Pub Date : 2024-08-30DOI: 10.1016/j.ffa.2024.102497
Vladislav Taranchuk , Craig Timmons
A complete partition of a graph G is a partition of the vertex set such that there is at least one edge between any two parts. The largest r such that G has a complete partition into r parts, each of which is an independent set, is the achromatic number of G. We determine the achromatic number of polarity graphs of biaffine planes coming from generalized polygons. Our colorings of a family of unitary polarity graphs are used to solve a problem of Axenovich and Martin on complete partitions of -free graphs. Furthermore, these colorings prove that there are sequences of graphs which are optimally complete and have unbounded degree, a problem that had been studied for the sequence of hypercubes independently by Roichman, and Ahlswede, Bezrukov, Blokhuis, Metsch, and Moorhouse.
图 G 的完整分割是顶点集的分割,使得任意两部分之间至少有一条边。我们确定了来自广义多边形的双折线平面极性图的消色数。我们对单元极性图族的着色用于解决阿克森诺维奇和马丁关于无 C4 图的完全分割的问题。此外,这些着色证明了存在最优完整且度无界的图序列,这个问题曾由罗伊克曼、阿尔斯韦德、贝兹鲁科夫、布洛克胡斯、梅奇和穆尔豪斯独立研究过超立方体序列。
{"title":"Achromatic colorings of polarity graphs","authors":"Vladislav Taranchuk , Craig Timmons","doi":"10.1016/j.ffa.2024.102497","DOIUrl":"10.1016/j.ffa.2024.102497","url":null,"abstract":"<div><p>A complete partition of a graph <em>G</em> is a partition of the vertex set such that there is at least one edge between any two parts. The largest <em>r</em> such that <em>G</em> has a complete partition into <em>r</em> parts, each of which is an independent set, is the achromatic number of <em>G</em>. We determine the achromatic number of polarity graphs of biaffine planes coming from generalized polygons. Our colorings of a family of unitary polarity graphs are used to solve a problem of Axenovich and Martin on complete partitions of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs. Furthermore, these colorings prove that there are sequences of graphs which are optimally complete and have unbounded degree, a problem that had been studied for the sequence of hypercubes independently by Roichman, and Ahlswede, Bezrukov, Blokhuis, Metsch, and Moorhouse.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102497"},"PeriodicalIF":1.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1016/j.ffa.2024.102494
Lukas Kölsch
APN functions play a big role as primitives in symmetric cryptography as building blocks that yield optimal resistance to differential attacks. In this note, we consider a recent extension, done by Calderini et al. (2023), of a biprojective APN family introduced by Göloğlu (2022) defined on . We show that this generalization yields functions equivalent to Göloğlu's original family if . If we show exactly how many inequivalent APN functions this new family contains. We also show that the family has the minimal image set size for an APN function and determine its Walsh spectrum, hereby settling some open problems. In our proofs, we leverage a group theoretic technique recently developed by Göloğlu and the author in conjunction with a group action on the set of projective polynomials.
{"title":"On a recent extension of a family of biprojective APN functions","authors":"Lukas Kölsch","doi":"10.1016/j.ffa.2024.102494","DOIUrl":"10.1016/j.ffa.2024.102494","url":null,"abstract":"<div><p>APN functions play a big role as primitives in symmetric cryptography as building blocks that yield optimal resistance to differential attacks. In this note, we consider a recent extension, done by Calderini et al. (2023), of a biprojective APN family introduced by Göloğlu (2022) defined on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>m</mi></mrow></msup></mrow></msub></math></span>. We show that this generalization yields functions equivalent to Göloğlu's original family if <span><math><mn>3</mn><mo>∤</mo><mi>m</mi></math></span>. If <span><math><mn>3</mn><mo>|</mo><mi>m</mi></math></span> we show exactly how many inequivalent APN functions this new family contains. We also show that the family has the minimal image set size for an APN function and determine its Walsh spectrum, hereby settling some open problems. In our proofs, we leverage a group theoretic technique recently developed by Göloğlu and the author in conjunction with a group action on the set of projective polynomials.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102494"},"PeriodicalIF":1.2,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1016/j.ffa.2024.102495
Yun Ding, Yang Li, Shixin Zhu
For an linear code , the singleton defect of is defined by . When , the code is called a near maximum distance separable (NMDS) code, where is the dual code of . NMDS codes have important applications in finite projective geometries, designs and secret sharing schemes. In this paper, we present four new constructions of infinite families of NMDS codes with dimension 4 and completely determine their weight enumerators. As an application, we also determine the locality of the dual codes of these NMDS codes and obtain four families of distance-optimal and dimension-optimal locally recoverable codes.
