Pub Date : 2024-07-18DOI: 10.1038/s12276-024-01287-y
Thomas Nicholson, Amritpal Dhaliwal, Jonathan I. Quinlan, Sophie L. Allen, Felicity R. Williams, Jon Hazeldine, Kirsty C. McGee, Jack Sullivan, Leigh Breen, Ahmed M. Elsharkawy, Matthew J. Armstrong, Simon W. Jones, Carolyn A. Greig, Janet M. Lord
Patients with chronic liver disease (CLD) often present with significant frailty, sarcopenia, and impaired immune function. However, the mechanisms driving the development of these age-related phenotypes are not fully understood. To determine whether accelerated biological aging may play a role in CLD, epigenetic, transcriptomic, and phenotypic assessments were performed on the skeletal muscle tissue and immune cells of CLD patients and age-matched healthy controls. Accelerated biological aging of the skeletal muscle tissue of CLD patients was detected, as evidenced by an increase in epigenetic age compared with chronological age (mean +2.2 ± 4.8 years compared with healthy controls at −3.0 ± 3.2 years, p = 0.0001). Considering disease etiology, age acceleration was significantly greater in both the alcohol-related (ArLD) (p = 0.01) and nonalcoholic fatty liver disease (NAFLD) (p = 0.0026) subgroups than in the healthy control subgroup, with no age acceleration observed in the immune-mediated subgroup or healthy control subgroup (p = 0.3). The skeletal muscle transcriptome was also enriched for genes associated with cellular senescence. Similarly, blood cell epigenetic age was significantly greater than that in control individuals, as calculated using the PhenoAge (p < 0.0001), DunedinPACE (p < 0.0001), or Hannum (p = 0.01) epigenetic clocks, with no difference using the Horvath clock. Analysis of the IMM-Age score indicated a prematurely aged immune phenotype in CLD patients that was 2-fold greater than that observed in age-matched healthy controls (p < 0.0001). These findings suggested that accelerated cellular aging may contribute to a phenotype associated with advanced age in CLD patients. Therefore, therapeutic interventions to reduce biological aging in CLD patients may improve health outcomes. Chronic liver disease, a long-term condition damaging the liver, is causing more deaths worldwide. Patients often develop immune dysfunction and sarcopenia. This study aimed to see if CLD patients show signs of fast biological ageing, particularly in muscles and the immune system. The research compared CLD patients to healthy people, looking at muscle samples, blood samples, and immune cells to check for ageing signs. Results showed that CLD patients have faster biological ageing in muscles and immune cells, with increased epigenetic age and more senescence-associated genes. This suggests that CLD speeds up the ageing process, which could explain the common occurrence of sarcopenia and immune dysfunction in these patients. Future implications include the possibility of developing treatments targeting the ageing process in CLD patients, offering hope for better health and quality of life This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
{"title":"Accelerated aging of skeletal muscle and the immune system in patients with chronic liver disease","authors":"Thomas Nicholson, Amritpal Dhaliwal, Jonathan I. Quinlan, Sophie L. Allen, Felicity R. Williams, Jon Hazeldine, Kirsty C. McGee, Jack Sullivan, Leigh Breen, Ahmed M. Elsharkawy, Matthew J. Armstrong, Simon W. Jones, Carolyn A. Greig, Janet M. Lord","doi":"10.1038/s12276-024-01287-y","DOIUrl":"10.1038/s12276-024-01287-y","url":null,"abstract":"Patients with chronic liver disease (CLD) often present with significant frailty, sarcopenia, and impaired immune function. However, the mechanisms driving the development of these age-related phenotypes are not fully understood. To determine whether accelerated biological aging may play a role in CLD, epigenetic, transcriptomic, and phenotypic assessments were performed on the skeletal muscle tissue and immune cells of CLD patients and age-matched healthy controls. Accelerated biological aging of the skeletal muscle tissue of CLD patients was detected, as evidenced by an increase in epigenetic age compared with chronological age (mean +2.2 ± 4.8 years compared with healthy controls at −3.0 ± 3.2 years, p = 0.0001). Considering disease etiology, age acceleration was significantly greater in both the alcohol-related (ArLD) (p = 0.01) and nonalcoholic fatty liver disease (NAFLD) (p = 0.0026) subgroups than in the healthy control subgroup, with no age acceleration observed in the immune-mediated subgroup or healthy control subgroup (p = 0.3). The skeletal muscle transcriptome was also enriched for genes associated with cellular senescence. Similarly, blood cell epigenetic age was significantly greater than that in control individuals, as calculated using the PhenoAge (p < 0.0001), DunedinPACE (p < 0.0001), or Hannum (p = 0.01) epigenetic clocks, with no difference using the Horvath clock. Analysis of the IMM-Age score indicated a prematurely aged immune phenotype in CLD patients that was 2-fold greater than that observed in age-matched healthy controls (p < 0.0001). These findings suggested that accelerated cellular aging may contribute to a phenotype associated with advanced age in CLD patients. Therefore, therapeutic interventions to reduce biological aging in CLD patients may improve health outcomes. Chronic liver disease, a long-term condition damaging the liver, is causing more deaths worldwide. Patients often develop immune dysfunction and sarcopenia. This