首页 > 最新文献

European Journal of Combinatorics最新文献

英文 中文
Kempe changes in degenerate graphs 简并图中的Kempe变化
IF 1 3区 数学 Q2 Mathematics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2023.103802
Marthe Bonamy, Vincent Delecroix, Clément Legrand–Duchesne

We consider Kempe changes on the k-colorings of a graph on n vertices. If the graph is (k1)-degenerate, then all its k-colorings are equivalent up to Kempe changes. However, the sequence between two k-colorings that arises from the proof may have length exponential in the number of vertices. An intriguing open question is whether it can be turned polynomial. We prove this to be possible under the stronger assumption that the graph has treewidth at most k1. Namely, any two k-colorings are equivalent up to O(kn2) Kempe changes. We investigate other restrictions (list coloring, bounded maximum average degree, degree bounds). As one of the main results, we derive that given an n-vertex graph with maximum degree Δ, the Δ-colorings are all equivalent up to OΔ(n2) Kempe changes, unless Δ=3 and some connected component is a 3-prism, that is K2K3, in which case there exist some non-equivalent 3-colorings.

我们考虑在n个顶点的图的k色上的Kempe变化。如果图是(k−1)-简并的,那么它的所有k色直到Kempe变化都是等价的。然而,由证明产生的两个k-着色之间的序列在顶点数量上可能具有指数长度。一个有趣的开放性问题是它是否可以变成多项式。我们在一个更强的假设下证明了这是可能的,即图的树宽不超过k−1。也就是说,任意两个k色直到O(kn2) Kempe变化都是等价的。我们研究了其他限制(列表着色,有界最大平均度,度界)。作为主要结果之一,我们得到了给定一个最大度为Δ的n顶点图,在OΔ(n2) Kempe变化之前,Δ-colorings都是等价的,除非Δ=3并且某些连接分量是3棱镜,即K2□K3,在这种情况下存在一些不等价的3着色。
{"title":"Kempe changes in degenerate graphs","authors":"Marthe Bonamy,&nbsp;Vincent Delecroix,&nbsp;Clément Legrand–Duchesne","doi":"10.1016/j.ejc.2023.103802","DOIUrl":"10.1016/j.ejc.2023.103802","url":null,"abstract":"<div><p>We consider Kempe changes on the <span><math><mi>k</mi></math></span>-colorings of a graph on <span><math><mi>n</mi></math></span> vertices. If the graph is <span><math><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-degenerate, then all its <span><math><mi>k</mi></math></span>-colorings are equivalent up to Kempe changes. However, the sequence between two <span><math><mi>k</mi></math></span>-colorings that arises from the proof may have length exponential in the number of vertices. An intriguing open question is whether it can be turned polynomial. We prove this to be possible under the stronger assumption that the graph has treewidth at most <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span>. Namely, any two <span><math><mi>k</mi></math></span>-colorings are equivalent up to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>k</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> Kempe changes. We investigate other restrictions (list coloring, bounded maximum average degree, degree bounds). As one of the main results, we derive that given an <span><math><mi>n</mi></math></span><span>-vertex graph with maximum degree </span><span><math><mi>Δ</mi></math></span>, the <span><math><mi>Δ</mi></math></span>-colorings are all equivalent up to <span><math><mrow><msub><mrow><mi>O</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> Kempe changes, unless <span><math><mrow><mi>Δ</mi><mo>=</mo><mn>3</mn></mrow></math></span> and some connected component is a 3-prism, that is <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>□</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>, in which case there exist some non-equivalent 3-colorings.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"119 ","pages":"Article 103802"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimum lethal sets in grids and tori under 3-neighbour bootstrap percolation 三邻域引导渗滤下网格和环形中的最小致死集
IF 1 3区 数学 Q2 Mathematics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2023.103801
Fabricio Benevides , Jean-Claude Bermond , Hicham Lesfari , Nicolas Nisse

