ffa.2024.102476","DOIUrl":"10.1016/j.ffa.2024.102476","url":null,"abstract":"<div><p>Cryptographic group actions provide a flexible framework that allows the instantiation of several primitives, ranging from key exchange protocols to PRFs and digital signatures. The security of such constructions is based on the intractability of some computational problems. For example, given the group action <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>X</mi><mo>,</mo><mo>⋆</mo><mo>)</mo></math></span>, the weak unpredictability assumption (Alamati et al. (2020) <span><span>[1]</span></span>) requires that, given random <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>'s in <em>X</em>, no probabilistic polynomial time algorithm can compute, on input <span><math><msub><mrow><mo>{</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>g</mi><mo>⋆</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>Q</mi></mrow></msub></math></span> and <em>y</em>, the set element <span><math><mi>g</mi><mo>⋆</mo><mi>y</mi></math></span>.</p><p>In this work, we study such assumptions, aided by the definition of <em>group action representations</em> and a new metric, the <em>q-linear dimension</em>, that estimates the “linearity” of a group action, or in other words, how much it is far from being linear. We show that under some hypotheses on the group action representation, and if the <em>q</em>-linear dimension is polynomial in the security parameter, then the weak unpredictability and other related assumptions cannot hold. This technique is applied to some actions from cryptography, like the ones arising from the equivalence of linear codes, as a result, we obtain the impossibility of using such actions for the instantiation of certain primitives.</p><p>As an additional result, some bounds on the <em>q</em>-linear dimension are given for classical groups, such as <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, <span><math><mi>GL</mi><mo>(</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and the cyclic group <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> acting on itself.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102476"},"PeriodicalIF":1.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1071579724001151/pdfft?md5=da2ac4d07e20b23f31147c448a4a4dc4&pid=1-s2.0-S1071579724001151-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the stopping time of the Collatz map in F2[x] 关于 F2[x] 中科拉茨图的停止时间
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2024-08-01 DOI: 10.1016/j.ffa.2024.102473
Gil Alon , Angelot Behajaina , Elad Paran

We study the stopping time of the Collatz map for a polynomial fF2[x], and bound it by O(deg(f)1.5), improving upon the quadratic bound proven by Hicks, Mullen, Yucas and Zavislak. We also prove the existence of arithmetic sequences of unbounded length in the stopping times of certain sequences of polynomials, a phenomenon observed in the classical Collatz map.

我们研究了多项式 f∈F2[x] 的科拉茨映射停止时间,并将其约束为 O(deg(f)1.5),改进了希克斯、马伦、尤卡斯和扎维斯拉克证明的二次约束。我们还证明了在某些多项式序列的停止时间中存在长度无界的算术序列,这是在经典科拉茨图中观察到的现象。
{"title":"On the stopping time of the Collatz map in F2[x]","authors":"Gil Alon ,&nbsp;Angelot Behajaina ,&nbsp;Elad Paran","doi":"10.1016/j.ffa.2024.102473","DOIUrl":"10.1016/j.ffa.2024.102473","url":null,"abstract":"<div><p>We study the stopping time of the Collatz map for a polynomial <span><math><mi>f</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, and bound it by <span><math><mi>O</mi><mo>(</mo><mrow><mi>deg</mi></mrow><msup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mrow><mn>1.5</mn></mrow></msup><mo>)</mo></math></span>, improving upon the quadratic bound proven by Hicks, Mullen, Yucas and Zavislak. We also prove the existence of arithmetic sequences of unbounded length in the stopping times of certain sequences of polynomials, a phenomenon observed in the classical Collatz map.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102473"},"PeriodicalIF":1.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On algebraic degrees of inverted Kloosterman sums 论倒克罗斯特曼和的代数度
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2024-08-01 DOI: 10.1016/j.ffa.2024.102477
Xin Lin , Daqing Wan

The study of n-dimensional inverted Kloosterman sums was suggested by Katz (1995) [7] who handled the case when n=1 from complex point of view. For general n1, the n-dimensional inverted Kloosterman sums were studied from both complex and p-adic point of view in our previous paper (2024) [10]. In this note, we study the algebraic degree of the inverted n-dimensional Kloosterman sum as an algebraic integer.

n 维倒克罗斯特曼和的研究是由 Katz(1995)[7] 提出的,他从复数角度处理了 n=1 的情况。对于一般 n≥1,我们在之前的论文 (2024) [10] 中从复数和 p-adic 角度研究了 n 维倒克洛斯特曼和。在本注释中,我们将研究作为代数整数的 n 维克罗斯特曼倒数和的代数度。
{"title":"On algebraic degrees of inverted Kloosterman sums","authors":"Xin Lin ,&nbsp;Daqing Wan","doi":"10.1016/j.ffa.2024.102477","DOIUrl":"10.1016/j.ffa.2024.102477","url":null,"abstract":"<div><p>The study of <em>n</em>-dimensional inverted Kloosterman sums was suggested by Katz (1995) <span><span>[7]</span></span> who handled the case when <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span> from complex point of view. For general <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, the <em>n</em>-dimensional inverted Kloosterman sums were studied from both complex and <em>p</em>-adic point of view in our previous paper (2024) <span><span>[10]</span></span>. In this note, we study the algebraic degree of the inverted <em>n</em>-dimensional Kloosterman sum as an algebraic integer.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102477"},"PeriodicalIF":1.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Finite Fields and Their Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1