首页 > 最新文献

European Journal of Combinatorics最新文献

英文 中文
Restricted chain-order polytopes via combinatorial mutations 限制性链序多构体通过组合突变
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-12-22 DOI: 10.1016/j.ejc.2025.104326
Oliver Clarke , Akihiro Higashitani , Francesca Zaffalon
We study restricted chain-order polytopes associated to Young diagrams using combinatorial mutations. These polytopes are obtained by intersecting chain-order polytopes with certain hyperplanes. The family of chain-order polytopes associated to a poset interpolate between the order and chain polytopes of the poset. Each such polytope retains properties of the order and chain polytope; for example its Ehrhart polynomial. For a fixed Young diagram, we show that all restricted chain-order polytopes are related by a sequence of combinatorial mutations. Since the property of giving rise to the period collapse phenomenon is invariant under combinatorial mutations, we provide a large class of rational polytopes that give rise to period collapse.
利用组合突变研究了与杨氏图相关的限制性链序多面体。这些多面体是由具有一定超平面的链序多面体相交得到的。与偏序集相关的链序多面体族插入在偏序集的序多面体和链多面体之间。每一个这样的多面体都保留了有序多面体和链多面体的性质;比如它的Ehrhart多项式。对于一个固定的Young图,我们证明了所有的限制性链序多面体都是由一系列组合突变联系起来的。由于引起周期坍缩现象的性质在组合突变下是不变的,我们给出了一大类引起周期坍缩的有理多面体。
{"title":"Restricted chain-order polytopes via combinatorial mutations","authors":"Oliver Clarke ,&nbsp;Akihiro Higashitani ,&nbsp;Francesca Zaffalon","doi":"10.1016/j.ejc.2025.104326","DOIUrl":"10.1016/j.ejc.2025.104326","url":null,"abstract":"<div><div>We study restricted chain-order polytopes associated to Young diagrams using combinatorial mutations. These polytopes are obtained by intersecting chain-order polytopes with certain hyperplanes. The family of chain-order polytopes associated to a poset interpolate between the order and chain polytopes of the poset. Each such polytope retains properties of the order and chain polytope; for example its Ehrhart polynomial. For a fixed Young diagram, we show that all restricted chain-order polytopes are related by a sequence of combinatorial mutations. Since the property of giving rise to the period collapse phenomenon is invariant under combinatorial mutations, we provide a large class of rational polytopes that give rise to period collapse.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"133 ","pages":"Article 104326"},"PeriodicalIF":0.9,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145840444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A characterization of the Grassmann graphs: One missing case 格拉斯曼图的表征:一个缺失的情况
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-12-20 DOI: 10.1016/j.ejc.2025.104320
Jack H. Koolen , Chenhui Lv , Alexander L. Gavrilyuk
We prove that the Grassmann graphs J2(2D+3,D), D3, are characterized by their intersection numbers, which settles one of the few remaining cases.
我们证明了Grassmann图J2(2D+3,D), D≥3是由它们的相交数来表征的,这解决了剩下的少数情况之一。
{"title":"A characterization of the Grassmann graphs: One missing case","authors":"Jack H. Koolen ,&nbsp;Chenhui Lv ,&nbsp;Alexander L. Gavrilyuk","doi":"10.1016/j.ejc.2025.104320","DOIUrl":"10.1016/j.ejc.2025.104320","url":null,"abstract":"<div><div>We prove that the Grassmann graphs <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mn>2</mn><mi>D</mi><mo>+</mo><mn>3</mn><mo>,</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>D</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, are characterized by their intersection numbers, which settles one of the few remaining cases.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"133 ","pages":"Article 104320"},"PeriodicalIF":0.9,"publicationDate":"2025-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145791235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized quasikernels in digraphs 有向图中的广义拟核
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-12-20 DOI: 10.1016/j.ejc.2025.104307
Sam Spiro
Given a digraph D, we say that a set of vertices QV(D) is a q-kernel if Q is an independent set and if every vertex of D can be reached from Q by a path of length at most q. In this paper, we initiate the study of several extremal problems for q-kernels. For example, we introduce and make progress on (what turns out to be) a weak version of the Small Quasikernel Conjecture, namely that every digraph contains a q-kernel with |N+[Q]|12|V(D)| for all q2.