study aimed to see if CLD patients show signs of fast biological ageing, particularly in muscles and the immune system. The research compared CLD patients to healthy people, looking at muscle samples, blood samples, and immune cells to check for ageing signs. Results showed that CLD patients have faster biological ageing in muscles and immune cells, with increased epigenetic age and more senescence-associated genes. This suggests that CLD speeds up the ageing process, which could explain the common occurrence of sarcopenia and immune dysfunction in these patients. Future implications include the possibility of developing treatments targeting the ageing process in CLD patients, offering hope for better health and quality of life This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 7","pages":"1667-1681"},"PeriodicalIF":9.5,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297261/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1038/s12276-024-01263-6
Byeong Hun Choi, Seunghoon Hyun, Seung-Hoi Koo
It has long been postulated that dietary restriction is beneficial for ensuring longevity and extending the health span of mammals, including humans. In particular, a reduction in protein consumption has been shown to be specifically linked to the beneficial effect of dietary restriction on metabolic disorders, presumably by reducing the activity of the mechanistic target of rapamycin complex (mTORC) 1 and the reciprocal activation of AMP-activated protein kinase (AMPK) and sirtuin pathways. Although it is widely used as a dietary supplement to delay the aging process in humans, recent evidence suggests that branched-chain amino acids (BCAAs) might be a major cause of the deteriorating effect of a protein diet on aging and related disorders. In this review, we delineate the regulation of metabolic pathways for BCAAs at the tissue-specific level and summarize recent findings regarding the role of BCAAs in the control of metabolic health and disease in mammals. This review article illustrates the function of branched-chain amino acids (BCAAs - essential nutrients we get from food) and how they’re processed in our bodies, in relation to health and illness. BCAAs are connected to aging processes and metabolic health - the body’s way of converting food into energy. Recent studies found that reducing BCAA intake can improve the health and lifespan of rodents. Similar studies were also conducted by using different animal models, like yeast, flies, rodents, and primates. It also emphasized the potential influence of BCAAs on human disease and aging metabolic processes. The review article concluded that BCAAs and their processing are vital for metabolic health and lifespan, and more research is needed to understand their effect on human health. Further studies on BCAAs could be important for creating diet plans and treatments for metabolic issues and aging-related diseases. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
{"title":"The role of BCAA metabolism in metabolic health and disease","authors":"Byeong Hun Choi, Seunghoon Hyun, Seung-Hoi Koo","doi":"10.1038/s12276-024-01263-6","DOIUrl":"10.1038/s12276-024-01263-6","url":null,"abstract":"It has long been postulated that dietary restriction is beneficial for ensuring longevity and extending the health span of mammals, including humans. In particular, a reduction in protein consumption has been shown to be specifically linked to the beneficial effect of dietary restriction on metabolic disorders, presumably by reducing the activity of the mechanistic target of rapamycin complex (mTORC) 1 and the reciprocal activation of AMP-activated protein kinase (AMPK) and sirtuin pathways. Although it is widely used as a dietary supplement to delay the aging process in humans, recent evidence suggests that branched-chain amino acids (BCAAs) might be a major cause of the deteriorating effect of a protein diet on aging and related disorders. In this review, we delineate the regulation of metabolic pathways for BCAAs at the tissue-specific level and summarize recent findings regarding the role of BCAAs in the control of metabolic health and disease in mammals. This review article illustrates the function of branched-chain amino acids (BCAAs - essential nutrients we get from food) and how they’re processed in our bodies, in relation to health and illness. BCAAs are connected to aging processes and metabolic health - the body’s way of converting food into energy. Recent studies found that reducing BCAA intake can improve the health and lifespan of rodents. Similar studies were also conducted by using different animal models, like yeast, flies, rodents, and primates. It also emphasized the potential influence of BCAAs on human disease and aging metabolic processes. The review article concluded that BCAAs and their processing are vital for metabolic health and lifespan, and more research is needed to understand their effect on human health. Further studies on BCAAs could be important for creating diet plans and treatments for metabolic issues and aging-related diseases. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 7","pages":"1552-1559"},"PeriodicalIF":9.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297153/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1038/s12276-024-01269-0
Hao Zeng, Xue Yang, Kai Liao, Xin Zuo, Lihong Liang, Dalian He, Rong Ju, Bowen Wang, Jin Yuan