Let r1 be any non negative integer and let G=(V,E) be any undirected graph in which a subset DV of vertices are initially infected. We consider the process in which, at every step, each non-infected vertex with at least r infected neighbours becomes infected and an infected vertex never becomes non-infected. The problem consists in determining the minimum size sr(G) of an initially infected vertices set D that eventually infects the whole graph G. This problem is closely related to cellular automata, to percolation problems and to the Game of Life studied by John Conway. Note that s1(G)=1 for any connected graph G. The case when G is the n×n grid, Gn×n, and r=2 is well known and appears in many puzzle books, in particular due to the elegant proof that shows that s2(Gn×n)=n for all nN. We study the cases of square grids, Gn×n, and tori, Tn×n, when r{3,4}. We show that s3(Gn×n)=n2+2n+43 for every n even and that
设 r≥1 为任意非负整数,G=(V,E) 为任意无向图,其中顶点子集 D⊆V 最初被感染。我们考虑的过程是,在每一步中,每个非感染顶点的至少 r 个邻居都会被感染,而感染顶点永远不会变成非感染顶点。这一问题与细胞自动机、渗流问题以及约翰-康威(John Conway)研究的 "生命游戏"(Game of Life)密切相关。请注意,对于任何连通图 G,s1(G)=1。当 G 是 n×n 网格 Gn×n,且 r=2 时,s2(Gn×n)=n 的情况是众所周知的,并出现在许多谜题书中,特别是由于其优雅的证明,表明对于所有 n∈N,s2(Gn×n)=n。我们研究了当 r∈{3,4} 时方格 Gn×n 和环形 Tn×n 的情况。我们证明,对于偶数 n,s3(Gn×n)=⌈n2+2n+43⌉;对于奇数 n,⌈n2+2n3⌉≤s3(Gn×n)≤⌈n2+2n3⌉+1。当 n 为奇数时,我们证明两个边界都达到了,即如果 n≡5(mod6)或 n=2p-1 为任意 p∈N∗ 时,s3(Gn×n)=⌈n2+2n3⌉+1;如果 n∈{9,13} 时,s3(Gn×n)=⌈n2+2n3⌉+1。最后,对于所有 n∈N,我们给出 s3(Tn×n)的精确表达式。
{"title":"Minimum lethal sets in grids and tori under 3-neighbour bootstrap percolation","authors":"Fabricio Benevides ,&nbsp;Jean-Claude Bermond ,&nbsp;Hicham Lesfari ,&nbsp;Nicolas Nisse","doi":"10.1016/j.ejc.2023.103801","DOIUrl":"10.1016/j.ejc.2023.103801","url":null,"abstract":"<div><p>Let <span><math><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></math></span><span> be any non negative integer and let </span><span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> be any undirected graph in which a subset <span><math><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> of vertices are initially <em>infected</em>. We consider the process in which, at every step, each non-infected vertex with at least <span><math><mi>r</mi></math></span> infected neighbours becomes infected and an infected vertex never becomes non-infected. The problem consists in determining the minimum size <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of an initially infected vertices set <span><math><mi>D</mi></math></span> that eventually infects the whole graph <span><math><mi>G</mi></math></span>. This problem is closely related to cellular automata, to percolation problems and to the Game of Life studied by John Conway. Note that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span><span> for any connected graph </span><span><math><mi>G</mi></math></span>. The case when <span><math><mi>G</mi></math></span> is the <span><math><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></math></span> grid, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, and <span><math><mrow><mi>r</mi><mo>=</mo><mn>2</mn></mrow></math></span> is well known and appears in many puzzle books, in particular due to the elegant proof that shows that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>n</mi></mrow></math></span> for all <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>. We study the cases of square grids, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, and tori, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, when <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>}</mo></mrow></mrow></math></span>. We show that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></math></span> for every <span><math><mi>n</mi></math></span> even and that <span><math><mrow><mrow><mo>⌈</mo><mfrac><mrow><ms","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"119 ","pages":"Article 103801"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135894821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Walks avoiding a quadrant and the reflection principle 避开象限行走和反射原理
IF 1 3区 数学 Q2 Mathematics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2023.103803
Mireille Bousquet-Mélou, Michael Wallner

