首页 > 最新文献

European Journal of Combinatorics最新文献

英文 中文
Faces in rectilinear drawings of complete graphs 完全图的直线图中的面
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-07-11 DOI: 10.1016/j.ejc.2025.104217
Martin Balko , Anna Brötzner , Fabian Klute , Josef Tkadlec
We initiate the study of extremal problems about faces in convex rectilinear drawings of Kn, that is, drawings where vertices are represented by points in the plane in convex position and edges by line segments between the points representing the end-vertices. We show that if a convex rectilinear drawing of Kn does not contain a common interior point of at least three edges, then there is always a face forming a convex 5-gon while there are such drawings without any face forming a convex k-gon with k6.
A convex rectilinear drawing of Kn is regular if its vertices correspond to vertices of a regular convex n-gon. We characterize positive integers n for which regular drawings of Kn contain a face forming a convex 5-gon.
To our knowledge, this type of problems has not been considered in the literature before and so we also pose several new natural open problems.
我们开始研究Kn的凸直线图中关于面的极值问题,即顶点由平面上凸位置的点表示,边缘由代表端点的点之间的线段表示的图。我们证明,如果Kn的凸直线图不包含至少三条边的公共内点,则总有一个面形成凸5-gon,而存在这样的图,没有任何面形成k≥6的凸k-gon。如果一个Kn的凸直线图的顶点对应于一个正则凸n-gon的顶点,那么它就是正则的。我们描述正整数n,其中Kn的正则图包含一个形成凸5-gon的面。据我们所知,这类问题在以前的文献中没有被考虑过,所以我们也提出了几个新的自然开放问题。
{"title":"Faces in rectilinear drawings of complete graphs","authors":"Martin Balko ,&nbsp;Anna Brötzner ,&nbsp;Fabian Klute ,&nbsp;Josef Tkadlec","doi":"10.1016/j.ejc.2025.104217","DOIUrl":"10.1016/j.ejc.2025.104217","url":null,"abstract":"<div><div>We initiate the study of extremal problems about faces in <em>convex rectilinear drawings</em> of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, that is, drawings where vertices are represented by points in the plane in convex position and edges by line segments between the points representing the end-vertices. We show that if a convex rectilinear drawing of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> does not contain a common interior point of at least three edges, then there is always a face forming a convex 5-gon while there are such drawings without any face forming a convex <span><math><mi>k</mi></math></span>-gon with <span><math><mrow><mi>k</mi><mo>≥</mo><mn>6</mn></mrow></math></span>.</div><div>A convex rectilinear drawing of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is <em>regular</em> if its vertices correspond to vertices of a regular convex <span><math><mi>n</mi></math></span>-gon. We characterize positive integers <span><math><mi>n</mi></math></span> for which regular drawings of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> contain a face forming a convex 5-gon.</div><div>To our knowledge, this type of problems has not been considered in the literature before and so we also pose several new natural open problems.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104217"},"PeriodicalIF":1.0,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144596135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A decomposition of cylindric partitions and cylindric partitions into distinct parts 将圆柱分区和圆柱分区分解成不同的部分
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-07-11 DOI: 10.1016/j.ejc.2025.104219
Kağan Kurşungöz, Halı̇me Ömrüuzun Seyrek
We introduce the notion of pivot in a chain of skew diagrams in the context of cylindric partitions. Then, we show that cylindric partitions are in one-to-one correspondence with a pair consisting of an ordinary partition and a suitably restricted chain of pivots. Next, we show the general form of the generating function for cylindric partitions into distinct parts and give some examples. We prove part of a conjecture by Corteel, Dousse, and Uncu. The approaches and proofs are elementary and combinatorial.