Circadian disruption, as a result of shiftwork, jet lag, and other lifestyle factors, is a common public health problem associated with a wide range of diseases, such as metabolic disorders, neurodegenerative diseases, and cancer. In the present study, we established a chronic jet lag model using a time shift method every 3 days and assessed the effects of circadian disruption on ocular surface homeostasis. Our results indicated that jet lag increased corneal epithelial defects, cell apoptosis, and proinflammatory cytokine expression. However, the volume of tear secretion and the number of conjunctival goblet cells did not significantly change after 30 days of jet lag. Moreover, further analysis of the pathogenic mechanism using RNA sequencing revealed that jet lag caused corneal transmembrane mucin deficiency, specifically MUC4 deficiency. The crucial role of MUC4 in pathogenic progression was demonstrated by the protection of corneal epithelial cells and the inhibition of inflammatory activation following MUC4 replenishment. Unexpectedly, genetic ablation of BMAL1 in mice caused MUC4 deficiency and dry eye disease. The underlying mechanism was revealed in cultured human corneal epithelial cells in vitro, where BMAL1 silencing reduced MUC4 expression, and BMAL1 overexpression increased MUC4 expression. Furthermore, melatonin, a circadian rhythm restorer, had a therapeutic effect on jet lag-induced dry eye by restoring the expression of BMAL1, which upregulated MUC4. Thus, we generated a novel dry eye mouse model induced by circadian disruption, elucidated the underlying mechanism, and identified a potential clinical treatment. Dry eye disease, a long-term issue causing discomfort and vision problems, impacts millions globally. In this research, scientists studied how disturbances in our internal clock contribute to DED. Researchers made the mice experience an 8-hour shift in their day-night cycle every 3 days, imitating chronic jet lag. The findings showed that chronic jet lag resulted in a significant decrease in MUC4 expression in the cornea, leading to DED symptoms. Supplementing with MUC4 or treating the mice with melatonin, eased these symptoms. This indicates that disruptions to our internal clock can directly affect eye health by impacting key protective proteins in the eye. Researchers conclude that maintaining a healthy internal clock is vital for eye health and that treatments targeting internal clock disruptions could help DED patients. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
{"title":"Circadian disruption reduces MUC4 expression via the clock molecule BMAL1 during dry eye development","authors":"Hao Zeng, Xue Yang, Kai Liao, Xin Zuo, Lihong Liang, Dalian He, Rong Ju, Bowen Wang, Jin Yuan","doi":"10.1038/s12276-024-01269-0","DOIUrl":"10.1038/s12276-024-01269-0","url":null,"abstract":"Circadian disruption, as a result of shiftwork, jet lag, and other lifestyle factors, is a common public health problem associated with a wide range of diseases, such as metabolic disorders, neurodegenerative diseases, and cancer. In the present study, we established a chronic jet lag model using a time shift method every 3 days and assessed the effects of circadian disruption on ocular surface homeostasis. Our results indicated that jet lag increased corneal epithelial defects, cell apoptosis, and proinflammatory cytokine expression. However, the volume of tear secretion and the number of conjunctival goblet cells did not significantly change after 30 days of jet lag. Moreover, further analysis of the pathogenic mechanism using RNA sequencing revealed that jet lag caused corneal transmembrane mucin deficiency, specifically MUC4 deficiency. The crucial role of MUC4 in pathogenic progression was demonstrated by the protection of corneal epithelial cells and the inhibition of inflammatory activation following MUC4 replenishment. Unexpectedly, genetic ablation of BMAL1 in mice caused MUC4 deficiency and dry eye disease. The underlying mechanism was revealed in cultured human corneal epithelial cells in vitro, where BMAL1 silencing reduced MUC4 expression, and BMAL1 overexpression increased MUC4 expression. Furthermore, melatonin, a circadian rhythm restorer, had a therapeutic effect on jet lag-induced dry eye by restoring the expression of BMAL1, which upregulated MUC4. Thus, we generated a novel dry eye mouse model induced by circadian disruption, elucidated the underlying mechanism, and identified a potential clinical treatment. Dry eye disease, a long-term issue causing discomfort and vision problems, impacts millions globally. In this research, scientists studied how disturbances in our internal clock contribute to DED. Researchers made the mice experience an 8-hour shift in their day-night cycle every 3 days, imitating chronic jet lag. The findings showed that chronic jet lag resulted in a significant decrease in MUC4 expression in the cornea, leading to DED symptoms. Supplementing with MUC4 or treating the mice with melatonin, eased these symptoms. This indicates that disruptions to our internal clock can directly affect eye health by impacting key protective proteins in the eye. Researchers conclude that maintaining a healthy internal clock is vital for eye health and that treatments targeting internal clock disruptions could help DED patients. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 7","pages":"1655-1666"},"PeriodicalIF":9.