We continue the enumeration of plane lattice walks with small steps avoiding the negative quadrant, initiated by the first author in 2016. We solve in detail a new case, namely the king model where all eight nearest neighbour steps are allowed. The associated generating function is proved to be the sum of a simple, explicit D-finite series (related to the number of walks confined to the first quadrant), and an algebraic one. This was already the case for the two models solved by the first author in 2016. The principle of the approach is also the same, but challenging theoretical and computational difficulties arise as we now handle algebraic series of larger degree.

We expect a similar algebraicity phenomenon to hold for the seven Weyl step sets, which are those for which walks confined to the first quadrant can be counted using the reflection principle. With this paper, this is now proved for three of them. For the remaining four, we predict the D-finite part of the solution, and in three of the four cases, give evidence for the algebraicity of the remaining part.

我们继续枚举第一作者于2016年发起的避免负象限的小步平面网格行走。我们详细求解了一种新情况,即允许所有八个近邻步长的王模型。相关的生成函数被证明是一个简单、明确的 D 无穷级数(与限制在第一象限的行走次数有关)和一个代数级数之和。第一作者在 2016 年求解的两个模型已经是这种情况。这种方法的原理也是一样的,但由于我们现在要处理的代数级数更大,因此出现了具有挑战性的理论和计算困难。我们预计七韦尔阶集也会出现类似的代数现象,即可以利用反射原理计算出局限于第一象限的行走次数的韦尔阶集。本文现在证明了其中三个的代数性。对于其余四个,我们预测了解的 D 有限部分,并在其中三个案例中给出了其余部分代数性的证据。
{"title":"Walks avoiding a quadrant and the reflection principle","authors":"Mireille Bousquet-Mélou,&nbsp;Michael Wallner","doi":"10.1016/j.ejc.2023.103803","DOIUrl":"10.1016/j.ejc.2023.103803","url":null,"abstract":"<div><p>We continue the enumeration of plane lattice walks with small steps avoiding the negative quadrant, initiated by the first author in 2016. We solve in detail a new case, namely the king model where all eight nearest neighbour steps are allowed. The associated generating function is proved to be the sum of a simple, explicit D-finite series (related to the number of walks confined to the first quadrant), and an algebraic one. This was already the case for the two models solved by the first author in 2016. The principle of the approach is also the same, but challenging theoretical and computational difficulties arise as we now handle algebraic series of larger degree.</p><p>We expect a similar algebraicity phenomenon to hold for the seven <em>Weyl</em> step sets, which are those for which walks confined to the first quadrant can be counted using the reflection principle. With this paper, this is now proved for three of them. For the remaining four, we predict the D-finite part of the solution, and in three of the four cases, give evidence for the algebraicity of the remaining part.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"119 ","pages":"Article 103803"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136119309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Group coloring and group connectivity with non-isomorphic groups of the same order 同阶非同构群的群着色和群连通性
IF 1 3区 数学 Q2 Mathematics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2023.103816
Rikke Langhede, Carsten Thomassen

For every natural number k, there exists a planar graph which is Z2k-colorable, but not Γ-colorable for any other Abelian group Γ of order 2k. Its dual graph is Z2k-connected, but not Γ-connected for any other Abelian group Γ of order 2k.