给定一个有向图D,如果Q是一个独立的集合,且D的每个顶点从Q出发可经一条长度不超过Q的路径到达,则称顶点集Q≥V(D)为Q核。本文研究了Q核的几个极值问题。例如,我们引入并在小拟核猜想的弱版本上取得了进展,即每个有向图都包含一个Q核,其中|N+[Q]|≥12|V(D)|对于所有Q≥2。
{"title":"Generalized quasikernels in digraphs","authors":"Sam Spiro","doi":"10.1016/j.ejc.2025.104307","DOIUrl":"10.1016/j.ejc.2025.104307","url":null,"abstract":"<div><div>Given a digraph <span><math><mi>D</mi></math></span>, we say that a set of vertices <span><math><mrow><mi>Q</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> is a <span><math><mi>q</mi></math></span>-kernel if <span><math><mi>Q</mi></math></span> is an independent set and if every vertex of <span><math><mi>D</mi></math></span> can be reached from <span><math><mi>Q</mi></math></span> by a path of length at most <span><math><mi>q</mi></math></span>. In this paper, we initiate the study of several extremal problems for <span><math><mi>q</mi></math></span>-kernels. For example, we introduce and make progress on (what turns out to be) a weak version of the Small Quasikernel Conjecture, namely that every digraph contains a <span><math><mi>q</mi></math></span>-kernel with <span><math><mrow><mrow><mo>|</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>[</mo><mi>Q</mi><mo>]</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>q</mi><mo>≥</mo><mn>2</mn></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"133 ","pages":"Article 104307"},"PeriodicalIF":0.9,"publicationDate":"2025-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145791236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Slit-slide-sew bijections for constellations and quasiconstellations 星座和准星座的裂隙-滑动-缝双射
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-12-19 DOI: 10.1016/j.ejc.2025.104318
Jérémie Bettinelli , Dimitri Korkotashvili
We extend so-called slit-slide-sew bijections to constellations and quasiconstellations, which allow to recover the counting formula for constellations or quasiconstellations with a given face degree distribution.
More precisely, we present an involution on the set of hypermaps given with an orientation, one distinguished corner, and one distinguished edge leading away from the corner while oriented in the given orientation. This involution reverts the orientation, exchanges the distinguished corner with the distinguished edge in some sense, slightly modifying the degrees of the incident faces in passing, while keeping all the other faces intact.
The construction consists in building a canonical path from the distinguished elements, slitting the map along it, and sewing back after sliding by one unit along the path. The involution specializes into a bijection interpreting combinatorial identities linking the numbers of constellations or quasiconstellations with a given face degree distribution, where the degree distributions differ by one +1 and one 1.
Our bijections yield a “degree-by-degree, face-by-face” growth algorithm that samples a hypermap uniformly distributed among constellations or quasiconstellations with prescribed face degrees. More precisely, it samples at each step uniform constellations or quasiconstellations, whose face degree distributions slightly evolve to the desired distribution.