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297157/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Over the past decade, the emergence of patient-derived tumor organoids (PDTOs) has broadened the repertoire of preclinical models and progressively revolutionized three-dimensional cell culture in oncology. PDTO can be grown from patient tumor samples with high efficiency and faithfully recapitulates the histological and molecular characteristics of the original tumor. Therefore, PDTOs can serve as invaluable tools in oncology research, and their translation to clinical practice is exciting for the future of precision medicine in oncology. In this review, we provide an overview of methods for establishing PDTOs and their various applications in cancer research, starting with basic research and ending with the identification of new targets and preclinical validation of new anticancer compounds and precision medicine. Finally, we highlight the challenges associated with the clinical implementation of PDTO, such as its representativeness, success rate, assay speed, and lack of a tumor microenvironment. Technological developments and autologous cocultures of PDTOs and stromal cells are currently ongoing to meet these challenges and optimally exploit the full potential of these models. The use of PDTOs as standard tools in clinical oncology could lead to a new era of precision oncology in the coming decade. The shift from 2D to 3D cell cultures has greatly improved cancer research, providing a more realistic model of tumors. Patient-Derived Tumor Organoids (PDTOs) have become a key tool in cancer research, allowing scientists to grow efficiently tumor cells from patient samples in a 3D environment that closely mirrors the original tumor. PDTOs are a major step forward in cancer research, bridging the gap between traditional cell cultures and clinical realities, with the potential for successful clinical applications despite some challenges that could be overcome by technological developments. Thus, they offer a promising platform for understanding cancer, testing drug responses, and developing personalized treatments, with the potential to greatly impact future patient care. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
{"title":"Patient-derived tumor organoids: a new avenue for preclinical research and precision medicine in oncology","authors":"Lucie Thorel, Marion Perréard, Romane Florent, Jordane Divoux, Sophia Coffy, Audrey Vincent, Cédric Gaggioli, Géraldine Guasch, Xavier Gidrol, Louis-Bastien Weiswald, Laurent Poulain","doi":"10.1038/s12276-024-01272-5","DOIUrl":"10.1038/s12276-024-01272-5","url":null,"abstract":"Over the past decade, the emergence of patient-derived tumor organoids (PDTOs) has broadened the repertoire of preclinical models and progressively revolutionized three-dimensional cell culture in oncology. PDTO can be grown from patient tumor samples with high efficiency and faithfully recapitulates the histological and molecular characteristics of the original tumor. Therefore, PDTOs can serve as invaluable tools in oncology research, and their translation to clinical practice is exciting for the future of precision medicine in oncology. In this review, we provide an overview of methods for establishing PDTOs and their various applications in cancer research, starting with basic research and ending with the identification of new targets and preclinical validation of new anticancer compounds and precision medicine. Finally, we highlight the challenges associated with the clinical implementation of PDTO, such as its representativeness, success rate, assay speed, and lack of a tumor microenvironment. Technological developments and autologous cocultures of PDTOs and stromal cells are currently ongoing to meet these challenges and optimally exploit the full potential of these models. The use of PDTOs as standard tools in clinical oncology could lead to a new era of precision oncology in the coming decade. The shift from 2D to 3D cell cultures has greatly improved cancer research, providing a more realistic model of tumors. Patient-Derived Tumor Organoids (PDTOs) have become a key tool in cancer research, allowing scientists to grow efficiently tumor cells from patient samples in a 3D environment that closely mirrors the original tumor. PDTOs are a major step forward in cancer research, bridging the gap between traditional cell cultures and clinical realities, with the potential for successful clinical applications despite some challenges that could be overcome by technological developments. Thus, they offer a promising platform for understanding cancer, testing drug responses, and developing personalized treatments, with the potential to greatly impact future patient care. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 7","pages":"1531-1551"},"PeriodicalIF":9.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297165/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141472203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1038/s12276-024-01271-6
Seo Yeon Jin, Jung Min Ha, Hye Jin Kum, Ji Soo Ma, Hong Koo Ha, Sang Heon Song, Yong Ryoul Yang, Ho Lee, Yoon Soo Bae, Masahiro Yamamoto, Pann-Ghill Suh, Sun Sik Bae