对于每个自然数 k,都存在一个平面图,它是 Z2k 可着色的,但对于任何其他阶数为 2k 的阿贝尔群 Γ 而言,它不是 Γ 可着色的。它的对偶图是 Z2k 连通的,但对于任何其他阶数为 2k 的阿贝尔群 Γ 而言不是 Γ 连通的。
{"title":"Group coloring and group connectivity with non-isomorphic groups of the same order","authors":"Rikke Langhede,&nbsp;Carsten Thomassen","doi":"10.1016/j.ejc.2023.103816","DOIUrl":"10.1016/j.ejc.2023.103816","url":null,"abstract":"<div><p>For every natural number <span><math><mi>k</mi></math></span>, there exists a planar graph which is <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msubsup></math></span>-colorable, but not <span><math><mi>Γ</mi></math></span>-colorable for any other Abelian group <span><math><mi>Γ</mi></math></span> of order <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup></math></span>. Its dual graph is <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msubsup></math></span>-connected, but not <span><math><mi>Γ</mi></math></span>-connected for any other Abelian group <span><math><mi>Γ</mi></math></span> of order <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"119 ","pages":"Article 103816"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669823001336/pdfft?md5=4d2c19bd40b56019f9f9869e2dedb235&pid=1-s2.0-S0195669823001336-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135348627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extremal graphs without long paths and large cliques 无长路径和大小块的极值图
IF 1 3区 数学 Q2 Mathematics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2023.103807
Gyula O.H. Katona , Chuanqi Xiao

Let F be a family of graphs. A graph is called F-free if it does not contain any member of F as a subgraph. The Turán number of F is the maximum number of edges in an n-vertex F-free graph and is denoted by ex(n,F). The same maximum under the additional condition that the graphs are connected is exconn(n,F). Let Pk be the path on k vertices, Km be the clique on m vertices. We determine ex(n,{Pk,Km}) if k>2m1 and exconn(n,{Pk,Km}) if k>m for sufficiently large n.

设 F 是一个图族。如果一个图的子图中不包含 F 的任何成员,则该图称为无 F 图。F 的图兰数是一个 n 个顶点的无 F 图形中的最大边数,用 ex(n,F) 表示。在图形相连的附加条件下,同样的最大值是 exconn(n,F)。假设 Pk 是 k 个顶点上的路径,Km 是 m 个顶点上的小群。对于足够大的 n,如果 k>2m-1 ,我们将确定 ex(n,{Pk,Km});如果 k>m ,我们将确定 exconn(n,{Pk,Km})。
{"title":"Extremal graphs without long paths and large cliques","authors":"Gyula O.H. Katona ,&nbsp;Chuanqi Xiao","doi":"10.1016/j.ejc.2023.103807","DOIUrl":"10.1016/j.ejc.2023.103807","url":null,"abstract":"<div><p>Let <span><math><mi>F</mi></math></span> be a family of graphs. A graph is called <span><math><mi>F</mi></math></span>-free if it does not contain any member of <span><math><mi>F</mi></math></span> as a subgraph. The Turán number of <span><math><mi>F</mi></math></span> is the maximum number of edges in an <span><math><mi>n</mi></math></span>-vertex <span><math><mi>F</mi></math></span>-free graph and is denoted by <span><math><mrow><mo>ex</mo><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi>F</mi></mrow><mo>)</mo></mrow></mrow></math></span>. The same maximum under the additional condition that the graphs are connected is <span><math><mrow><msub><mrow><mo>ex</mo></mrow><mrow><mi>conn</mi></mrow></msub><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi>F</mi></mrow><mo>)</mo></mrow></mrow></math></span>. Let <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> be the path on <span><math><mi>k</mi></math></span> vertices, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> be the clique on <span><math><mi>m</mi></math></span> vertices. We determine <span><math><mrow><mo>ex</mo><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span> if <span><math><mrow><mi>k</mi><mo>&gt;</mo><mn>2</mn><mi>m</mi><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mo>ex</mo></mrow><mrow><mi>conn</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span> if <span><math><mrow><mi>k</mi><mo>&gt;</mo><mi>m</mi></mrow></math></span> for sufficiently large <span><math><mi>n</mi></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"119 ","pages":"Article 103807"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669823001245/pdfft?md5=1271cd195bffe5dd20cfa6c9c7c1cd05&pid=1-s2.0-S0195669823001245-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135388839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finding strong components using depth-first search 使用深度优先搜索查找强组件
IF 1 3区 数学 Q2 Mathematics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2023.103815
Robert E. Tarjan , Uri Zwick

We survey three algorithms that use depth-first search to find the strong components of a directed graph in linear time: (1) Tarjan’s algorithm; (2) a cycle-finding algorithm; and (3) a bidirectional search algorithm.

