首页 > 最新文献

Finite Fields and Their Applications最新文献

英文 中文
On the construction of nonbinary LCD quadratic residue and double quadratic residue codes
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2025-02-11 DOI: 10.1016/j.ffa.2025.102591
Arezoo Soufi Karbaski , Taher Abualrub , Irfan Siap , Hashem Bordbar
Linear complementary dual (LCD) codes are an important class of error-correcting codes because of their applications in many areas such as their applications in cryptography and secret sharing [1], [4], [7]. In this paper, we construct a large class of nonbinary LCD codes from the class of nonbinary quadratic residue (QR) codes and nonbinary double QR codes. We have also introduced the class of extended quasi quadratic residue (QQR) codes and construct self-orthogonal codes from these codes. As an application of our study, we have presented an optimal ternary self-orthogonal code of parameters [24,6,12]. We have also constructed examples of self-orthogonal codes with parameters [2(q+1),q+12,2d]p and also examples of LCD codes with parameters [2q,q12,2d]p and [2q,q+12,2d]p over Fp for different values of primes p and q.
{"title":"On the construction of nonbinary LCD quadratic residue and double quadratic residue codes","authors":"Arezoo Soufi Karbaski ,&nbsp;Taher Abualrub ,&nbsp;Irfan Siap ,&nbsp;Hashem Bordbar","doi":"10.1016/j.ffa.2025.102591","DOIUrl":"10.1016/j.ffa.2025.102591","url":null,"abstract":"<div><div>Linear complementary dual (LCD) codes are an important class of error-correcting codes because of their applications in many areas such as their applications in cryptography and secret sharing <span><span>[1]</span></span>, <span><span>[4]</span></span>, <span><span>[7]</span></span>. In this paper, we construct a large class of nonbinary LCD codes from the class of nonbinary quadratic residue (QR) codes and nonbinary double QR codes. We have also introduced the class of extended quasi quadratic residue (QQR) codes and construct self-orthogonal codes from these codes. As an application of our study, we have presented an optimal ternary self-orthogonal code of parameters <span><math><mo>[</mo><mn>24</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>12</mn><mo>]</mo></math></span>. We have also constructed examples of self-orthogonal codes with parameters <span><math><msub><mrow><mo>[</mo><mn>2</mn><mrow><mo>(</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>,</mo><mfrac><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mi>d</mi><mo>]</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> and also examples of LCD codes with parameters <span><math><msub><mrow><mo>[</mo><mn>2</mn><mi>q</mi><mo>,</mo><mfrac><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mi>d</mi><mo>]</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>[</mo><mn>2</mn><mi>q</mi><mo>,</mo><mfrac><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>2</mn><mi>d</mi><mo>]</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> for different values of primes <em>p</em> and <em>q</em>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102591"},"PeriodicalIF":1.2,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143386537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homogenization of binary linear codes and their applications
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2025-02-06 DOI: 10.1016/j.ffa.2025.102589
Jong Yoon Hyun , Nilay Kumar Mondal , Yoonjin Lee
We introduce a new technique, called homogenization, for a systematic construction of augmented codes of binary linear codes, using the defining set approach in connection to multi-variable functions. We explicitly determine the parameters and the weight distribution of the homogenized codes when the defining set is either a simplicial complex generated by any finite number of elements, or the difference of two simplicial complexes, each of which is generated by a single maximal element. Using this homogenization technique, we produce several infinite families of optimal codes, self-orthogonal codes, minimal codes, and self-complementary codes. As applications, we obtain some best known quantum error-correcting codes, infinite families of intersecting codes (used in the construction of covering arrays), and we compute the Trellis complexity (required for decoding) for several families of codes as well.