Angiotensin II (AngII) induces the contraction and proliferation of vascular smooth muscle cells (VSMCs). AngII activates phospholipase C-β (PLC-β), thereby inducing Ca2+ mobilization as well as the production of reactive oxygen species (ROS). Since contraction is a unique property of contractile VSMCs, signaling cascades related to the proliferation of VSMCs may differ. However, the specific molecular mechanism that controls the contraction or proliferation of VSMCs remains unclear. AngII-induced ROS production, migration, and proliferation were suppressed by inhibiting PLC-β3, inositol trisphosphate (IP3) receptor, and NOX or by silencing PLC-β3 or NOX1 but not by NOX4. However, pharmacological inhibition or silencing of PLC-β3 or NOX did not affect AngII-induced VSMC contraction. Furthermore, the AngII-dependent constriction of mesenteric arteries isolated from PLC-β3∆SMC, NOX1−/−, NOX4−/− and normal control mice was similar. AngII-induced VSMC contraction and mesenteric artery constriction were blocked by inhibiting the L-type calcium channel Rho-associated kinase 2 (ROCK2) or myosin light chain kinase (MLCK). The activation of ROCK2 and MLCK was significantly induced in PLC-β3∆SMC mice, whereas the depletion of Ca2+ in the extracellular medium suppressed the AngII-induced activation of ROCK2, MLCK, and vasoconstriction. AngII-induced hypertension was significantly induced in NOX1−/− and PLC-β3∆SMC mice, whereas LCCA ligation-induced neointima formation was significantly suppressed in NOX1−/− and PLC-β3∆SMC mice. These results suggest that PLC-β3 is essential for vascular hyperplasia through NOX1-mediated ROS production but is nonessential for vascular constriction or blood pressure regulation. Angiotensin II is important in heart health. It makes blood vessels tighten and grow. This study looked at how AngII affects the creation of reactive oxygen species (ROS, molecules that change cell function) in vascular smooth muscle cells (VSMCs, cells in blood vessel walls). The researchers tested how stopping certain cell signals changes ROS creation and cell behaviors like growth and movement. They found that a specific protein, PLC-β3, and an enzyme, NOX1, are key in this process. Stopping these molecules could lower ROS levels and change cell growth and movement, important for blood vessel health. Interestingly, these molecules didn’t affect blood vessel tightening, also controlled by AngII. This study could help develop new treatments for blood vessel diseases, potentially helping manage conditions like high blood pressure and heart disease. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
{"title":"Phospholipase C-β3 is dispensable for vascular constriction but indispensable for vascular hyperplasia","authors":"Seo Yeon Jin, Jung Min Ha, Hye Jin Kum, Ji Soo Ma, Hong Koo Ha, Sang Heon Song, Yong Ryoul Yang, Ho Lee, Yoon Soo Bae, Masahiro Yamamoto, Pann-Ghill Suh, Sun Sik Bae","doi":"10.1038/s12276-024-01271-6","DOIUrl":"10.1038/s12276-024-01271-6","url":null,"abstract":"Angiotensin II (AngII) induces the contraction and proliferation of vascular smooth muscle cells (VSMCs). AngII activates phospholipase C-β (PLC-β), thereby inducing Ca2+ mobilization as well as the production of reactive oxygen species (ROS). Since contraction is a unique property of contractile VSMCs, signaling cascades related to the proliferation of VSMCs may differ. However, the specific molecular mechanism that controls the contraction or proliferation of VSMCs remains unclear. AngII-induced ROS production, migration, and proliferation were suppressed by inhibiting PLC-β3, inositol trisphosphate (IP3) receptor, and NOX or by silencing PLC-β3 or NOX1 but not by NOX4. However, pharmacological inhibition or silencing of PLC-β3 or NOX did not affect AngII-induced VSMC contraction. Furthermore, the AngII-dependent constriction of mesenteric arteries isolated from PLC-β3∆SMC, NOX1−/−, NOX4−/− and normal control mice was similar. AngII-induced VSMC contraction and mesenteric artery constriction were blocked by inhibiting the L-type calcium channel Rho-associated kinase 2 (ROCK2) or myosin light chain kinase (MLCK). The activation of ROCK2 and MLCK was significantly induced in PLC-β3∆SMC mice, whereas the depletion of Ca2+ in the extracellular medium suppressed the AngII-induced activation of ROCK2, MLCK, and vasoconstriction. AngII-induced hypertension was significantly induced in NOX1−/− and PLC-β3∆SMC mice, whereas LCCA ligation-induced neointima formation was significantly suppressed in NOX1−/− and PLC-β3∆SMC mice. These results suggest that PLC-β3 is essential for vascular hyperplasia through NOX1-mediated ROS production but is nonessential for vascular constriction or blood pressure regulation. Angiotensin II is important in heart health. It makes blood vessels tighten and grow. This study looked at how AngII affects the creation of reactive oxygen species (ROS, molecules that change cell function) in vascular smooth muscle cells (VSMCs, cells in blood vessel walls). The researchers tested how stopping certain cell signals changes ROS creation and cell behaviors like growth and movement. They found that a specific protein, PLC-β3, and an enzyme, NOX1, are key in this process. Stopping these molecules could lower ROS levels and change cell growth and movement, important for blood vessel health. Interestingly, these molecules didn’t affect blood vessel tightening, also controlled by AngII. This study could help develop new treatments for blood vessel diseases, potentially helping manage conditions like high blood pressure and heart disease. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 7","pages":"1620-1630"},"PeriodicalIF":9.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141472205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1038/s12276-024-01257-4
Minglong Qiu, Leilei Chang, Guoqing Tang, Wenkai Ye, Yiming Xu, Nijiati Tulufu, Zhou Dan, Jin Qi, Lianfu Deng, Changwei Li
