Pub Date : 2025-10-16DOI: 10.1016/j.ejc.2025.104257
Samuel Braunfeld
For a finite lattice , -ultrametric spaces are a convenient language for describing structures equipped with a family of equivalence relations. When is finite and distributive, there exists a generic -ultrametric space, and we here identify a family of Ramsey expansions for that space. This then allows a description the universal minimal flow of its automorphism group, and also implies the Ramsey property for all homogeneous finite-dimensional permutation structures, i.e., homogeneous structures in a language of finitely many linear orders. A point of technical interest is that our proof involves classes with non-unary algebraic closure operations. As a byproduct of some of the concepts developed, we also arrive at a natural description of all homogeneous finite-dimensional permutation structures.
{"title":"Ramsey expansions of Λ-ultrametric spaces","authors":"Samuel Braunfeld","doi":"10.1016/j.ejc.2025.104257","DOIUrl":"10.1016/j.ejc.2025.104257","url":null,"abstract":"<div><div>For a finite lattice <span><math><mi>Λ</mi></math></span>, <span><math><mi>Λ</mi></math></span>-ultrametric spaces are a convenient language for describing structures equipped with a family of equivalence relations. When <span><math><mi>Λ</mi></math></span> is finite and distributive, there exists a generic <span><math><mi>Λ</mi></math></span>-ultrametric space, and we here identify a family of Ramsey expansions for that space. This then allows a description the universal minimal flow of its automorphism group, and also implies the Ramsey property for all homogeneous finite-dimensional permutation structures, i.e., homogeneous structures in a language of finitely many linear orders. A point of technical interest is that our proof involves classes with non-unary algebraic closure operations. As a byproduct of some of the concepts developed, we also arrive at a natural description of all homogeneous finite-dimensional permutation structures.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"132 ","pages":"Article 104257"},"PeriodicalIF":0.9,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145623510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-15DOI: 10.1016/j.ejc.2025.104265
Micheal Pawliuk
We present two exact versions of the quantitative expansion property first presented in Angel et al. (2014), called the Perfect Expansion Property and the disjoint Perfect Expansion Property (PEP and DPEP). This gives a direct combinatorial way of establishing the unique ergodicity of automorphism groups of Fraïssé classes, without having to use the probabilistic arguments in Angel et al. (2014).
We focus on the special case of , the class of complete, -partite digraphs. Not all structures in this class have the PEP and we classify which structures have the stronger DPEP. The structures with this expansion property are intimately connected with the definable geometric structure of a Fraïssé structure.
We also look at the PEP for semigeneric digraphs, but we do not settle the question of unique ergodicity of the automorphism group of the semigeneric digraph.1 Surprisingly, there are non-trivial substructures of the semigeneric digraph with the PEP.
{"title":"A perfect expansion property","authors":"Micheal Pawliuk","doi":"10.1016/j.ejc.2025.104265","DOIUrl":"10.1016/j.ejc.2025.104265","url":null,"abstract":"<div><div>We present two exact versions of the quantitative expansion property first presented in Angel et al. (2014), called the Perfect Expansion Property and the disjoint Perfect Expansion Property (<strong>PEP</strong> and <strong>DPEP</strong>). This gives a direct combinatorial way of establishing the unique ergodicity of automorphism groups of Fraïssé classes, without having to use the probabilistic arguments in Angel et al. (2014).</div><div>We focus on the special case of <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the class of complete, <span><math><mi>n</mi></math></span>-partite digraphs. Not all structures in this class have the <strong>PEP</strong> and we classify which structures have the stronger <strong>DPEP</strong>. The structures with this expansion property are intimately connected with the definable geometric structure of a Fraïssé structure.</div><div>We also look at the <strong>PEP</strong> for semigeneric digraphs, but we do not settle the question of unique ergodicity of the automorphism group of the semigeneric digraph.<span><span><sup>1</sup></span></span> Surprisingly, there are non-trivial substructures of the semigeneric digraph with the <strong>PEP</strong>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"132 ","pages":"Article 104265"},"PeriodicalIF":0.9,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145624162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-15DOI: 10.1016/j.ejc.2025.104251
Moritz Mühlenthaler , Mark Siggers , Thomas Suzan
Given a graph and two graph homomorphisms and from to a fixed graph , the problem -recoloring asks whether there is a transformation from to that changes the image of a single vertex at each step and keeps a graph homomorphism throughout. The complexity of the problem depends, among other things, on the presence of loops on the vertices. We provide a simple reduction that, using a known algorithmic result for -recoloring for square-free irreflexive graphs , yields a polynomial-time algorithm for -recoloring for square-free reflexive graphs . This generalizes all known algorithmic results for -recoloring for reflexive graphs . Furthermore, the construction allows us to reprove some of the known hardness results. Finally, we provide a partial inverse of the construction for bipartite instances.