我们在圆柱分区的背景下引入了斜图链中的枢轴的概念。然后,我们证明了圆柱分区与一个普通分区和一个适当限制的轴链组成的一对是一一对应的。接下来,我们给出了圆柱划分成不同部分的生成函数的一般形式,并给出了一些例子。我们证明了Corteel, Dousse和Uncu的部分猜想。方法和证明是基本的和组合的。
{"title":"A decomposition of cylindric partitions and cylindric partitions into distinct parts","authors":"Kağan Kurşungöz,&nbsp;Halı̇me Ömrüuzun Seyrek","doi":"10.1016/j.ejc.2025.104219","DOIUrl":"10.1016/j.ejc.2025.104219","url":null,"abstract":"<div><div>We introduce the notion of <em>pivot</em> in a chain of skew diagrams in the context of cylindric partitions. Then, we show that cylindric partitions are in one-to-one correspondence with a pair consisting of an ordinary partition and a suitably restricted chain of pivots. Next, we show the general form of the generating function for cylindric partitions into distinct parts and give some examples. We prove part of a conjecture by Corteel, Dousse, and Uncu. The approaches and proofs are elementary and combinatorial.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104219"},"PeriodicalIF":1.0,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144605306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proof of a conjecture on the shape-Wilf-equivalence for partially ordered patterns 部分有序模式的形状-威尔夫等价的一个猜想的证明
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-07-09 DOI: 10.1016/j.ejc.2025.104222
Lintong Wang, Sherry H.F. Yan
A partially ordered pattern (abbreviated POP) is a partially ordered set (poset) that generalizes the notion of a pattern when we are not concerned with the relative order of some of its letters. The notion of partially ordered patterns provides a convenient language to deal with large sets of permutation patterns. In analogy to the shape-Wilf-equivalence for permutation patterns, Burstein–Han–Kitaev–Zhang initiated the study of the shape-Wilf-equivalence for POPs which would result in the shape-Wilf-equivalence for large sets of permutation patterns. The main objective of this paper is to confirm a recent intriguing conjecture posed by Burstein–Han–Kitaev–Zhang concerning the shape-Wilf-equivalence for POPs of length k. This is accomplished by establishing a bijection between two sets of pattern-avoiding transversals of a given Young diagram.
部分有序模式(简称POP)是一种部分有序集合(poset),当我们不关心其中一些字母的相对顺序时,它概括了模式的概念。部分有序模式的概念提供了一种方便的语言来处理大量排列模式集。与排列模式的形状-威尔夫等价类似,Burstein-Han-Kitaev-Zhang发起了持久性有机污染物的形状-威尔夫等价研究,这将导致大排列模式集的形状-威尔夫等价。本文的主要目的是证实最近由Burstein-Han-Kitaev-Zhang提出的关于长度为k的pop的形状- wilf等价的有趣猜想。这是通过在给定Young图的两组避模截线之间建立双射来完成的。
{"title":"Proof of a conjecture on the shape-Wilf-equivalence for partially ordered patterns","authors":"Lintong Wang,&nbsp;Sherry H.F. Yan","doi":"10.1016/j.ejc.2025.104222","DOIUrl":"10.1016/j.ejc.2025.104222","url":null,"abstract":"<div><div>A partially ordered pattern (abbreviated POP) is a partially ordered set (poset) that generalizes the notion of a pattern when we are not concerned with the relative order of some of its letters. The notion of partially ordered patterns provides a convenient language to deal with large sets of permutation patterns. In analogy to the shape-Wilf-equivalence for permutation patterns, Burstein–Han–Kitaev–Zhang initiated the study of the shape-Wilf-equivalence for POPs which would result in the shape-Wilf-equivalence for large sets of permutation patterns. The main objective of this paper is to confirm a recent intriguing conjecture posed by Burstein–Han–Kitaev–Zhang concerning the shape-Wilf-equivalence for POPs of length <span><math><mi>k</mi></math></span>. This is accomplished by establishing a bijection between two sets of pattern-avoiding transversals of a given Young diagram.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104222"},"PeriodicalIF":1.0,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144579676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partial-dual genus polynomial of graphs 图的偏对偶格多项式
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-07-09 DOI: 10.1016/j.ejc.2025.104221
Zhiyun Cheng
Recently, Chmutov introduced the partial duality of ribbon graphs, which can be regarded as a generalization of the classical Euler-Poincaré duality. The partial-dual genus polynomial ɛG(z) is an enumeration of the partial duals of G by Euler genus. For an intersection graph derived from a given chord diagram, the partial-dual genus polynomial can be defined by considering the ribbon graph associated to the chord diagram. In this paper, we provide a combinatorial approach to the partial-dual genus polynomial in terms of intersection graphs without referring to chord diagrams. After extending the definition of the partial-dual genus polynomial from intersection graphs to all graphs, we prove that it satisfies the four-term relation of graphs. This provides an answer to a problem proposed by Chmutov (2023).