{"title":"Four new families of NMDS codes with dimension 4 and their applications","authors":"Yun Ding, Yang Li, Shixin Zhu","doi":"10.1016/j.ffa.2024.102495","DOIUrl":"10.1016/j.ffa.2024.102495","url":null,"abstract":"<div><p>For an <span><math><msub><mrow><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>d</mi><mo>]</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> linear code <span><math><mi>C</mi></math></span>, the singleton defect of <span><math><mi>C</mi></math></span> is defined by <span><math><mi>S</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>−</mo><mi>d</mi></math></span>. When <span><math><mi>S</mi><mo>(</mo><mi>C</mi><mo>)</mo><mo>=</mo><mi>S</mi><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>⊥</mo></mrow></msup><mo>)</mo><mo>=</mo><mn>1</mn></math></span>, the code <span><math><mi>C</mi></math></span> is called a near maximum distance separable (NMDS) code, where <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⊥</mo></mrow></msup></math></span> is the dual code of <span><math><mi>C</mi></math></span>. NMDS codes have important applications in finite projective geometries, designs and secret sharing schemes. In this paper, we present four new constructions of infinite families of NMDS codes with dimension 4 and completely determine their weight enumerators. As an application, we also determine the locality of the dual codes of these NMDS codes and obtain four families of distance-optimal and dimension-optimal locally recoverable codes.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102495"},"PeriodicalIF":1.2,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142075831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1016/j.ffa.2024.102498
Maria Montanucci , Guilherme Tizziotti , Giovanni Zini
In this paper we compute the automorphism group of the curves and introduced in Tafazolian et al. [27] as new examples of maximal curves which cannot be covered by the Hermitian curve. They arise as subcovers of the first generalized GK curve (GGS curve). As a result, a new characterization of the GK curve, as a member of this family, is obtained.
{"title":"On the automorphism group of a family of maximal curves not covered by the Hermitian curve","authors":"Maria Montanucci , Guilherme Tizziotti , Giovanni Zini","doi":"10.1016/j.ffa.2024.102498","DOIUrl":"10.1016/j.ffa.2024.102498","url":null,"abstract":"<div><p>In this paper we compute the automorphism group of the curves <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> introduced in Tafazolian et al. <span><span>[27]</span></span> as new examples of maximal curves which cannot be covered by the Hermitian curve. They arise as subcovers of the first generalized GK curve (GGS curve). As a result, a new characterization of the GK curve, as a member of this family, is obtained.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102498"},"PeriodicalIF":1.2,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142075829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.ffa.2024.102492
Shamil Asgarli , Chi Hoi Yip
Blokhuis showed that all maximum cliques in Paley graphs of square order have a subfield structure. Recently, it has been shown that in Peisert-type graphs, all maximum cliques are affine subspaces, and yet some maximum cliques do not arise from a subfield. In this paper, we investigate the existence of a clique of size with a subspace structure in pseudo-Paley graphs of order q from unions of semi-primitive cyclotomic classes. We show that such a clique must have an equal contribution from each cyclotomic class and that most such pseudo-Paley graphs do not admit such cliques, suggesting that the Delsarte bound on the clique number can be improved in general. We also prove that generalized Peisert graphs are not isomorphic to Paley graphs or Peisert graphs, confirming a conjecture of Mullin.
{"title":"The subspace structure of maximum cliques in pseudo-Paley graphs from unions of cyclotomic classes","authors":"Shamil Asgarli , Chi Hoi Yip","doi":"10.1016/j.ffa.2024.102492","DOIUrl":"10.1016/j.ffa.2024.102492","url":null,"abstract":"<div><p>Blokhuis showed that all maximum cliques in Paley graphs of square order have a subfield structure. Recently, it has been shown that in Peisert-type graphs, all maximum cliques are affine subspaces, and yet some maximum cliques do not arise from a subfield. In this paper, we investigate the existence of a clique of size <span><math><msqrt><mrow><mi>q</mi></mrow></msqrt></math></span> with a subspace structure in pseudo-Paley graphs of order <em>q</em> from unions of semi-primitive cyclotomic classes. We show that such a clique must have an equal contribution from each cyclotomic class and that most such pseudo-Paley graphs do not admit such cliques, suggesting that the Delsarte bound <span><math><msqrt><mrow><mi>q</mi></mrow></msqrt></math></span> on the clique number can be improved in general. We also prove that generalized Peisert graphs are not isomorphic to Paley graphs or Peisert graphs, confirming a conjecture of Mullin.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102492"},"PeriodicalIF":1.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.ffa.2024.102491
John Bamberg , Jesse Lansdown , Geertrui Van de Voorde
It is known that a Bruen chain of the three-dimensional projective space exists for every odd prime power q at most 37, except for . It was shown by Cardinali et al. (2005) that Bruen chains do not exist for . We develop a model, based on finite fields, which allows us to extend this result to , thereby adding more evidence to the conjecture that Bruen chains do not exist for . Furthermore, we show that Bruen chains can be realised precisely as the -cliques of a two related, yet distinct, undirected simple graphs.