我们将所谓的裂缝-滑动-缝双射扩展到星座和准星座,这允许恢复具有给定面度分布的星座或准星座的计数公式。更准确地说,我们给出了一组超映射的对合,这些超映射具有一个方向,一个可分辨的角,以及一个从该角引出的可分辨的边,同时在给定的方向上取向。这种对合恢复了方向,在某种意义上交换了区分角和区分边,稍微修改了经过的事件面的程度,同时保持所有其他面完整。建筑包括从不同的元素建立一个规范的路径,沿着它切割地图,并沿着路径滑动一个单元后缝回。对合专门用于解释组合恒等式的双射,将星座或准星座的数量与给定的面度分布联系起来,其中度分布的差异为1 +1和1 - 1。我们的双射产生了一种“逐度、逐面”的增长算法,该算法对具有规定面度的星座或准星座之间均匀分布的超映射进行采样。更精确地说,它在每一步采样均匀星座或准星座,其面度分布略微进化到所需的分布。
{"title":"Slit-slide-sew bijections for constellations and quasiconstellations","authors":"Jérémie Bettinelli ,&nbsp;Dimitri Korkotashvili","doi":"10.1016/j.ejc.2025.104318","DOIUrl":"10.1016/j.ejc.2025.104318","url":null,"abstract":"<div><div>We extend so-called slit-slide-sew bijections to constellations and quasiconstellations, which allow to recover the counting formula for constellations or quasiconstellations with a given face degree distribution.</div><div>More precisely, we present an involution on the set of hypermaps given with an orientation, one distinguished corner, and one distinguished edge leading away from the corner while oriented in the given orientation. This involution reverts the orientation, exchanges the distinguished corner with the distinguished edge in some sense, slightly modifying the degrees of the incident faces in passing, while keeping all the other faces intact.</div><div>The construction consists in building a canonical path from the distinguished elements, slitting the map along it, and sewing back after sliding by one unit along the path. The involution specializes into a bijection interpreting combinatorial identities linking the numbers of constellations or quasiconstellations with a given face degree distribution, where the degree distributions differ by one <span><math><mrow><mo>+</mo><mn>1</mn></mrow></math></span> and one <span><math><mrow><mo>−</mo><mn>1</mn></mrow></math></span>.</div><div>Our bijections yield a “degree-by-degree, face-by-face” growth algorithm that samples a hypermap uniformly distributed among constellations or quasiconstellations with prescribed face degrees. More precisely, it samples at each step uniform constellations or quasiconstellations, whose face degree distributions slightly evolve to the desired distribution.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"133 ","pages":"Article 104318"},"PeriodicalIF":0.9,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145791234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neighborly boxes and bipartite coverings; constructions and conjectures 相邻的盒子和二部覆盖物;结构和猜想
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-12-18 DOI: 10.1016/j.ejc.2025.104319
Jarosław Grytczuk , Andrzej P. Kisielewicz , Krzysztof Przesławski
Two axis-aligned boxes in Rd are k-neighborly if their intersection has dimension at least dk and at most d1. The maximum number of pairwise k-neighborly boxes in Rd is denoted by n(k,d). It is known that n(k,d)=Θ(dk), for fixed 1kd, but exact formulas are known only in three cases: k=1, k=d1, and k=d. In particular, the formula n(1,d)=d+1 is equivalent to the famous theorem of Graham and Pollak on bipartite partitions of cliques.
In this paper we are dealing with the case k=2. We give a new construction of k-neighborly codes giving better lower bounds on n(2,d). The construction is recursive in nature and uses a kind of “algebra” on lists of ternary strings, which encode neighborly boxes in a familiar way. Moreover, we conjecture that our construction is optimal and gives an explicit formula for n(2,d). This supposition is supported by some numerical experiments and some partial results on related open problems which are recalled.