The hypoxia-inducible factor-1α (HIF-1α) pathway coordinates skeletal bone homeostasis and endocrine functions. Activation of the HIF-1α pathway increases glucose uptake by osteoblasts, which reduces blood glucose levels. However, it is unclear whether activating the HIF-1α pathway in osteoblasts can help normalize glucose metabolism under diabetic conditions through its endocrine function. In addition to increasing bone mass and reducing blood glucose levels, activating the HIF-1α pathway by specifically knocking out Von Hippel‒Lindau (Vhl) in osteoblasts partially alleviated the symptoms of streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM), including increased glucose clearance in the diabetic state, protection of pancreatic β cell from STZ-induced apoptosis, promotion of pancreatic β cell proliferation, and stimulation of insulin secretion. Further screening of bone-derived factors revealed that islet regeneration-derived protein III gamma (RegIIIγ) is an osteoblast-derived hypoxia-sensing factor critical for protection against STZ-induced T1DM. In addition, we found that iminodiacetic acid deferoxamine (SF-DFO), a compound that mimics hypoxia and targets bone tissue, can alleviate symptoms of STZ-induced T1DM by activating the HIF-1α-RegIIIγ pathway in the skeleton. These data suggest that the osteoblastic HIF-1α-RegIIIγ pathway is a potential target for treating T1DM. The skeleton isn’t just for support, it also helps control body functions. This research looked at how a specific process in bone-forming cells, called the hypoxia-inducible factor-1 alpha (HIF-1α) pathway, affects sugar breakdown and diabetes. The scientists discovered that triggering this process in these cells can help manage sugar levels in diabetes through a protein named RegIIIγ. They also found that a substance named SF-DFO, which imitates low oxygen conditions and focuses on bone tissue, can somewhat ease type 1 diabetes symptoms by triggering the HIF-1α-RegIIIγ process in the skeleton. This implies that this specific process in bone-forming cells could be a possible treatment for type 1 diabetes. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
{"title":"Activation of the osteoblastic HIF-1α pathway partially alleviates the symptoms of STZ-induced type 1 diabetes mellitus via RegIIIγ","authors":"Minglong Qiu, Leilei Chang, Guoqing Tang, Wenkai Ye, Yiming Xu, Nijiati Tulufu, Zhou Dan, Jin Qi, Lianfu Deng, Changwei Li","doi":"10.1038/s12276-024-01257-4","DOIUrl":"10.1038/s12276-024-01257-4","url":null,"abstract":"The hypoxia-inducible factor-1α (HIF-1α) pathway coordinates skeletal bone homeostasis and endocrine functions. Activation of the HIF-1α pathway increases glucose uptake by osteoblasts, which reduces blood glucose levels. However, it is unclear whether activating the HIF-1α pathway in osteoblasts can help normalize glucose metabolism under diabetic conditions through its endocrine function. In addition to increasing bone mass and reducing blood glucose levels, activating the HIF-1α pathway by specifically knocking out Von Hippel‒Lindau (Vhl) in osteoblasts partially alleviated the symptoms of streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM), including increased glucose clearance in the diabetic state, protection of pancreatic β cell from STZ-induced apoptosis, promotion of pancreatic β cell proliferation, and stimulation of insulin secretion. Further screening of bone-derived factors revealed that islet regeneration-derived protein III gamma (RegIIIγ) is an osteoblast-derived hypoxia-sensing factor critical for protection against STZ-induced T1DM. In addition, we found that iminodiacetic acid deferoxamine (SF-DFO), a compound that mimics hypoxia and targets bone tissue, can alleviate symptoms of STZ-induced T1DM by activating the HIF-1α-RegIIIγ pathway in the skeleton. These data suggest that the osteoblastic HIF-1α-RegIIIγ pathway is a potential target for treating T1DM. The skeleton isn’t just for support, it also helps control body functions. This research looked at how a specific process in bone-forming cells, called the hypoxia-inducible factor-1 alpha (HIF-1α) pathway, affects sugar breakdown and diabetes. The scientists discovered that triggering this process in these cells can help manage sugar levels in diabetes through a protein named RegIIIγ. They also found that a substance named SF-DFO, which imitates low oxygen conditions and focuses on bone tissue, can somewhat ease type 1 diabetes symptoms by triggering the HIF-1α-RegIIIγ process in the skeleton. This implies that this specific process in bone-forming cells could be a possible treatment for type 1 diabetes. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 7","pages":"1574-1590"},"PeriodicalIF":9.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141472196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1038/s12276-024-01258-3
Se-Ra Park, Myung Geun Kook, Soo-Rim Kim, Choon-Mi Lee, Jin Woo Lee, Jung-Kyu Park, Chan Hum Park, Byung-Chul Oh, YunJae Jung, In-Sun Hong