{"title":"Reconfiguring homomorphisms to reflexive graphs via a simple reduction","authors":"Moritz Mühlenthaler , Mark Siggers , Thomas Suzan","doi":"10.1016/j.ejc.2025.104251","DOIUrl":"10.1016/j.ejc.2025.104251","url":null,"abstract":"<div><div>Given a graph <span><math><mi>G</mi></math></span> and two graph homomorphisms <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span> from <span><math><mi>G</mi></math></span> to a fixed graph <span><math><mi>H</mi></math></span>, the problem <span><math><mi>H</mi></math></span>-recoloring asks whether there is a transformation from <span><math><mi>α</mi></math></span> to <span><math><mi>β</mi></math></span> that changes the image of a single vertex at each step and keeps a graph homomorphism throughout. The complexity of the problem depends, among other things, on the presence of loops on the vertices. We provide a simple reduction that, using a known algorithmic result for <span><math><mi>H</mi></math></span>-recoloring for square-free irreflexive graphs <span><math><mi>H</mi></math></span>, yields a polynomial-time algorithm for <span><math><mi>H</mi></math></span>-recoloring for square-free reflexive graphs <span><math><mi>H</mi></math></span>. This generalizes all known algorithmic results for <span><math><mi>H</mi></math></span>-recoloring for reflexive graphs <span><math><mi>H</mi></math></span>. Furthermore, the construction allows us to reprove some of the known hardness results. Finally, we provide a partial inverse of the construction for bipartite instances.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"132 ","pages":"Article 104251"},"PeriodicalIF":0.9,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145326851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Note on a problem of Sárközy on multiplicative representation functions","authors":"Yuchen Ding","doi":"10.1016/j.ejc.2025.104268","DOIUrl":"10.1016/j.ejc.2025.104268","url":null,"abstract":"<div><div>Motivated by a 2001 problem of Sárközy, we classify all situations of the integers <span><math><mrow><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>e</mi></mrow></math></span> and <span><math><mi>f</mi></math></span> satisfying <span><span><span><math><mrow><munder><mrow><mo>lim sup</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></munder><mrow><mo>|</mo><mi>d</mi><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>b</mi><mi>n</mi><mo>+</mo><mi>c</mi><mo>)</mo></mrow><mo>−</mo><mi>d</mi><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>e</mi><mi>n</mi><mo>+</mo><mi>f</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>=</mo><mi>∞</mi></mrow></math></span></span></span>for any infinite <span><math><mrow><mi>A</mi><mo>⊂</mo><mi>N</mi></mrow></math></span>, where <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow><mo>=</mo><mi>#</mi><mrow><mo>{</mo><mi>a</mi><mo>∈</mo><mi>A</mi><mo>:</mo><mi>a</mi><mo>|</mo><mi>m</mi><mo>}</mo></mrow><mo>.</mo></mrow></math></span></div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"132 ","pages":"Article 104268"},"PeriodicalIF":0.9,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145326850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-14DOI: 10.1016/j.ejc.2025.104264
Lionel Nguyen Van Thé
By a result of Zucker, every Fraïssé structure for which the elements of have finite Ramsey degrees admits a Fraïssé precompact expansion whose age has the Ramsey property. While the original method uses dynamics in spaces of ultrafilters, the purpose of the present short note is to provide a different proof, based on classical tools from Fraïssé theory.