我们研究了三种使用深度优先搜索在线性时间内找到有向图强成分的算法:(1) 塔杨算法;(2) 循环查找算法;(3) 双向搜索算法。
{"title":"Finding strong components using depth-first search","authors":"Robert E. Tarjan ,&nbsp;Uri Zwick","doi":"10.1016/j.ejc.2023.103815","DOIUrl":"10.1016/j.ejc.2023.103815","url":null,"abstract":"<div><p>We survey three algorithms that use depth-first search to find the strong components of a directed graph in linear time: (1) Tarjan’s algorithm; (2) a cycle-finding algorithm; and (3) a bidirectional search algorithm.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"119 ","pages":"Article 103815"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135963016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variations on a tree 树的变体
IF 1 3区 数学 Q2 Mathematics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2023.103808
Pascale Kuntz , Bruno Pinaud

The family tree is like an inherited “object” that has been passed down through many generations, with many and varied definitions which distort the tree both as a combinatorial object and in its visual representations. Moreover, whether used by amateur genealogists or academic researchers, it is always contextualized by both validated exogenous knowledge and by implicit knowledge. In this paper, we explore introducing certain contextual information that is associated with a locally defined dissimilarity between individuals of the same generation. We propose a new heuristic based on a radial representation of a node-link model which seeks to preserve local proximities in the layout. This heuristic is applied in an original form, which is that of Pierre Rosenstiehl’s “scientific family tree”.

家谱就像一个世代相传的 "物品",其定义多种多样,无论是作为组合物品还是在视觉表现上,都会对家谱造成扭曲。此外,无论是业余家谱爱好者还是学术研究人员,使用家谱时都要考虑到有效的外在知识和内隐知识。在本文中,我们探讨了引入某些与同代个体之间局部定义的不相似性相关联的背景信息。我们提出了一种新的启发式方法,它基于节点-链接模型的径向表示法,旨在保留布局中的局部近似性。这种启发式以皮埃尔-罗森施蒂尔(Pierre Rosenstiehl)的 "科学家族树 "这一原始形式应用。
{"title":"Variations on a tree","authors":"Pascale Kuntz ,&nbsp;Bruno Pinaud","doi":"10.1016/j.ejc.2023.103808","DOIUrl":"10.1016/j.ejc.2023.103808","url":null,"abstract":"<div><p>The family tree is like an inherited “object” that has been passed down through many generations, with many and varied definitions which distort the tree both as a combinatorial object and in its visual representations. Moreover, whether used by amateur genealogists or academic researchers, it is always contextualized by both validated exogenous knowledge and by implicit knowledge. In this paper, we explore introducing certain contextual information that is associated with a locally defined dissimilarity between individuals of the same generation. We propose a new heuristic based on a radial representation of a node-link model which seeks to preserve local proximities in the layout. This heuristic is applied in an original form, which is that of Pierre Rosenstiehl’s “scientific family tree”.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"119 ","pages":"Article 103808"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134934597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meanders: A personal perspective to the memory of Pierre Rosenstiehl 蜿蜒曲折:从个人角度缅怀皮埃尔-罗森施蒂尔
IF 1 3区 数学 Q2 Mathematics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2023.103817
Alexander K. Zvonkin

 J’errais dans un méandre ;  J’avais trop de partis,  Trop compliqués, à prendre...  (Edmond Rostand,  Cyrano de Bergerac)