{"title":"Homogenization of binary linear codes and their applications","authors":"Jong Yoon Hyun ,&nbsp;Nilay Kumar Mondal ,&nbsp;Yoonjin Lee","doi":"10.1016/j.ffa.2025.102589","DOIUrl":"10.1016/j.ffa.2025.102589","url":null,"abstract":"<div><div>We introduce a new technique, called <em>homogenization</em>, for a systematic construction of augmented codes of binary linear codes, using the defining set approach in connection to multi-variable functions. We explicitly determine the parameters and the weight distribution of the homogenized codes when the defining set is either a simplicial complex generated by any finite number of elements, or the difference of two simplicial complexes, each of which is generated by a single maximal element. Using this homogenization technique, we produce several infinite families of optimal codes, self-orthogonal codes, minimal codes, and self-complementary codes. As applications, we obtain some best known <em>quantum error-correcting codes</em>, infinite families of <em>intersecting codes</em> (used in the construction of covering arrays), and we compute the <em>Trellis complexity</em> (required for decoding) for several families of codes as well.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102589"},"PeriodicalIF":1.2,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143272335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New classes of optimal p-ary cyclic codes with minimum distance four
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2025-02-05 DOI: 10.1016/j.ffa.2025.102588
Zhengbang Zha , Lei Hu , Gaofei Wu
Let C(1,e,s) denote the p-ary cyclic code with three zeros. In this paper, we present six classes of optimal p-ary cyclic codes C(1,e,s) with parameters [pn1,pn2n2,4] by using the quadratic and quartic characters on finite fields. In addition, we propose a class of optimal quinary cyclic codes by determining the solutions of equations over F5n.
{"title":"New classes of optimal p-ary cyclic codes with minimum distance four","authors":"Zhengbang Zha ,&nbsp;Lei Hu ,&nbsp;Gaofei Wu","doi":"10.1016/j.ffa.2025.102588","DOIUrl":"10.1016/j.ffa.2025.102588","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>C</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>e</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow></msub></math></span> denote the <em>p</em>-ary cyclic code with three zeros. In this paper, we present six classes of optimal <em>p</em>-ary cyclic codes <span><math><msub><mrow><mi>C</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>e</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow></msub></math></span> with parameters <span><math><mo>[</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>]</mo></math></span> by using the quadratic and quartic characters on finite fields. In addition, we propose a class of optimal quinary cyclic codes by determining the solutions of equations over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>5</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102588"},"PeriodicalIF":1.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143272334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On matrix algebras isomorphic to finite fields and planar Dembowski-Ostrom monomials
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2025-02-05 DOI: 10.1016/j.ffa.2025.102590
Christof Beierle , Patrick Felke
<div><div>Let <em>p</em> be a prime and <em>n</em> a positive integer. As the first main result, we present a <em>deterministic</em> algorithm for deciding whether the matrix algebra <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>]</mo></math></span> with <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>∈</mo><mrow><mi>GL</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> is a finite field, performing at most <span><math><mi>O</mi><mo>(</mo><mi>t</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>6</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>p</mi><mo>)</mo><mo>)</mo></math></span> elementary operations in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. In the affirmative case, the algorithm returns a defining element <em>a</em> so that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>]</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><mi>a</mi><mo>]</mo></math></span>.</div><div>We then study an invariant for the extended-affine equivalence of Dembowski-Ostrom (DO) polynomials. More precisely, for a DO polynomial <span><math><mi>g</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, we associate to <em>g</em> a set of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices with coefficients in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, denoted <span><math><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span>, that stays invariant up to matrix similarity when applying extended-affine equivalence transformations to <em>g</em>. In the case where <em>g</em> is a <em>planar</em> DO polynomial, <span><math><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> is the set of quotients <span><math><mi>X</mi><msup><mrow><mi>Y</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> with <span><math><mi>Y</mi><mo>≠</mo><mn>0</mn><mo>,</mo><mi>X</mi></math></span> being elements from the spread set of the corresponding commutative presemifield, and <span><math><mrow><mi>Quot</mi></mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> forms a field of order <span><math><msup><mrow><mi>p</