{"title":"Finite Ramsey degrees and Fraïssé expansions with the Ramsey property","authors":"Lionel Nguyen Van Thé","doi":"10.1016/j.ejc.2025.104264","DOIUrl":"10.1016/j.ejc.2025.104264","url":null,"abstract":"<div><div>By a result of Zucker, every Fraïssé structure <span><math><mi>F</mi></math></span> for which the elements of <span><math><mrow><mi>Age</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> have finite Ramsey degrees admits a Fraïssé precompact expansion <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> whose age <span><math><mrow><mi>Age</mi><mrow><mo>(</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span> has the Ramsey property. While the original method uses dynamics in spaces of ultrafilters, the purpose of the present short note is to provide a different proof, based on classical tools from Fraïssé theory.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"132 ","pages":"Article 104264"},"PeriodicalIF":0.9,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145624161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-13DOI: 10.1016/j.ejc.2025.104252
Clive Elphick , Quanyu Tang , Shengtong Zhang
<div><div>Let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> be the adjacency matrix of a simple graph <span><math><mi>G</mi></math></span>, and let <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>ξ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote its chromatic number, fractional chromatic number, quantum chromatic number, orthogonal rank and projective rank, respectively. For <span><math><mrow><mi>p</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, we define the positive and negative <span><math><mi>p</mi></math></span>-energies of <span><math><mi>G</mi></math></span> by <span><span><span><math><mrow><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></munder><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>,</mo><mspace></mspace><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo><</mo><mn>0</mn></mrow></munder><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mo>⋯</mo><mo>≥</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> are the eigenvalues of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span>. We prove that for all <span><math><mrow><mi>p</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><span><span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mfenced><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>ξ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mfenced><mo>≥</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn><mspace></mspace><mo>+</mo><mo>max</mo><msup
{"title":"A spectral lower bound on chromatic numbers using p-energy","authors":"Clive Elphick , Quanyu Tang , Shengtong Zhang","doi":"10.1016/j.ejc.2025.104252","DOIUrl":"10.1016/j.ejc.2025.104252","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> be the adjacency matrix of a simple graph <span><math><mi>G</mi></math></span>, and let <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>ξ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote its chromatic number, fractional chromatic number, quantum chromatic number, orthogonal rank and projective rank, respectively. For <span><math><mrow><mi>p</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, we define the positive and negative <span><math><mi>p</mi></math></span>-energies of <span><math><mi>G</mi></math></span> by <span><span><span><math><mrow><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></munder><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>,</mo><mspace></mspace><msubsup><mrow><mi>E</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo><</mo><mn>0</mn></mrow></munder><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mo>⋯</mo><mo>≥</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> are the eigenvalues of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span>. We prove that for all <span><math><mrow><mi>p</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><span><span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mfenced><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>ξ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></mfenced><mo>≥</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn><mspace></mspace><mo>+</mo><mo>max</mo><msup","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"132 ","pages":"Article 104252"},"PeriodicalIF":0.9,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145326852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-13DOI: 10.1016/j.ejc.2025.104260
Natasha Dobrinen
The well-known Galvin-Prikry Theorem (Galvin and Prikry, 1973) states that Borel subsets of the Baire space are Ramsey: Given any Borel subset , where is endowed with the metric topology, each infinite subset contains an infinite subset such that is either contained in or disjoint from . Kechris, Pestov, and Todorcevic point out in Kechris et al. (2005) the dearth of similar results for homogeneous structures. Such results are a necessary step to the larger goal of finding a correspondence between structures with infinite dimensional Ramsey properties and topological dynamics, extending their correspondence between the Ramsey property and extreme amenability. In this article, we prove an analogue of the Galvin-Prikry theorem for the Rado graph. Any such infinite dimensional Ramsey theorem is subject to constraints following from work in Laflamme (2006). The proof uses techniques developed for the author’s work on the Ramsey theory of the Henson graphs (Dobrinen, 2020 and Dobrinen, 2023) as well as some new methods for fusion sequences, used to bypass the lack of a certain amalgamation property enjoyed by the Baire space.