The reciprocal crosstalk between testicular Sertoli and Leydig cells plays a vital role in supporting germ cell development and maintaining testicular characteristics and spermatogenesis. Conventional 2D and the recent 3D assay systems fail to accurately replicate the dynamic interactions between these essential endocrine cells. Furthermore, most in vitro testicular tissue models lack the ability to capture the complex multicellular nature of the testis. To address these limitations, we developed a 3D multicellular testis-on-a-chip platform that effectively demonstrates the reciprocal crosstalk between Sertoli cells and the adjacent Leydig cells while incorporating various human testicular tissue constituent cells and various natural polymers infused with blood coagulation factors. Additionally, we identified SERPINB2 as a biomarker of male reproductive toxicity that is activated in both Sertoli and Leydig cells upon exposure to various toxicants. Leveraging this finding, we designed a fluorescent reporter-conjugated toxic biomarker detection system that enables both an intuitive and quantitative assessment of material toxicity by measuring the converted fluorescence intensity. By integrating this fluorescent reporter system into the Sertoli and Leydig cells within our 3D multicellular chip platform, we successfully developed a testis-on-chip model that can be utilized to evaluate the male reproductive toxicity of potential drug candidates. This innovative approach holds promise for advancing toxicity screening and reproductive research. Spermatogenesis, or sperm creation, happens in the testis and involves various cells, including Sertoli and Leydig cells. However, traditional single-cell-based 2D assay models (tests that measure the presence of a substance) don’t accurately show the complex interactions between these cells. To solve this, scientists created a ‘human testis-on-a-chip’ platform that imitates the complex cell interactions and hormone communication of seminiferous tubules (small tubes) in the testis. The chip was made using polydimethylsiloxane (a type of silicone) and included multiple testicular tissue cells. The scientists found that the chip could keep the cells alive and active for up to 28 days. Also, the chip was able to produce hormones and respond to hormonal stimulation. This study provides a useful tool for studying male reproductive biology and testing potential drugs. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
{"title":"Development of a novel testis-on-a-chip that demonstrates reciprocal crosstalk between Sertoli and Leydig cells in testicular tissue","authors":"Se-Ra Park, Myung Geun Kook, Soo-Rim Kim, Choon-Mi Lee, Jin Woo Lee, Jung-Kyu Park, Chan Hum Park, Byung-Chul Oh, YunJae Jung, In-Sun Hong","doi":"10.1038/s12276-024-01258-3","DOIUrl":"10.1038/s12276-024-01258-3","url":null,"abstract":"The reciprocal crosstalk between testicular Sertoli and Leydig cells plays a vital role in supporting germ cell development and maintaining testicular characteristics and spermatogenesis. Conventional 2D and the recent 3D assay systems fail to accurately replicate the dynamic interactions between these essential endocrine cells. Furthermore, most in vitro testicular tissue models lack the ability to capture the complex multicellular nature of the testis. To address these limitations, we developed a 3D multicellular testis-on-a-chip platform that effectively demonstrates the reciprocal crosstalk between Sertoli cells and the adjacent Leydig cells while incorporating various human testicular tissue constituent cells and various natural polymers infused with blood coagulation factors. Additionally, we identified SERPINB2 as a biomarker of male reproductive toxicity that is activated in both Sertoli and Leydig cells upon exposure to various toxicants. Leveraging this finding, we designed a fluorescent reporter-conjugated toxic biomarker detection system that enables both an intuitive and quantitative assessment of material toxicity by measuring the converted fluorescence intensity. By integrating this fluorescent reporter system into the Sertoli and Leydig cells within our 3D multicellular chip platform, we successfully developed a testis-on-chip model that can be utilized to evaluate the male reproductive toxicity of potential drug candidates. This innovative approach holds promise for advancing toxicity screening and reproductive research. Spermatogenesis, or sperm creation, happens in the testis and involves various cells, including Sertoli and Leydig cells. However, traditional single-cell-based 2D assay models (tests that measure the presence of a substance) don’t accurately show the complex interactions between these cells. To solve this, scientists created a ‘human testis-on-a-chip’ platform that imitates the complex cell interactions and hormone communication of seminiferous tubules (small tubes) in the testis. The chip was made using polydimethylsiloxane (a type of silicone) and included multiple testicular tissue cells. The scientists found that the chip could keep the cells alive and active for up to 28 days. Also, the chip was able to produce hormones and respond to hormonal stimulation. This study provides a useful tool for studying male reproductive biology and testing potential drugs. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 7","pages":"1591-1605"},"PeriodicalIF":9.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297247/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141472197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1038/s12276-024-01262-7
Nayeon Kim, Junyeong Ma, Wonjong Kim, Jungyeon Kim, Peter Belenky, Insuk Lee