{"title":"On Bruen chains","authors":"John Bamberg , Jesse Lansdown , Geertrui Van de Voorde","doi":"10.1016/j.ffa.2024.102491","DOIUrl":"10.1016/j.ffa.2024.102491","url":null,"abstract":"<div><p>It is known that a Bruen chain of the three-dimensional projective space <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> exists for every odd prime power <em>q</em> at most 37, except for <span><math><mi>q</mi><mo>=</mo><mn>29</mn></math></span>. It was shown by Cardinali et al. (2005) that Bruen chains do not exist for <span><math><mn>41</mn><mo>⩽</mo><mi>q</mi><mo>⩽</mo><mn>49</mn></math></span>. We develop a model, based on finite fields, which allows us to extend this result to <span><math><mn>41</mn><mo>⩽</mo><mi>q</mi><mo>⩽</mo><mn>97</mn></math></span>, thereby adding more evidence to the conjecture that Bruen chains do not exist for <span><math><mi>q</mi><mo>></mo><mn>37</mn></math></span>. Furthermore, we show that Bruen chains can be realised precisely as the <span><math><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>-cliques of a two related, yet distinct, undirected simple graphs.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102491"},"PeriodicalIF":1.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1071579724001308/pdfft?md5=731484f2ebf31e1586fb859e032c078c&pid=1-s2.0-S1071579724001308-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1016/j.ffa.2024.102489
Rong Luo , Bingsheng Shen , Yang Yang , Zhengchun Zhou
A complete complementary code (CCC) consists of M sequence sets with size M. The sum of the auto-correlation functions of each sequence set is an impulse function, and the sum of cross-correlation functions of the different sequence sets is equal to zero. Thanks to their excellent correlation, CCCs received extensive use in engineering. In addition, they are strongly connected to orthogonal matrices. In some application scenarios, additional requirements are made for CCCs, such as recently proposed for concatenative CCC (CCCC) division multiple access (CCC-CDMA) technologies. In fact, CCCCs are a special kind of CCCs which requires that each sequence set in CCC be concatenated to form a zero-correlation-zone (ZCZ) sequence set. However, this requirement is challenging, and the literature is thin since there is only one construction in this context. We propose to go beyond the literature through this contribution to reduce the gap between their interest and our limited knowledge of CCCCs. This paper will employ novel methods for designing CCCCs and precisely derive two constructions of these objects. The first is based on perfect cross Z-complementary pair and Hadamard matrices, and the second relies on extended Boolean functions. Specifically, we highlight that optimal and asymptotic optimal CCCCs could be obtained through the proposed constructions. Besides, we shall present a comparison analysis with former structures in the literature and examples to illustrate our main results.
{"title":"Design of concatenative complete complementary codes for CCC-CDMA via specific sequences and extended Boolean functions","authors":"Rong Luo , Bingsheng Shen , Yang Yang , Zhengchun Zhou","doi":"10.1016/j.ffa.2024.102489","DOIUrl":"10.1016/j.ffa.2024.102489","url":null,"abstract":"<div><p>A complete complementary code (CCC) consists of <em>M</em> sequence sets with size <em>M</em>. The sum of the auto-correlation functions of each sequence set is an impulse function, and the sum of cross-correlation functions of the different sequence sets is equal to zero. Thanks to their excellent correlation, CCCs received extensive use in engineering. In addition, they are strongly connected to orthogonal matrices. In some application scenarios, additional requirements are made for CCCs, such as recently proposed for concatenative CCC (CCCC) division multiple access (CCC-CDMA) technologies. In fact, CCCCs are a special kind of CCCs which requires that each sequence set in CCC be concatenated to form a zero-correlation-zone (ZCZ) sequence set. However, this requirement is challenging, and the literature is thin since there is only one construction in this context. We propose to go beyond the literature through this contribution to reduce the gap between their interest and our limited knowledge of CCCCs. This paper will employ novel methods for designing CCCCs and precisely derive two constructions of these objects. The first is based on perfect cross Z-complementary pair and Hadamard matrices, and the second relies on extended Boolean functions. Specifically, we highlight that optimal and asymptotic optimal CCCCs could be obtained through the proposed constructions. Besides, we shall present a comparison analysis with former structures in the literature and examples to illustrate our main results.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102489"},"PeriodicalIF":1.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The classification of the 2-designs with admitting a flag-transitive automorphism groups with socle is completed by settling the two open cases in [2]. The result is achieved by using conics and hyperovals of .