Meander is a self-avoiding closed curve on a plane which intersects a straight line in a given set of points. Meander is a very simple object. In the elementary school, we may ask children to draw a few meanders and to admire their strange beauty. In the middle school, we may ask children to perform an exhaustive search of the meanders with a small number of intersections with the line. Then, gradually, we start to perceive an incredible profoundness of the subject, whose relations go from enumeration to quantum field theory and string theory. Pierre Rosenstiehl was one of the pioneers in the study of the algorithmic aspects of meanders, and he also was a passionate connoisseur of labyrinths, of which the meanders are a particular case.
J'errais dans un méandre ; J'avais trop de partis, Trop compliqués, à prendre... (埃德蒙-罗斯坦,《西拉诺-德-贝热拉克》)蜿蜒是平面上的一条自避让闭合曲线,它在给定的点集中与一条直线相交。蜿蜒是一个非常简单的对象。在小学,我们可以让孩子们画几条蜿蜒的曲线,欣赏它们的奇异之美。到了初中,我们可以让孩子们对与直线有少量交点的蜿蜒线进行详尽的搜索。渐渐地,我们就会发现这门学科的深奥之处,从枚举到量子场论和弦理论。皮埃尔-罗森施蒂尔是研究蜿蜒曲折算法的先驱之一,同时他也是迷宫的忠实鉴赏家,而蜿蜒曲折正是迷宫的一种特殊形式。
{"title":"Meanders: A personal perspective to the memory of Pierre Rosenstiehl","authors":"Alexander K. Zvonkin","doi":"10.1016/j.ejc.2023.103817","DOIUrl":"10.1016/j.ejc.2023.103817","url":null,"abstract":"<div><p></p><blockquote><p> <!-->J’errais dans un méandre<!--> <!-->; <!--> <!-->J’avais trop de partis, <!--> <!-->Trop compliqués, à prendre... <!--> <!-->(Edmond Rostand, <!--> <!-->Cyrano de Bergerac)</p></blockquote><span> Meander is a self-avoiding closed curve on a plane which intersects<span><span> a straight line in a given set of points. Meander is a very simple object. In the elementary school, we may ask children to draw a few meanders and to admire their strange beauty. In the middle school, we may ask children to perform an exhaustive search of the meanders with a small number of intersections with the line. Then, gradually, we start to perceive an incredible profoundness of the subject, whose relations go from enumeration to quantum field theory and </span>string theory. Pierre Rosenstiehl was one of the pioneers in the study of the algorithmic aspects of meanders, and he also was a passionate connoisseur of labyrinths, of which the meanders are a particular case.</span></span></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"119 ","pages":"Article 103817"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135389045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The repetition threshold of episturmian sequences 表观序列的重复阈值
IF 1 3区 数学 Q2 Mathematics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2024.104001
L’ubomíra Dvořáková, Edita Pelantová

The repetition threshold of a class C of infinite d-ary sequences is the smallest real number r such that in the class C there exists a sequence that avoids e-powers for all e>r. This notion was introduced by Dejean in 1972 for the class of all sequences over a d-letter alphabet. Thanks to the effort of many authors over more than 30 years, the precise value of the repetition threshold in this class is known for every dN. The repetition threshold for the class of Sturmian sequences was determined by Carpi and de Luca in 2000. Sturmian sequences may be equivalently defined in various ways, therefore there exist many generalizations to larger alphabets. Rampersad, Shallit and Vandome in 2020 initiated a study of the repetition threshold for the class of balanced sequences – one of the possible generalizations of Sturmian sequences. Here, we focus on the class of d-ary episturmian sequences – another generalization of Sturmian sequences introduced by Droubay, Justin and Pirillo in 2001. We show that the repetition threshold of this class is reached by the d-bonacci sequence and its value equals 2+1t1, where t>1 is the unique positive root of the polynomial xdxd1x1.