如果两个在Rd中轴对齐的盒子的相交维度至少为d - k且不超过d - 1,则它们是k近邻。Rd中成对k邻框的最大数目用n(k,d)表示。已知n(k,d)=Θ(dk),对于固定的1≤k≤d,但确切的公式只在三种情况下已知:k=1, k=d−1和k=d。特别地,公式n(1,d)=d+1等价于著名的Graham和Pollak关于团的二部分割的定理。在本文中,我们处理k=2的情况。我们给出了一个新的k邻码结构,给出了n(2,d)上更好的下界。这种构造本质上是递归的,并在三元字符串列表上使用了一种“代数”,以一种熟悉的方式对相邻框进行编码。此外,我们推测我们的结构是最优的,并给出了n(2,d)的显式公式。这一假设得到了一些数值实验和相关开放问题的部分结果的支持。
{"title":"Neighborly boxes and bipartite coverings; constructions and conjectures","authors":"Jarosław Grytczuk ,&nbsp;Andrzej P. Kisielewicz ,&nbsp;Krzysztof Przesławski","doi":"10.1016/j.ejc.2025.104319","DOIUrl":"10.1016/j.ejc.2025.104319","url":null,"abstract":"<div><div>Two axis-aligned boxes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> are <span><math><mi>k</mi></math></span>-<em>neighborly</em> if their intersection has dimension at least <span><math><mrow><mi>d</mi><mo>−</mo><mi>k</mi></mrow></math></span> and at most <span><math><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></math></span>. The maximum number of pairwise <span><math><mi>k</mi></math></span>-neighborly boxes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is denoted by <span><math><mrow><mi>n</mi><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span>. It is known that <span><math><mrow><mi>n</mi><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow><mo>=</mo><mi>Θ</mi><mrow><mo>(</mo><msup><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, for fixed <span><math><mrow><mn>1</mn><mo>⩽</mo><mi>k</mi><mo>⩽</mo><mi>d</mi></mrow></math></span>, but exact formulas are known only in three cases: <span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>k</mi><mo>=</mo><mi>d</mi><mo>−</mo><mn>1</mn></mrow></math></span>, and <span><math><mrow><mi>k</mi><mo>=</mo><mi>d</mi></mrow></math></span>. In particular, the formula <span><math><mrow><mi>n</mi><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>d</mi><mo>)</mo></mrow><mo>=</mo><mi>d</mi><mo>+</mo><mn>1</mn></mrow></math></span> is equivalent to the famous theorem of Graham and Pollak on bipartite partitions of cliques.</div><div>In this paper we are dealing with the case <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span>. We give a new construction of <span><math><mi>k</mi></math></span>-neighborly <em>codes</em> giving better lower bounds on <span><math><mrow><mi>n</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span>. The construction is recursive in nature and uses a kind of “algebra” on <em>lists</em> of ternary strings, which encode neighborly boxes in a familiar way. Moreover, we conjecture that our construction is optimal and gives an explicit formula for <span><math><mrow><mi>n</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span>. This supposition is supported by some numerical experiments and some partial results on related open problems which are recalled.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"133 ","pages":"Article 104319"},"PeriodicalIF":0.9,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145791233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounded degree graphs and hypergraphs with no full rainbow matchings 没有完全彩虹匹配的有界度图和超图
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-12-16 DOI: 10.1016/j.ejc.2025.104316
Ronen Wdowinski
Given a multi-hypergraph G that is edge-colored into color classes E1,,En, a full rainbow matching is a matching of G that contains exactly one edge from each color class Ei. One way to guarantee the existence of a full rainbow matching is to have the size of each color class Ei be sufficiently large compared to the maximum degree of G. In this paper, we apply an iterative method to construct edge-colored multi-hypergraphs with a given maximum degree, large color classes, and no full rainbow matchings. First, for every r1 and Δ2, we construct edge-colored r-uniform multi-hypergraphs with maximum degree Δ such that each color class has size |Ei|rΔ1 and there is no full rainbow matching, which demonstrates that a theorem of Aharoni, Berger, and Meshulam (2005) is best possible. Second, we construct properly edge-colored multigraphs with no full rainbow matchings which disprove conjectures of Delcourt and Postle (2022). Finally, we apply results on full rainbow matchings to list edge-colorings and prove that a color degree generalization of Galvin’s theorem (1995) does not hold.