Recent substantial evidence implicating commensal bacteria in human diseases has given rise to a new domain in biomedical research: microbiome medicine. This emerging field aims to understand and leverage the human microbiota and derivative molecules for disease prevention and treatment. Despite the complex and hierarchical organization of this ecosystem, most research over the years has relied on 16S amplicon sequencing, a legacy of bacterial phylogeny and taxonomy. Although advanced sequencing technologies have enabled cost-effective analysis of entire microbiota, translating the relatively short nucleotide information into the functional and taxonomic organization of the microbiome has posed challenges until recently. In the last decade, genome-resolved metagenomics, which aims to reconstruct microbial genomes directly from whole-metagenome sequencing data, has made significant strides and continues to unveil the mysteries of various human-associated microbial communities. There has been a rapid increase in the volume of whole metagenome sequencing data and in the compilation of novel metagenome-assembled genomes and protein sequences in public depositories. This review provides an overview of the capabilities and methods of genome-resolved metagenomics for studying the human microbiome, with a focus on investigating the prokaryotic microbiota of the human gut. Just as decoding the human genome and its variations marked the beginning of the genomic medicine era, unraveling the genomes of commensal microbes and their sequence variations is ushering us into the era of microbiome medicine. Genome-resolved metagenomics stands as a pivotal tool in this transition and can accelerate our journey toward achieving these scientific and medical milestones. The human body houses numerous microbes, tiny organisms, that are vital for our health. This research aims to overcome limitations using genome-resolved metagenomics, a method that assembles complete genomes from complex microbial communities without needing to grow the organisms in a lab. The study focuses on the gut microbiome, using advanced computer methods to build metagenome-assembled genomes from DNA sequencing data. The research successfully increased the genetic diversity of the human gut microbiome by adding many new genomes to the existing database. The main findings include identifying new microbial species and expanding the genetic repertoire of known species, providing deeper understanding of the microbial diversity within the human gut. Researchers conclude that genome-resolved metagenomics is a significant advancement in microbiome research, offering understanding of microbial communities and their functions. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
{"title":"Genome-resolved metagenomics: a game changer for microbiome medicine","authors":"Nayeon Kim, Junyeong Ma, Wonjong Kim, Jungyeon Kim, Peter Belenky, Insuk Lee","doi":"10.1038/s12276-024-01262-7","DOIUrl":"10.1038/s12276-024-01262-7","url":null,"abstract":"Recent substantial evidence implicating commensal bacteria in human diseases has given rise to a new domain in biomedical research: microbiome medicine. This emerging field aims to understand and leverage the human microbiota and derivative molecules for disease prevention and treatment. Despite the complex and hierarchical organization of this ecosystem, most research over the years has relied on 16S amplicon sequencing, a legacy of bacterial phylogeny and taxonomy. Although advanced sequencing technologies have enabled cost-effective analysis of entire microbiota, translating the relatively short nucleotide information into the functional and taxonomic organization of the microbiome has posed challenges until recently. In the last decade, genome-resolved metagenomics, which aims to reconstruct microbial genomes directly from whole-metagenome sequencing data, has made significant strides and continues to unveil the mysteries of various human-associated microbial communities. There has been a rapid increase in the volume of whole metagenome sequencing data and in the compilation of novel metagenome-assembled genomes and protein sequences in public depositories. This review provides an overview of the capabilities and methods of genome-resolved metagenomics for studying the human microbiome, with a focus on investigating the prokaryotic microbiota of the human gut. Just as decoding the human genome and its variations marked the beginning of the genomic medicine era, unraveling the genomes of commensal microbes and their sequence variations is ushering us into the era of microbiome medicine. Genome-resolved metagenomics stands as a pivotal tool in this transition and can accelerate our journey toward achieving these scientific and medical milestones. The human body houses numerous microbes, tiny organisms, that are vital for our health. This research aims to overcome limitations using genome-resolved metagenomics, a method that assembles complete genomes from complex microbial communities without needing to grow the organisms in a lab. The study focuses on the gut microbiome, using advanced computer methods to build metagenome-assembled genomes from DNA sequencing data. The research successfully increased the genetic diversity of the human gut microbiome by adding many new genomes to the existing database. The main findings include identifying new microbial species and expanding the genetic repertoire of known species, providing deeper understanding of the microbial diversity within the human gut. Researchers conclude that genome-resolved metagenomics is a significant advancement in microbiome research, offering understanding of microbial communities and their functions. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 7","pages":"1501-1512"},"PeriodicalIF":9.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297344/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141472199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}