{"title":"Designs with a simple automorphism group","authors":"Alessandro Montinaro , Yanwei Zhao , Zhilin Zhang , Shenglin Zhou","doi":"10.1016/j.ffa.2024.102488","DOIUrl":"10.1016/j.ffa.2024.102488","url":null,"abstract":"<div><p>The classification of the 2-designs with <span><math><mi>λ</mi><mo>=</mo><mn>2</mn></math></span> admitting a flag-transitive automorphism groups with socle <span><math><mi>P</mi><mi>S</mi><mi>L</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> is completed by settling the two open cases in <span><span>[2]</span></span>. The result is achieved by using conics and hyperovals of <span><math><mi>P</mi><mi>G</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102488"},"PeriodicalIF":1.2,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1016/j.ffa.2024.102472
Paige Bright, Xinyu Fang, Barrett Heritage, Alex Iosevich, Tingsong Jiang, Hans Parshall, Maxwell Sun
In this paper, we generalize [6], [1], [5] and [3] by allowing the distance between two points in a finite field vector space to be defined by a general non-degenerate bilinear form or quadratic form. We prove the same bounds on the sizes of large subsets of for them to contain distance graphs with a given maximal vertex degree, under the more general notion of distance. We also prove the same results for embedding paths, trees and cycles in the general setting.
{"title":"Generalized point configurations in Fqd","authors":"Paige Bright, Xinyu Fang, Barrett Heritage, Alex Iosevich, Tingsong Jiang, Hans Parshall, Maxwell Sun","doi":"10.1016/j.ffa.2024.102472","DOIUrl":"10.1016/j.ffa.2024.102472","url":null,"abstract":"<div><p>In this paper, we generalize <span><span>[6]</span></span>, <span><span>[1]</span></span>, <span><span>[5]</span></span> and <span><span>[3]</span></span> by allowing the <em>distance</em> between two points in a finite field vector space to be defined by a general non-degenerate bilinear form or quadratic form. We prove the same bounds on the sizes of large subsets of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> for them to contain distance graphs with a given maximal vertex degree, under the more general notion of distance. We also prove the same results for embedding paths, trees and cycles in the general setting.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102472"},"PeriodicalIF":1.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1016/j.ffa.2024.102490
Hiroshi Onuki
In 2015, Abatzoglou, Silverberg, Sutherland, and Wong presented a framework for primality proving algorithms for special sequences of integers using an elliptic curve with complex multiplication. They applied their framework to obtain algorithms for elliptic curves with complex multiplication by imaginary quadratic field of class numbers one and two, but, they were not able to obtain primality proving algorithms in cases of higher class number. In this paper, we present a method to apply their framework to imaginary quadratic fields of class number three. In particular, our method provides a more efficient primality proving algorithm for special sequences of integers than the existing algorithms by using an imaginary quadratic field of class number three in which 2 splits. As an application, we give two special sequences of integers derived from and , which are all the imaginary quadratic fields of class number three in which 2 splits. Finally, we give a computational result for the primality of these sequences.
{"title":"Primality proving using elliptic curves with complex multiplication by imaginary quadratic fields of class number three","authors":"Hiroshi Onuki","doi":"10.1016/j.ffa.2024.102490","DOIUrl":"10.1016/j.ffa.2024.102490","url":null,"abstract":"<div><p>In 2015, Abatzoglou, Silverberg, Sutherland, and Wong presented a framework for primality proving algorithms for special sequences of integers using an elliptic curve with complex multiplication. They applied their framework to obtain algorithms for elliptic curves with complex multiplication by imaginary quadratic field of class numbers one and two, but, they were not able to obtain primality proving algorithms in cases of higher class number. In this paper, we present a method to apply their framework to imaginary quadratic fields of class number three. In particular, our method provides a more efficient primality proving algorithm for special sequences of integers than the existing algorithms by using an imaginary quadratic field of class number three in which 2 splits. As an application, we give two special sequences of integers derived from <span><math><mi>Q</mi><mo>(</mo><msqrt><mrow><mo>−</mo><mn>23</mn></mrow></msqrt><mo>)</mo></math></span> and <span><math><mi>Q</mi><mo>(</mo><msqrt><mrow><mo>−</mo><mn>31</mn></mrow></msqrt><mo>)</mo></math></span>, which are all the imaginary quadratic fields of class number three in which 2 splits. Finally, we give a computational result for the primality of these sequences.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"99 ","pages":"Article 102490"},"PeriodicalIF":1.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}