给定一个多超图G,它的边被颜色划分为E1,…,En,那么全彩虹匹配就是G的匹配,它只包含来自每个颜色类Ei的一条边。保证完全彩虹匹配存在的一种方法是使每个颜色类Ei的大小相对于g的最大度足够大。在本文中,我们应用迭代方法构造具有给定最大度、大颜色类和无完全彩虹匹配的边缘彩色多超图。首先,对于r≥1和Δ≥2,我们构造了最大度为Δ的边色r-均匀多超图,使得每个颜色类的大小为|Ei|≥rΔ−1,并且不存在完全彩虹匹配,这证明了Aharoni, Berger, and Meshulam(2005)的定理是最好的。其次,我们构建了正确的边缘彩色多图,没有完整的彩虹匹配,这反驳了Delcourt和Postle(2022)的猜想。最后,我们应用全彩虹匹配的结果来列出边缘着色,并证明了Galvin定理(1995)的色度推广不成立。
{"title":"Bounded degree graphs and hypergraphs with no full rainbow matchings","authors":"Ronen Wdowinski","doi":"10.1016/j.ejc.2025.104316","DOIUrl":"10.1016/j.ejc.2025.104316","url":null,"abstract":"<div><div>Given a multi-hypergraph <span><math><mi>G</mi></math></span> that is edge-colored into color classes <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, a full rainbow matching is a matching of <span><math><mi>G</mi></math></span> that contains exactly one edge from each color class <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. One way to guarantee the existence of a full rainbow matching is to have the size of each color class <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> be sufficiently large compared to the maximum degree of <span><math><mi>G</mi></math></span>. In this paper, we apply an iterative method to construct edge-colored multi-hypergraphs with a given maximum degree, large color classes, and no full rainbow matchings. First, for every <span><math><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>Δ</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, we construct edge-colored <span><math><mi>r</mi></math></span>-uniform multi-hypergraphs with maximum degree <span><math><mi>Δ</mi></math></span> such that each color class has size <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow><mo>≥</mo><mi>r</mi><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></math></span> and there is no full rainbow matching, which demonstrates that a theorem of Aharoni, Berger, and Meshulam (2005) is best possible. Second, we construct properly edge-colored multigraphs with no full rainbow matchings which disprove conjectures of Delcourt and Postle (2022). Finally, we apply results on full rainbow matchings to list edge-colorings and prove that a color degree generalization of Galvin’s theorem (1995) does not hold.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"133 ","pages":"Article 104316"},"PeriodicalIF":0.9,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145791231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypercube minor-universality 超立方体minor-universality
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-12-16 DOI: 10.1016/j.ejc.2025.104317
Itai Benjamini, Or Bernard Kalifa, Elad Tzalik
A graph G is m-minor-universal if every graph with at most m edges (and no isolated vertices) is a minor of G. We prove that the d-dimensional hypercube, Qd, is Ω2dd-minor-universal, and that there exists an absolute constant C>0 such that Qd is not C2dd-minor-universal. Similar results are obtained in a more general setting, where we bound the size of minors in a product of finite connected graphs. A key component of our proof is the following claim regarding the decomposition of a permutation of a box into simpler, one-dimensional permutations: Let n1,,nd be positive integers, and define X[n1]××[nd]. We prove that every permutation σ:XX can be expressed as σ=σ1σ2d1, where each σi is a one-dimensional permutation, meaning it fixes all coordinates except possibly one. We discuss future directions and pose open problems.