无穷 dary 序列类 C 的重复阈值是最小实数 r,使得类 C 中存在一个序列,该序列在所有 e>r 条件下都避免了 e-powers 。这一概念是德让于 1972 年针对 d 字母表上的所有序列类提出的。经过 30 多年来许多学者的努力,我们已经知道该类中每 d∈N 的重复阈值的精确值。Sturmian 序列类的重复阈值是由 Carpi 和 de Luca 在 2000 年确定的。Sturmian 序列可以用各种方法等价定义,因此存在许多适用于更大字母表的概括。Rampersad, Shallit 和 Vandome 于 2020 年开始研究平衡序列类的重复阈值--这是 Sturmian 序列的可能概括之一。在此,我们重点研究 dary episturmian 序列类,这是 Droubay、Justin 和 Pirillo 于 2001 年提出的 Sturmian 序列的另一种概括。我们证明,该类序列的重复阈值由 d-bonacci 序列达到,其值等于 2+1t-1,其中 t>1 是多项式 xd-xd-1-⋯-x-1 的唯一正根。
{"title":"The repetition threshold of episturmian sequences","authors":"L’ubomíra Dvořáková,&nbsp;Edita Pelantová","doi":"10.1016/j.ejc.2024.104001","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.104001","url":null,"abstract":"<div><p>The repetition threshold of a class <span><math><mi>C</mi></math></span> of infinite <span><math><mi>d</mi></math></span>-ary sequences is the smallest real number <span><math><mi>r</mi></math></span> such that in the class <span><math><mi>C</mi></math></span> there exists a sequence that avoids <span><math><mi>e</mi></math></span>-powers for all <span><math><mrow><mi>e</mi><mo>&gt;</mo><mi>r</mi></mrow></math></span>. This notion was introduced by Dejean in 1972 for the class of all sequences over a <span><math><mi>d</mi></math></span>-letter alphabet. Thanks to the effort of many authors over more than 30 years, the precise value of the repetition threshold in this class is known for every <span><math><mrow><mi>d</mi><mo>∈</mo><mi>N</mi></mrow></math></span>. The repetition threshold for the class of Sturmian sequences was determined by Carpi and de Luca in 2000. Sturmian sequences may be equivalently defined in various ways, therefore there exist many generalizations to larger alphabets. Rampersad, Shallit and Vandome in 2020 initiated a study of the repetition threshold for the class of balanced sequences – one of the possible generalizations of Sturmian sequences. Here, we focus on the class of <span><math><mi>d</mi></math></span>-ary episturmian sequences – another generalization of Sturmian sequences introduced by Droubay, Justin and Pirillo in 2001. We show that the repetition threshold of this class is reached by the <span><math><mi>d</mi></math></span>-bonacci sequence and its value equals <span><math><mrow><mn>2</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></math></span>, where <span><math><mrow><mi>t</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> is the unique positive root of the polynomial <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mo>⋯</mo><mo>−</mo><mi>x</mi><mo>−</mo><mn>1</mn></mrow></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"120 ","pages":"Article 104001"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141242538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Testing the planar straight-line realizability of 2-trees with prescribed edge lengths 测试具有规定边长的 2 树的平面直线可实现性
IF 1 3区 数学 Q2 Mathematics Pub Date : 2024-06-01 DOI: 10.1016/j.ejc.2023.103806
Carlos Alegría, Manuel Borrazzo, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani

We study a classic problem introduced thirty years ago by Eades and Wormald. Let G=(V,E,λ) be a weighted planar graph, where λ:ER+ is a length function. The Fixed Edge-Length Planar Realization problem (FEPR for short) asks whether there exists a planar straight-line realization of G, i.e., a planar straight-line drawing of G where the Euclidean length of each edge eE is λ(e).

Cabello, Demaine, and Rote showed that the FEPR problem is NP-hard, even when λ assigns the same value to all the edges and the graph is triconnected. Since the existence of large triconnected minors is crucial to the known NP-hardness proofs, in this paper we investigate the computational complexity of the FEPR problem for weighted 2-trees, which are K4-minor free. We show the NP-hardness of the problem, even when λ assigns to the edges only up to four distinct lengths. Conversely, we show that the FEPR problem is linear-time solvable when λ assigns to the edges up to two distinct lengths, or when the input has a prescribed embedding. Furthermore, we consider the FEPR problem for weighted maximal outerplanar graphs and prove it to be linear-time solvable if their dual tree is a path, and cubic-time solvable if their dual tree is a caterpillar. Finally, we prove that the FEPR problem for weighted 2-trees is slice-wise polynomial in the length of the large path.