{"title":"On matrix algebras isomorphic to finite fields and planar Dembowski-Ostrom monomials","authors":"Christof Beierle ,&nbsp;Patrick Felke","doi":"10.1016/j.ffa.2025.102590","DOIUrl":"10.1016/j.ffa.2025.102590","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;em&gt;p&lt;/em&gt; be a prime and &lt;em&gt;n&lt;/em&gt; a positive integer. As the first main result, we present a &lt;em&gt;deterministic&lt;/em&gt; algorithm for deciding whether the matrix algebra &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;GL&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is a finite field, performing at most &lt;span&gt;&lt;math&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;log&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; elementary operations in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. In the affirmative case, the algorithm returns a defining element &lt;em&gt;a&lt;/em&gt; so that &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;.&lt;/div&gt;&lt;div&gt;We then study an invariant for the extended-affine equivalence of Dembowski-Ostrom (DO) polynomials. More precisely, for a DO polynomial &lt;span&gt;&lt;math&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, we associate to &lt;em&gt;g&lt;/em&gt; a set of &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; matrices with coefficients in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, denoted &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Quot&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, that stays invariant up to matrix similarity when applying extended-affine equivalence transformations to &lt;em&gt;g&lt;/em&gt;. In the case where &lt;em&gt;g&lt;/em&gt; is a &lt;em&gt;planar&lt;/em&gt; DO polynomial, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Quot&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is the set of quotients &lt;span&gt;&lt;math&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; being elements from the spread set of the corresponding commutative presemifield, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Quot&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; forms a field of order &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102590"},"PeriodicalIF":1.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143272333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New constructions of abelian non-cyclic orbit codes based on parabolic subgroups and tensor products
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2025-02-05 DOI: 10.1016/j.ffa.2025.102587
Soleyman Askary, Nader Biranvand, Farrokh Shirjian
Orbit codes, as special constant dimension subspace codes, have attracted much attention due to their applications for error correction in random network coding. They arise as orbits of a subspace of Fqn under the action of some subgroup of the finite general linear group GLn(q). The main contribution of this paper is to propose new methods for constructing large non-cyclic orbit codes. First, using the subgroup structure of maximal subgroups of GLn(q), we propose a new construction of an abelian non-cyclic orbit codes of size qk with kn/2. The proposed code is shown to be a partial spread which in many cases is close to the known maximum-size codes. Next, considering a larger framework, we introduce the notion of tensor product operation for subspace codes and explicitly determine the parameters of such product codes. The parameters of the constructions presented in this paper improve the constructions already obtained in [6] and [7].
{"title":"New constructions of abelian non-cyclic orbit codes based on parabolic subgroups and tensor products","authors":"Soleyman Askary,&nbsp;Nader Biranvand,&nbsp;Farrokh Shirjian","doi":"10.1016/j.ffa.2025.102587","DOIUrl":"10.1016/j.ffa.2025.102587","url":null,"abstract":"<div><div>Orbit codes, as special constant dimension subspace codes, have attracted much attention due to their applications for error correction in random network coding. They arise as orbits of a subspace of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> under the action of some subgroup of the finite general linear group <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>. The main contribution of this paper is to propose new methods for constructing large non-cyclic orbit codes. First, using the subgroup structure of maximal subgroups of <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, we propose a new construction of an abelian non-cyclic orbit codes of size <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> with <span><math><mi>k</mi><mo>≤</mo><mi>n</mi><mo>/</mo><mn>2</mn></math></span>. The proposed code is shown to be a partial spread which in many cases is close to the known maximum-size codes. Next, considering a larger framework, we introduce the notion of tensor product operation for subspace codes and explicitly determine the parameters of such product codes. The parameters of the constructions presented in this paper improve the constructions already obtained in <span><span>[6]</span></span> and <span><span>[7]</span></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102587"},"PeriodicalIF":1.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An analogue of Girstmair's formula in function fields
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2025-01-27 DOI: 10.1016/j.ffa.2025.102585
Daisuke Shiomi
Suppose that p is an odd prime and g>1 is a primitive root modulo p. Let M be a number field contained in the p-th cyclotomic field. In 1994, Girstmair found a surprising relation between the relative class number of M and the digits of 1/p in base g. In this paper, we consider an analogue of Girstmair's formula in function fields. Suppose that PFq[T] is monic irreducible and GFq[T] is a primitive root modulo P. Let L be a field extension of Fq(T) which is contained in the P-th cyclotomic function field. Our goal is to give relations between the plus and minus parts of the divisor class number of L and the digits of 1/P in base G.