如果图G最多有m条边(没有孤立顶点)的图是G的次元,则图G是m次泛泛的。我们证明了d维超立方体Qd是Ω2dd-minor-universal,并且存在一个绝对常数C>;0使得Qd不是c2dd -次泛泛的。在一个更一般的情况下也得到了类似的结果,在这里我们限定了有限连通图的乘积中的子向量的大小。我们的证明的一个关键部分是关于将一个盒子的排列分解为更简单的一维排列的声明:设n1,…,和为正整数,并定义X是[n1]×⋯×[nd]。我们证明了每个排列σ:X→X都可以表示为σ=σ1°σ2d - 1,其中每个σi是一个一维排列,这意味着它固定了除了可能的一个坐标之外的所有坐标。我们讨论未来的方向,并提出悬而未决的问题。
{"title":"Hypercube minor-universality","authors":"Itai Benjamini,&nbsp;Or Bernard Kalifa,&nbsp;Elad Tzalik","doi":"10.1016/j.ejc.2025.104317","DOIUrl":"10.1016/j.ejc.2025.104317","url":null,"abstract":"<div><div>A graph <span><math><mi>G</mi></math></span> is <span><math><mi>m</mi></math></span>-minor-universal if every graph with at most <span><math><mi>m</mi></math></span> edges (and no isolated vertices) is a minor of <span><math><mi>G</mi></math></span>. We prove that the <span><math><mi>d</mi></math></span>-dimensional hypercube, <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>, is <span><math><mrow><mi>Ω</mi><mfenced><mrow><mfrac><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>d</mi></mrow></msup></mrow><mrow><mi>d</mi></mrow></mfrac></mrow></mfenced></mrow></math></span>-minor-universal, and that there exists an absolute constant <span><math><mrow><mi>C</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> such that <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> is not <span><math><mfrac><mrow><mi>C</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>d</mi></mrow></msup></mrow><mrow><msqrt><mrow><mi>d</mi></mrow></msqrt></mrow></mfrac></math></span>-minor-universal. Similar results are obtained in a more general setting, where we bound the size of minors in a product of finite connected graphs. A key component of our proof is the following claim regarding the decomposition of a permutation of a box into simpler, one-dimensional permutations: Let <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></math></span> be positive integers, and define <span><math><mrow><mi>X</mi><mo>≔</mo><mrow><mo>[</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo></mrow><mo>×</mo><mo>⋯</mo><mo>×</mo><mrow><mo>[</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>]</mo></mrow></mrow></math></span>. We prove that every permutation <span><math><mrow><mi>σ</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>X</mi></mrow></math></span> can be expressed as <span><math><mrow><mi>σ</mi><mo>=</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∘</mo><mo>⋯</mo><mo>∘</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></math></span>, where each <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a <em>one-dimensional</em> permutation, meaning it fixes all coordinates except possibly one. We discuss future directions and pose open problems.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"133 ","pages":"Article 104317"},"PeriodicalIF":0.9,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145791232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degree-truncated DP-colourability of K2,4-minor-free graphs K2,4次元无图的度截断dp -可色性
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-12-12 DOI: 10.1016/j.ejc.2025.104306
On-Hei Solomon Lo , Cheng Wang , Huan Zhou , Xuding Zhu
Assume G is a graph and k is a positive integer. Let f:V(G)N be defined as f(v)=min{k,dG(v)}. If G is DP-f-colourable (respectively, f-choosable), then we say G is degree-truncated DP-k-colourable (respectively, degree-truncated k-choosable). Hutchinson (2008) proved that 2-connected maximal outerplanar graphs other than the triangle are degree-truncated 5-choosable. Hutchinson asked whether the result can be extended to all outerplanar graphs. This paper proves that 2-connected K2,4-minor-free graphs other than cycles and complete graphs are degree-truncated DP-5-colourable. This not only answers Hutchinson’s question in the affirmative, but also extends to a larger family of graphs, and strengthens choosability to DP-colourability.