著名的Galvin-Prikry定理(Galvin and Prikry, 1973)指出,Baire空间的Borel子集是Ramsey:给定任意一个Borel子集X≤[ω]ω,其中[ω]ω被赋予度量拓扑,则每一个无限子集X∈一个无限子集Y≤X,使得[Y]ω要么包含在X中,要么与X不相交。Kechris、Pestov和Todorcevic在Kechris et al.(2005)中指出,对于齐次结构缺乏类似的结果。这些结果是寻找具有无限维Ramsey性质的结构与拓扑动力学之间的对应关系的更大目标的必要步骤,扩展了Ramsey性质与极端柔顺性之间的对应关系。在本文中,我们证明了Rado图的Galvin-Prikry定理的一个类比。任何这样的无限维拉姆齐定理都受到Laflamme(2006)工作的约束。该证明使用了作者在Henson图的Ramsey理论(Dobrinen, 2020和Dobrinen, 2023)的工作中开发的技术,以及一些用于融合序列的新方法,用于绕过Baire空间所缺乏的某些合并性质。
{"title":"Borel sets of Rado graphs and Ramsey’s theorem","authors":"Natasha Dobrinen","doi":"10.1016/j.ejc.2025.104260","DOIUrl":"10.1016/j.ejc.2025.104260","url":null,"abstract":"<div><div>The well-known Galvin-Prikry Theorem (Galvin and Prikry, 1973) states that Borel subsets of the Baire space are Ramsey: Given any Borel subset <span><math><mrow><mi>X</mi><mo>⊆</mo><msup><mrow><mrow><mo>[</mo><mi>ω</mi><mo>]</mo></mrow></mrow><mrow><mi>ω</mi></mrow></msup></mrow></math></span>, where <span><math><msup><mrow><mrow><mo>[</mo><mi>ω</mi><mo>]</mo></mrow></mrow><mrow><mi>ω</mi></mrow></msup></math></span> is endowed with the metric topology, each infinite subset <span><math><mrow><mi>X</mi><mo>⊆</mo><mi>ω</mi></mrow></math></span> contains an infinite subset <span><math><mrow><mi>Y</mi><mo>⊆</mo><mi>X</mi></mrow></math></span> such that <span><math><msup><mrow><mrow><mo>[</mo><mi>Y</mi><mo>]</mo></mrow></mrow><mrow><mi>ω</mi></mrow></msup></math></span> is either contained in <span><math><mi>X</mi></math></span> or disjoint from <span><math><mi>X</mi></math></span>. Kechris, Pestov, and Todorcevic point out in Kechris et al. (2005) the dearth of similar results for homogeneous structures. Such results are a necessary step to the larger goal of finding a correspondence between structures with infinite dimensional Ramsey properties and topological dynamics, extending their correspondence between the Ramsey property and extreme amenability. In this article, we prove an analogue of the Galvin-Prikry theorem for the Rado graph. Any such infinite dimensional Ramsey theorem is subject to constraints following from work in Laflamme (2006). The proof uses techniques developed for the author’s work on the Ramsey theory of the Henson graphs (Dobrinen, 2020 and Dobrinen, 2023) as well as some new methods for fusion sequences, used to bypass the lack of a certain amalgamation property enjoyed by the Baire space.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"132 ","pages":"Article 104260"},"PeriodicalIF":0.9,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145623513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-13DOI: 10.1016/j.ejc.2025.104261
Eli Glasner , Benjamin Weiss
Our purpose here is to review some recent developments in the theory of dynamical systems whose common theme is a link between minimal dynamical systems, certain Ramsey type combinatorial properties, and the Lovász local lemma (LLL). For a general countable group the two classes of minimal systems we will deal with are (I) the minimal subsystems of the subgroup system , called URS’s (uniformly recurrent subgroups), and (II) minimal subshifts; i.e. subsystems of the binary Bernoulli -shift .
{"title":"On minimal actions of countable groups","authors":"Eli Glasner , Benjamin Weiss","doi":"10.1016/j.ejc.2025.104261","DOIUrl":"10.1016/j.ejc.2025.104261","url":null,"abstract":"<div><div>Our purpose here is to review some recent developments in the theory of dynamical systems whose common theme is a link between minimal dynamical systems, certain Ramsey type combinatorial properties, and the Lovász local lemma (LLL). For a general countable group <span><math><mi>G</mi></math></span> the two classes of minimal systems we will deal with are (I) the minimal subsystems of the <em>subgroup system</em> <span><math><mrow><mo>(</mo><mi>Sub</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>G</mi><mo>)</mo></mrow></math></span>, called URS’s (uniformly recurrent subgroups), and (II) minimal <em>subshifts</em>; i.e. subsystems of the binary Bernoulli <span><math><mi>G</mi></math></span>-shift <span><math><mrow><mo>(</mo><msup><mrow><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow><mrow><mi>G</mi></mrow></msup><mo>,</mo><msub><mrow><mrow><mo>{</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>g</mi><mo>∈</mo><mi>G</mi></mrow></msub><mo>)</mo></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"132 ","pages":"Article 104261"},"PeriodicalIF":0.9,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145623514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-10DOI: 10.1016/j.ejc.2025.104247
Colin Geniet , Stéphan Thomassé
We characterise the classes of tournaments with tractable first-order model checking. For every hereditary class of tournaments , first-order model checking is either fixed parameter tractable or -hard. This dichotomy coincides with the fact that has either bounded or unbounded twin-width, and that the growth of is either at most exponential or at least factorial. From the model-theoretic point of view, we show that NIP classes of tournaments coincide with bounded twin-width. Twin-width is also characterised by three infinite families of obstructions: has bounded twin-width if and only if it excludes at least one tournament from each family. This generalises results of Bonnet et al. on ordered graphs.