最近,Chmutov引入了带状图的部分对偶性,它可以看作是经典欧拉-庞卡罗对偶性的推广。偏对偶格多项式∂o G(z)是G的偏对偶的欧拉格的枚举。对于由弦图导出的交点图,可以通过考虑与弦图相关联的带状图来定义部分对偶格多项式。在本文中,我们提供了一种不用弦图而用交图表示的部分对偶格多项式的组合方法。将部分对偶格多项式的定义从交图推广到所有图,证明了它满足图的四项关系。这为Chmutov(2023)提出的问题提供了答案。
{"title":"Partial-dual genus polynomial of graphs","authors":"Zhiyun Cheng","doi":"10.1016/j.ejc.2025.104221","DOIUrl":"10.1016/j.ejc.2025.104221","url":null,"abstract":"<div><div>Recently, Chmutov introduced the partial duality of ribbon graphs, which can be regarded as a generalization of the classical Euler-Poincaré duality. The partial-dual genus polynomial <span><math><mrow><msup><mrow></mrow><mrow><mi>∂</mi></mrow></msup><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> is an enumeration of the partial duals of <span><math><mi>G</mi></math></span> by Euler genus. For an intersection graph derived from a given chord diagram, the partial-dual genus polynomial can be defined by considering the ribbon graph associated to the chord diagram. In this paper, we provide a combinatorial approach to the partial-dual genus polynomial in terms of intersection graphs without referring to chord diagrams. After extending the definition of the partial-dual genus polynomial from intersection graphs to all graphs, we prove that it satisfies the four-term relation of graphs. This provides an answer to a problem proposed by Chmutov (2023).</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104221"},"PeriodicalIF":1.0,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144579677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasisymmetric Schur Q-functions and peak Young quasisymmetric Schur functions 准对称舒尔q函数和峰值杨准对称舒尔函数
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-07-08 DOI: 10.1016/j.ejc.2025.104213
Seung-Il Choi , Sun-Young Nam , Young-Tak Oh
In this paper, we explore the relationship between quasisymmetric Schur Q-functions and peak Young quasisymmetric Schur functions. We introduce a bijection on SPIT(α) such that {wc(T)TSPIT(α)} and {wr(T)TSPIT(α)} share identical descent distributions. Here, SPIT(α) is the set of standard peak immaculate tableaux of shape α, and wc and wr denote column reading and row reading, respectively. By combining this equidistribution with the algorithm developed by Allen, Hallam, and Mason, we demonstrate that the transition matrix from the basis of quasisymmetric Schur Q-functions to the basis of peak Young quasisymmetric Schur functions is upper triangular, with entries being non-negative integers. Furthermore, we provide explicit descriptions of the expansion of peak Young quasisymmetric Schur functions in specific cases, in terms of quasisymmetric Schur Q-functions. We also investigate the combinatorial properties of standard peak immaculate tableaux, standard Young composition tableaux, and standard peak Young composition tableaux. We provide a hook length formula for SPIT(α) and show that standard Young composition tableaux and standard peak Young composition tableaux can be each bijectively mapped to words satisfying suitable conditions. Especially, cases of compositions with rectangular shape are examined in detail.
本文探讨了拟对称Schur q函数与峰值Young拟对称Schur函数之间的关系。我们在SPIT(α)上引入一个双射,使得{wc(T)∣T∈SPIT(α)}和{wr(T)∣T∈SPIT(α)}具有相同的下降分布。其中,SPIT(α)为形状为α的标准峰完美表集合,wc和wr分别表示列读取和行读取。通过将该等分布与Allen、Hallam和Mason提出的算法相结合,证明了从准对称Schur q -函数基到峰值Young准对称Schur函数基的转移矩阵是上三角形的,其项为非负整数。在此基础上,用准对称Schur q函数给出了特定情况下峰值Young准对称Schur函数的展开式。我们还研究了标准峰无原色表、标准杨构图表和标准杨构图表的组合特性。我们给出了一个SPIT(α)的钩长公式,并证明了标准Young组合表和标准峰值Young组合表都可以客观地映射到满足适当条件的单词上。特别对矩形组合物的情况进行了详细的研究。
{"title":"Quasisymmetric Schur Q-functions and peak Young quasisymmetric Schur functions","authors":"Seung-Il Choi ,&nbsp;Sun-Young Nam ,&nbsp;Young-Tak Oh","doi":"10.1016/j.ejc.2025.104213","DOIUrl":"10.1016/j.ejc.2025.104213","url":null,"abstract":"<div><div>In this paper, we explore the relationship between quasisymmetric Schur <span><math><mi>Q</mi></math></span>-functions and peak Young quasisymmetric Schur functions. We introduce a bijection on <span><math><mrow><mi>SPIT</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> such that <span><math><mrow><mo>{</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>∣</mo><mi>T</mi><mo>∈</mo><mi>SPIT</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow><mo>}</mo></mrow></math></span> and <span><math><mrow><mo>{</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>∣</mo><mi>T</mi><mo>∈</mo><mi>SPIT</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow><mo>}</mo></mrow></math></span> share identical descent distributions. Here, <span><math><mrow><mi>SPIT</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> is the set of standard peak immaculate