假设G是一个图,k是一个正整数。设f:V(G)→N定义为f(V)=min{k,dG(V)}。如果G是dp -f可着色的(分别为f-可选择的),那么我们说G是度截断的dp -k可着色的(分别为度截断的k-可选择的)。Hutchinson(2008)证明了除三角形以外的2连通极大外平面图是度截断5-可选的。Hutchinson问这个结果是否可以推广到所有的外平面图。证明了除环图和完全图以外的2连通K2图、4次自由图是度截断的dp -5可色图。这不仅肯定地回答了Hutchinson的问题,而且还扩展到更大的图族,并加强了对dp -可色性的选择性。
{"title":"Degree-truncated DP-colourability of K2,4-minor-free graphs","authors":"On-Hei Solomon Lo ,&nbsp;Cheng Wang ,&nbsp;Huan Zhou ,&nbsp;Xuding Zhu","doi":"10.1016/j.ejc.2025.104306","DOIUrl":"10.1016/j.ejc.2025.104306","url":null,"abstract":"<div><div>Assume <span><math><mi>G</mi></math></span> is a graph and <span><math><mi>k</mi></math></span> is a positive integer. Let <span><math><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mi>N</mi></mrow></math></span> be defined as <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mo>min</mo><mrow><mo>{</mo><mi>k</mi><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>. If <span><math><mi>G</mi></math></span> is DP-<span><math><mi>f</mi></math></span>-colourable (respectively, <span><math><mi>f</mi></math></span>-choosable), then we say <span><math><mi>G</mi></math></span> is degree-truncated DP-<span><math><mi>k</mi></math></span>-colourable (respectively, degree-truncated <span><math><mi>k</mi></math></span>-choosable). Hutchinson (2008) proved that 2-connected maximal outerplanar graphs other than the triangle are degree-truncated 5-choosable. Hutchinson asked whether the result can be extended to all outerplanar graphs. This paper proves that 2-connected <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>4</mn></mrow></msub></math></span>-minor-free graphs other than cycles and complete graphs are degree-truncated DP-5-colourable. This not only answers Hutchinson’s question in the affirmative, but also extends to a larger family of graphs, and strengthens choosability to DP-colourability.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"133 ","pages":"Article 104306"},"PeriodicalIF":0.9,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145737872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Order polytopes of crown posets 冠位集的序多面体
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-12-08 DOI: 10.1016/j.ejc.2025.104304
Teemu Lundström , Leonardo Saud Maia Leite
In the last decade, the order polytope of the zigzag poset has been thoroughly studied. A related poset, called crown poset, obtained by adding an extra cover relation between the endpoints of an even zigzag poset, is not so well understood. In this paper, we study the order polytopes of crown posets. We provide explicit formulas for their f-vectors. We provide recursive formulas for their Ehrhart polynomial, giving a counterpart to formulas found in the zigzag case by Petersen and Zhuang (2025). We use these formulas to simplify a computation by Ferroni, Morales and Panova (2025) of the linear term of the order polynomial of these posets. Furthermore, we provide a combinatorial interpretation for the coefficients of the h-polynomial in terms of the cyclic swap statistic on cyclically alternating permutations, which provides a circular version of a result by Coons and Sullivant (2023).
近十年来,人们对之字形背集的序多面体进行了深入的研究。一个相关的偏序集,称为冠偏序集,是通过在一个偶数之字形偏序集的端点之间添加一个额外的覆盖关系而得到的,它不是很好理解。本文研究了冠序集的序多面体。我们给出了它们的f向量的显式公式。我们提供了Ehrhart多项式的递归公式,与Petersen和Zhuang(2025)在之字形情况下发现的公式相对应。我们使用这些公式来简化Ferroni, Morales和Panova(2025)对这些偏序集的阶多项式的线性项的计算。此外,我们根据循环交替排列上的循环交换统计量提供了h * -多项式系数的组合解释,它提供了Coons和sullivan(2023)的结果的循环版本。
{"title":"Order polytopes of crown posets","authors":"Teemu Lundström ,&nbsp;Leonardo Saud Maia Leite","doi":"10.1016/j.ejc.2025.104304","DOIUrl":"10.1016/j.ejc.2025.104304","url":null,"abstract":"<div><div>In the last decade, the order polytope of the zigzag poset has been thoroughly studied. A related poset, called <em>crown poset</em>, obtained by adding an extra cover relation between the endpoints of an even zigzag poset, is not so well understood. In this paper, we study the order polytopes of crown posets. We provide explicit formulas for their <span><math><mi>f</mi></math></span>-vectors. We provide recursive formulas for their Ehrhart polynomial, giving a counterpart to formulas found in the zigzag case by Petersen and Zhuang (2025). We use these formulas to simplify a computation by Ferroni, Morales and Panova (2025) of the linear term of the order polynomial of these posets. Furthermore, we provide a combinatorial interpretation for the coefficients of the <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>-polynomial in terms of the cyclic swap statistic on cyclically alternating permutations, which provides a circular version of a result by Coons and Sullivant (2023).</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"133 ","pages":"Article 104304"},"PeriodicalIF":0.9,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145737871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unbounded matroids 无限的拟阵