{"title":"An analogue of Girstmair's formula in function fields","authors":"Daisuke Shiomi","doi":"10.1016/j.ffa.2025.102585","DOIUrl":"10.1016/j.ffa.2025.102585","url":null,"abstract":"<div><div>Suppose that <em>p</em> is an odd prime and <span><math><mi>g</mi><mo>&gt;</mo><mn>1</mn></math></span> is a primitive root modulo <em>p</em>. Let <em>M</em> be a number field contained in the <em>p</em>-th cyclotomic field. In 1994, Girstmair found a surprising relation between the relative class number of <em>M</em> and the digits of <span><math><mn>1</mn><mo>/</mo><mi>p</mi></math></span> in base <em>g</em>. In this paper, we consider an analogue of Girstmair's formula in function fields. Suppose that <span><math><mi>P</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>T</mi><mo>]</mo></math></span> is monic irreducible and <span><math><mi>G</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>T</mi><mo>]</mo></math></span> is a primitive root modulo <em>P</em>. Let <em>L</em> be a field extension of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo></math></span> which is contained in the <em>P</em>-th cyclotomic function field. Our goal is to give relations between the plus and minus parts of the divisor class number of <em>L</em> and the digits of <span><math><mn>1</mn><mo>/</mo><mi>P</mi></math></span> in base <em>G</em>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102585"},"PeriodicalIF":1.2,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fq-primitive points on varieties over finite fields
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2025-01-24 DOI: 10.1016/j.ffa.2025.102582
Soniya Takshak , Giorgos Kapetanakis , Rajendra Kumar Sharma
Let r be a positive divisor of q1 and f(x,y) a rational function of degree sum d over Fq with some restrictions, where the degree sum of a rational function f(x,y)=f1(x,y)/f2(x,y) is the sum of the degrees of f1(x,y) and f2(x,y). In this article, we discuss the existence of triples (α,β,f(α,β)) over Fq, where α,β are primitive and f(α,β) is an r-primitive element of Fq. In particular, this implies the existence of Fq-primitive points on the surfaces of the form zr=f(x,y). As an example, we apply our results on the unit sphere over Fq.
{"title":"Fq-primitive points on varieties over finite fields","authors":"Soniya Takshak ,&nbsp;Giorgos Kapetanakis ,&nbsp;Rajendra Kumar Sharma","doi":"10.1016/j.ffa.2025.102582","DOIUrl":"10.1016/j.ffa.2025.102582","url":null,"abstract":"<div><div>Let <em>r</em> be a positive divisor of <span><math><mi>q</mi><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> a rational function of degree sum <em>d</em> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> with some restrictions, where the degree sum of a rational function <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>/</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> is the sum of the degrees of <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>. In this article, we discuss the existence of triples <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>f</mi><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>)</mo></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, where <span><math><mi>α</mi><mo>,</mo><mi>β</mi></math></span> are primitive and <span><math><mi>f</mi><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span> is an <em>r</em>-primitive element of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. In particular, this implies the existence of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-primitive points on the surfaces of the form <span><math><msup><mrow><mi>z</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>. As an example, we apply our results on the unit sphere over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102582"},"PeriodicalIF":1.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143140000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The distance function on Coxeter-like graphs and self-dual codes
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2025-01-24 DOI: 10.1016/j.ffa.2025.102580
Marko Orel , Draženka Višnjić
<div><div>Let <span><math><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> be the set of all invertible <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> symmetric matrices over the binary field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Let <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the graph with the vertex set <span><math><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> where a pair of matrices <span><math><mo>{</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>}</mo></math></span> form an edge if and only if <span><math><mrow><mi>rank</mi></mrow><mo>(</mo><mi>A</mi><mo>−</mo><mi>B</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. In particular, <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> is the well-known Coxeter graph. The distance function <span><math><mi>d</mi><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> in <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is described for all matrices <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>∈</mo><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. The diameter of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is computed. For odd <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, it is shown that each matrix <span><math><mi>A</mi><mo>∈</mo><msub><mrow><mi>SGL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> such that <span><math><mi>d</mi><mo>(</mo><mi>A</mi><mo>,</mo><mi>I</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>5</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and <span><math><mrow><mi>rank</mi></mrow><mo>(</mo><mi>A</mi><mo>−</mo><mi>I</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> where <em>I</em> is the identity matrix induces a self-dual code in <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span>. Conversely, each self-dual code <em>C</em> induces a family <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> of such matrices <em>A</em>. The families given by distinct self-dual codes are disjoint. The identification <span><math><mi>C</mi><mo>↔</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> provides a graph theoretical description of self-dual codes. A result of Janusz (2007) is reproved and strengthened by showing that the orthogo
{"title":"The distance function on Coxeter-like graphs and self-dual codes","authors":"Marko Orel ,&nbsp;Draženka Višnjić","doi":"10.1016/j.ffa.2025.102580","DOIUrl":"10.1016/j.ffa.2025.102580","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;SGL&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; be the set of all invertible &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; symmetric matrices over the binary field &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. Let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; be the graph with the vertex set &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;SGL&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; where a pair of matrices &lt;span&gt;&lt;math&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; form an edge if and only if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;rank&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;. In particular, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is the well-known Coxeter graph. The distance function &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is described for all matrices &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;SGL&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. The diameter of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is computed. For odd &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, it is shown that each matrix &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;SGL&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;rank&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt; where &lt;em&gt;I&lt;/em&gt; is the identity matrix induces a self-dual code in &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;. Conversely, each self-dual code &lt;em&gt;C&lt;/em&gt; induces a family &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; of such matrices &lt;em&gt;A&lt;/em&gt;. The families given by distinct self-dual codes are disjoint. The identification &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;↔&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; provides a graph theoretical description of self-dual codes. A result of Janusz (2007) is reproved and strengthened by showing that the orthogo","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102580"},"PeriodicalIF":1.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143139998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MacWilliams duality for rank metric codes over finite chain rings
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2025-01-24 DOI: 10.1016/j.ffa.2025.102584
Iván Blanco-Chacón , Alberto F. Boix , Marcus Greferath , Erik Hieta–Aho
We extend Ravagnani's MacWilliams duality theory to the setting of rank metric codes over finite chain rings, relating the sequences of q-binomial moments of a rank metric code over this class of rings with those of its dual.