我们研究的是 Eades 和 Wormald 三十年前提出的一个经典问题。假设 G=(V,E,λ) 是一个加权平面图,其中 λ:E→R+ 是一个长度函数。固定边长平面实现问题(简称 FEPR)询问是否存在 G 的平面直线实现,即 G 的平面直线图,其中每条边 e∈E 的欧氏长度为 λ(e)。Cabello、Demaine 和 Rote 证明,即使 λ 对所有边赋以相同的值且图是三连接的,FEPR 问题也是 NP 难的。由于存在大的三连节点对于已知的 NP 难性证明至关重要,因此我们在本文中研究了加权 2 树的 FEPR 问题的计算复杂性,因为加权 2 树是无 K4 节点的。我们证明了该问题的 NP-困难性,即使 λ 只给边分配最多四个不同的长度。相反,我们证明当 λ 最多为两条不同长度的边赋值时,或者当输入具有规定的嵌入时,FEPR 问题是线性时间可解的。此外,我们还考虑了加权最大外平面图的 FEPR 问题,并证明如果它们的对树是一条路径,那么它是线性时间可解的;如果它们的对树是毛毛虫,那么它是立方时间可解的。最后,我们证明加权 2 树的 FEPR 问题与大路径的长度成片多项式关系。
{"title":"Testing the planar straight-line realizability of 2-trees with prescribed edge lengths","authors":"Carlos Alegría,&nbsp;Manuel Borrazzo,&nbsp;Giordano Da Lozzo,&nbsp;Giuseppe Di Battista,&nbsp;Fabrizio Frati,&nbsp;Maurizio Patrignani","doi":"10.1016/j.ejc.2023.103806","DOIUrl":"10.1016/j.ejc.2023.103806","url":null,"abstract":"<div><p>We study a classic problem introduced thirty years ago by Eades and Wormald. Let <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>,</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span><span> be a weighted planar graph, where </span><span><math><mrow><mi>λ</mi><mo>:</mo><mi>E</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> is a <em>length function</em>. The <span><span>Fixed Edge-Length Planar Realization</span></span> problem (<span>FEPR</span> for short) asks whether there exists a <em>planar straight-line realization</em> of <span><math><mi>G</mi></math></span>, i.e., a planar straight-line drawing of <span><math><mi>G</mi></math></span> where the Euclidean length of each edge <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi></mrow></math></span> is <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></math></span>.</p><p>Cabello, Demaine, and Rote showed that the <span>FEPR</span> problem is <span>NP</span>-hard, even when <span><math><mi>λ</mi></math></span> assigns the same value to all the edges and the graph is triconnected. Since the existence of large triconnected minors is crucial to the known <span>NP</span>-hardness proofs, in this paper we investigate the computational complexity of the <span>FEPR</span> problem for weighted 2-trees, which are <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-minor free. We show the <span>NP</span>-hardness of the problem, even when <span><math><mi>λ</mi></math></span> assigns to the edges only up to four distinct lengths. Conversely, we show that the <span>FEPR</span> problem is linear-time solvable when <span><math><mi>λ</mi></math></span> assigns to the edges up to two distinct lengths, or when the input has a prescribed embedding. Furthermore, we consider the <span>FEPR</span> problem for weighted maximal outerplanar graphs and prove it to be linear-time solvable if their dual tree is a path, and cubic-time solvable if their dual tree is a caterpillar. Finally, we prove that the <span>FEPR</span> problem for weighted 2-trees is slice-wise polynomial in the length of the large path.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"119 ","pages":"Article 103806"},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135638189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Journal of Combinatorics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1