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-12-04 DOI: 10.1016/j.ejc.2025.104298
Jonah Berggren , Jeremy L. Martin , José A. Samper
A matroid base polytope is a polytope in which each vertex has 0,1 coordinates and each edge is parallel to a difference of two coordinate vectors. Matroid base polytopes are described combinatorially by integral submodular functions on a boolean lattice, satisfying the unit increase property. We define a more general class of unbounded matroids, or U-matroids, by replacing the boolean lattice with an arbitrary distributive lattice. U-matroids thus serve as a combinatorial model for polyhedra that satisfy the vertex and edge conditions of matroid base polytopes, but may be unbounded. Like polymatroids, U-matroids generalize matroids and arise as a special case of submodular systems. We prove that every U-matroid admits a canonical largest extension to a matroid, which we call the generous extension; the analogous geometric statement is that every U-matroid base polyhedron contains a unique largest matroid base polytope. We show that the supports of vertices of a U-matroid base polyhedron span a shellable simplicial complex, and we characterize U-matroid basis systems in terms of shelling orders, generalizing Björner’s and Gale’s criteria for a simplicial complex to be a matroid independence complex. Finally, we present an application of our theory to subspace arrangements and show that the generous extension has a natural geometric interpretation in this setting.
一个矩阵基多面体是一个多面体,其中每个顶点有0,1个坐标,每个边平行于两个坐标向量的差。用满足单位递增性质的布尔格上的积分次模函数组合描述了矩阵基多边形。通过用任意分配格代替布尔格,我们定义了一类更一般的无界拟阵,即u -拟阵。因此,u -拟阵可以作为满足拟阵基多面体顶点和边缘条件的多面体的组合模型,但可能是无界的。和多拟阵一样,u -拟阵是对拟阵的推广,是子模系统的一种特殊情况。我们证明了每一个u -矩阵都有一个正则最大扩展,我们称之为广义扩展;类似的几何表述是:每一个u型矩阵基多面体都包含一个唯一的最大的矩阵基多面体。我们证明了一个u -矩阵基多面体的顶点支撑点跨出一个可壳化的简单复体,并从壳化阶的角度对u -矩阵基系统进行了刻画,推广了一个简单复体是一个与矩阵无关的复体的Björner准则和Gale准则。最后,我们给出了我们的理论在子空间排列中的一个应用,并证明了在这种情况下,广义扩展具有自然的几何解释。
{"title":"Unbounded matroids","authors":"Jonah Berggren ,&nbsp;Jeremy L. Martin ,&nbsp;José A. Samper","doi":"10.1016/j.ejc.2025.104298","DOIUrl":"10.1016/j.ejc.2025.104298","url":null,"abstract":"<div><div>A matroid base polytope is a polytope in which each vertex has 0,1 coordinates and each edge is parallel to a difference of two coordinate vectors. Matroid base polytopes are described combinatorially by integral submodular functions on a boolean lattice, satisfying the unit increase property. We define a more general class of <em>unbounded matroids</em>, or <em>U-matroids</em>, by replacing the boolean lattice with an arbitrary distributive lattice. U-matroids thus serve as a combinatorial model for polyhedra that satisfy the vertex and edge conditions of matroid base polytopes, but may be unbounded. Like polymatroids, U-matroids generalize matroids and arise as a special case of submodular systems. We prove that every U-matroid admits a canonical largest extension to a matroid, which we call the <em>generous extension</em>; the analogous geometric statement is that every U-matroid base polyhedron contains a unique largest matroid base polytope. We show that the supports of vertices of a U-matroid base polyhedron span a shellable simplicial complex, and we characterize U-matroid basis systems in terms of shelling orders, generalizing Björner’s and Gale’s criteria for a simplicial complex to be a matroid independence complex. Finally, we present an application of our theory to subspace arrangements and show that the generous extension has a natural geometric interpretation in this setting.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"133 ","pages":"Article 104298"},"PeriodicalIF":0.9,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145685592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Journal of Combinatorics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1