{"title":"MacWilliams duality for rank metric codes over finite chain rings","authors":"Iván Blanco-Chacón ,&nbsp;Alberto F. Boix ,&nbsp;Marcus Greferath ,&nbsp;Erik Hieta–Aho","doi":"10.1016/j.ffa.2025.102584","DOIUrl":"10.1016/j.ffa.2025.102584","url":null,"abstract":"<div><div>We extend Ravagnani's MacWilliams duality theory to the setting of rank metric codes over finite chain rings, relating the sequences of <em>q</em>-binomial moments of a rank metric code over this class of rings with those of its dual.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102584"},"PeriodicalIF":1.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143139995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three new classes of spreading sequence sets with low correlation and PAPR
IF 1.2 3区 数学 Q1 MATHEMATICS Pub Date : 2025-01-22 DOI: 10.1016/j.ffa.2025.102575
Can Xiang , Chunming Tang , Wenwei Qiu
Spreading sequences have recently received a lot of attention, as some of these sequences are used to design spreading sequence sets with low correlation and low peak-to-average power ratio (PAPR for short) and which have very important applications in communication systems. It was recently reported that a small amount of work on constructing binary spreading sequence sets with low correlation and low PAPR has been done. However, till now only one work on constructing p-ary spreading sequence sets with low correlation and low PAPR for odd prime p has been done by using special functions in Liu et al. (2023) [11], and it is, in general, hard to design spreading sequence sets with low correlation and low PAPR. In this paper, we investigate this idea further by using some quadratic functions over finite fields, thereby obtain three classes of p-ary spreading sequence sets, and explicitly determine their parameters. The parameters of these p-ary spreading sequence sets are new and flexible. Furthermore, the results of this paper show that these obtained p-ary spreading sequence sets have low correlation and PAPR.
{"title":"Three new classes of spreading sequence sets with low correlation and PAPR","authors":"Can Xiang ,&nbsp;Chunming Tang ,&nbsp;Wenwei Qiu","doi":"10.1016/j.ffa.2025.102575","DOIUrl":"10.1016/j.ffa.2025.102575","url":null,"abstract":"<div><div>Spreading sequences have recently received a lot of attention, as some of these sequences are used to design spreading sequence sets with low correlation and low peak-to-average power ratio (PAPR for short) and which have very important applications in communication systems. It was recently reported that a small amount of work on constructing binary spreading sequence sets with low correlation and low PAPR has been done. However, till now only one work on constructing <em>p</em>-ary spreading sequence sets with low correlation and low PAPR for odd prime <em>p</em> has been done by using special functions in Liu et al. (2023) <span><span>[11]</span></span>, and it is, in general, hard to design spreading sequence sets with low correlation and low PAPR. In this paper, we investigate this idea further by using some quadratic functions over finite fields, thereby obtain three classes of <em>p</em>-ary spreading sequence sets, and explicitly determine their parameters. The parameters of these <em>p</em>-ary spreading sequence sets are new and flexible. Furthermore, the results of this paper show that these obtained <em>p</em>-ary spreading sequence sets have low correlation and PAPR.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102575"},"PeriodicalIF":1.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143139994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Finite Fields and Their Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1