The key for these results is a polynomial time algorithm that takes as input a tournament and computes a linear order on such that the twin-width of the birelation is at most some function of the twin-width of . Since approximating twin-width can be done in polynomial time for an ordered structure , this provides a polynomial time approximation of twin-width for tournaments.
Our results extend to oriented graphs with stable sets of bounded size, which may also be augmented by arbitrary binary relations.
{"title":"First order logic and twin-width in tournaments and dense oriented graphs","authors":"Colin Geniet , Stéphan Thomassé","doi":"10.1016/j.ejc.2025.104247","DOIUrl":"10.1016/j.ejc.2025.104247","url":null,"abstract":"<div><div>We characterise the classes of tournaments with tractable first-order model checking. For every hereditary class of tournaments <span><math><mi>T</mi></math></span>, first-order model checking is either fixed parameter tractable or <span><math><mrow><mtext>AW</mtext><mrow><mo>[</mo><mo>∗</mo><mo>]</mo></mrow></mrow></math></span>-hard. This dichotomy coincides with the fact that <span><math><mi>T</mi></math></span> has either bounded or unbounded twin-width, and that the growth of <span><math><mi>T</mi></math></span> is either at most exponential or at least factorial. From the model-theoretic point of view, we show that NIP classes of tournaments coincide with bounded twin-width. Twin-width is also characterised by three infinite families of obstructions: <span><math><mi>T</mi></math></span> has bounded twin-width if and only if it excludes at least one tournament from each family. This generalises results of Bonnet et al. on ordered graphs.</div><div>The key for these results is a polynomial time algorithm that takes as input a tournament <span><math><mi>T</mi></math></span> and computes a linear order <span><math><mo><</mo></math></span> on <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> such that the twin-width of the birelation <span><math><mrow><mo>(</mo><mi>T</mi><mo>,</mo><mo><</mo><mo>)</mo></mrow></math></span> is at most some function of the twin-width of <span><math><mi>T</mi></math></span>. Since approximating twin-width can be done in polynomial time for an ordered structure <span><math><mrow><mo>(</mo><mi>T</mi><mo>,</mo><mo><</mo><mo>)</mo></mrow></math></span>, this provides a polynomial time approximation of twin-width for tournaments.</div><div>Our results extend to oriented graphs with stable sets of bounded size, which may also be augmented by arbitrary binary relations.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"132 ","pages":"Article 104247"},"PeriodicalIF":0.9,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145247904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We study flips in hypertriangulations of planar points sets. Here a level- hypertriangulation of points in the plane is a subdivision induced by the projection of a -hypersimplex, which is the convex hull of the barycenters of the -dimensional faces of the standard -simplex. In particular, we introduce four types of flips and prove that the level-2 hypertriangulations are connected by these flips.
{"title":"Flips in two-dimensional hypertriangulations","authors":"Herbert Edelsbrunner , Alexey Garber , Mohadese Ghafari , Teresa Heiss , Morteza Saghafian","doi":"10.1016/j.ejc.2025.104248","DOIUrl":"10.1016/j.ejc.2025.104248","url":null,"abstract":"<div><div>We study flips in hypertriangulations of planar points sets. Here a level-<span><math><mi>k</mi></math></span> hypertriangulation of <span><math><mi>n</mi></math></span> points in the plane is a subdivision induced by the projection of a <span><math><mi>k</mi></math></span>-hypersimplex, which is the convex hull of the barycenters of the <span><math><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional faces of the standard <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-simplex. In particular, we introduce four types of flips and prove that the level-2 hypertriangulations are connected by these flips.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"132 ","pages":"Article 104248"},"PeriodicalIF":0.9,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145247903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}