tableaux of shape <span><math><mi>α</mi></math></span>, and <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> denote column reading and row reading, respectively. By combining this equidistribution with the algorithm developed by Allen, Hallam, and Mason, we demonstrate that the transition matrix from the basis of quasisymmetric Schur <span><math><mi>Q</mi></math></span>-functions to the basis of peak Young quasisymmetric Schur functions is upper triangular, with entries being non-negative integers. Furthermore, we provide explicit descriptions of the expansion of peak Young quasisymmetric Schur functions in specific cases, in terms of quasisymmetric Schur <span><math><mi>Q</mi></math></span>-functions. We also investigate the combinatorial properties of standard peak immaculate tableaux, standard Young composition tableaux, and standard peak Young composition tableaux. We provide a hook length formula for <span><math><mrow><mi>SPIT</mi><mrow><mo>(</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> and show that standard Young composition tableaux and standard peak Young composition tableaux can be each bijectively mapped to words satisfying suitable conditions. Especially, cases of compositions with rectangular shape are examined in detail.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104213"},"PeriodicalIF":1.0,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144571712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond the pseudoforest strong Nine Dragon Tree Theorem 超越伪林强九龙树定理
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-07-08 DOI: 10.1016/j.ejc.2025.104214
Sebastian Mies , Benjamin Moore , Evelyne Smith-Roberge
The pseudoforest version of the Strong Nine Dragon Tree Conjecture states that if a graph G has maximum average degree mad(G)=2maxHGe(H)v(H) at most 2(k+dd+k+1), then it has a decomposition into k+1 pseudoforests where in one pseudoforest F the components of F have at most d edges. This was proven in 2020 in Grout and Moore (2020). We strengthen this theorem by showing that we can find such a decomposition where additionally F is acyclic, the diameter of the components of F is at most 2+2, where =d1k+1, and at most 2+1 if d1mod(k+1). Furthermore, for any component K of F and any zN, we have diam(K)2z if e(K)dz(k1)+1. We also show that both diameter bounds are best possible as an extension for both the Strong Nine Dragon Tree Conjecture for pseudoforests and its original conjecture for forests. In fact, they are still optimal even if we only enforce F to have any constant maximum degree, instead of enforcing every component of F to have at most d edges.
强九龙树猜想的伪森林版本认为,如果图G的最大平均度≥2maxH (G)≥2(k+dd+k+1),则图G分解为k+1个伪森林,其中一个伪森林F中F的分量最多有d条边。这在2020年的Grout和Moore(2020)中得到了证明。我们通过证明我们可以找到这样的分解来加强这个定理,其中额外的F是无环的,F的分量的直径最多为2r +2,其中r =d - 1k+1,并且如果d≡1mod(k+1),最多为2r +1。更进一步,对于F的任意分量K和任意z∈N,当e(K)≥d - z(K−1)+1,我们有diam(K)≤2z。我们还证明了这两个直径界都是假森林的强九龙树猜想及其原始猜想的最佳扩展。事实上,它们仍然是最优的即使我们只强制F有一个常数最大度,而不是强制F的每个分量最多有d条边。
{"title":"Beyond the pseudoforest strong Nine Dragon Tree Theorem","authors":"Sebastian Mies ,&nbsp;Benjamin Moore ,&nbsp;Evelyne Smith-Roberge","doi":"10.1016/j.ejc.2025.104214","DOIUrl":"10.1016/j.ejc.2025.104214","url":null,"abstract":"<div><div>The pseudoforest version of the Strong Nine Dragon Tree Conjecture states that if a graph <span><math><mi>G</mi></math></span> has maximum average degree <span><math><mrow><mi>m</mi><mi>a</mi><mi>d</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>2</mn><msub><mrow><mo>max</mo></mrow><mrow><mi>H</mi><mo>⊆</mo><mi>G</mi></mrow></msub><mfrac><mrow><mi>e</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow><mrow><mi>v</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mfrac></mrow></math></span> at most <span><math><mrow><mn>2</mn><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mo>+</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>, then it has a decomposition into <span><math><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></math></span> pseudoforests where in one pseudoforest <span><math><mi>F</mi></math></span> the components of <span><math><mi>F</mi></math></span> have at most <span><math><mi>d</mi></math></span> edges. This was proven in 2020 in Grout and Moore (2020). We strengthen this theorem by showing that we can find such a decomposition where additionally <span><math><mi>F</mi></math></span> is acyclic, the diameter of the components of <span><math><mi>F</mi></math></span> is at most <span><math><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>2</mn></mrow></math></span>, where <span><math><mrow><mi>ℓ</mi><mo>=</mo><mfenced><mrow><mfrac><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mrow></mfenced></mrow></math></span>, and at most <span><math><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></math></span> if <span><math><mrow><mi>d</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>mod</mo><mspace></mspace><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. Furthermore, for any component <span><math><mi>K</mi></math></span> of <span><math><mi>F</mi></math></span> and any <span><math><mrow><mi>z</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, we have <span><math><mrow><mi>d</mi><mi>i</mi><mi>a</mi><mi>m</mi><mrow><mo>(</mo><mi>K</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>z</mi></mrow></math></span> if <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>K</mi><mo>)</mo></mrow><mo>≥</mo><mi>d</mi><mo>−</mo><mi>z</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>. We also show that both diameter bounds are best possible as an extension for both the Strong Nine Dragon Tree Conjecture for pseudoforests and its original conjecture for forests. In fact, they are still optimal even if we only enforce <span><math><mi>F</mi></math></span> to have any constant maximum degree, instead of enforcing every component of <span><math><mi>F</mi></math></span> to have at most <span><math><mi>d</mi></math></span> edges.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104214"},"PeriodicalIF":1.0,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144579675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1-planar unit distance graphs 一平面单位距离图
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-07-04 DOI: 10.1016/j.ejc.2025.104212
Panna Gehér , Géza Tóth
A matchstick graph is a plane graph with edges drawn as unit distance line segments. This class of graphs was introduced by Harborth who conjectured that a matchstick graph on n vertices can have at most 3n12n3 edges. Recently, his conjecture was settled by Lavollée and Swanepoel. In this paper we consider 1-planar unit distance graphs. We say that a graph is a 1-planar unit distance graph if it can be drawn in the plane such that all edges are drawn as unit distance line segments while each of them are involved in at most one crossing. We show that such graphs on n vertices can have at most 3nn4/15 edges, which is almost tight. We also investigate some generalizations, namely k-planar and k-quasiplanar unit distance graphs.
火柴棍图是一种平面图,其边绘制为单位距离线段。这类图是由Harborth引入的,他推测一个有n个顶点的火柴棍图最多可以有⌊3n−12n−3⌋条边。最近,他的猜想得到了lavollsamade和Swanepoel的证实。本文考虑一维单位距离图。如果一个图可以在平面上绘制,使得所有的边都被绘制为单位距离线段,并且每条线段最多有一个相交,我们就说这个图是一个平面单位距离图。我们证明了这样的图在n个顶点上最多可以有3n−n4/15条边,这几乎是紧的。我们还研究了一些推广,即k-平面和k-拟平面单位距离图。
{"title":"1-planar unit distance graphs","authors":"Panna Gehér ,&nbsp;Géza Tóth","doi":"10.1016/j.ejc.2025.104212","DOIUrl":"10.1016/j.ejc.2025.104212","url":null,"abstract":"<div><div>A matchstick graph is a plane graph with edges drawn as unit distance line segments. This class of graphs was introduced by Harborth who conjectured that a matchstick graph on <span><math><mi>n</mi></math></span> vertices can have at most <span><math><mrow><mo>⌊</mo><mn>3</mn><mi>n</mi><mo>−</mo><msqrt><mrow><mn>12</mn><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msqrt><mo>⌋</mo></mrow></math></span> edges. Recently, his conjecture was settled by Lavollée and Swanepoel. In this paper we consider 1-planar unit distance graphs. We say that a graph is a 1-planar unit distance graph if it can be drawn in the plane such that all edges are drawn as unit distance line segments while each of them are involved in at most one crossing. We show that such graphs on <span><math><mi>n</mi></math></span> vertices can have at most <span><math><mrow><mn>3</mn><mi>n</mi><mo>−</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></mroot><mo>/</mo><mn>15</mn></mrow></math></span> edges, which is almost tight. We also investigate some generalizations, namely <span><math><mi>k</mi></math></span>-planar and <span><math><mi>k</mi></math></span>-quasiplanar unit distance graphs.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104212"},"PeriodicalIF":1.0,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144549398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extensions and applications of the Tuza-Vestergaard theorem tuza - vesterggaard定理的扩展与应用
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-07-01 DOI: 10.1016/j.ejc.2025.104201
Michael A. Henning , Anders Yeo
<div><div>The transversal number <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> of a hypergraph <span><math><mi>H</mi></math></span> is the minimum number of vertices that intersect every edge of <span><math><mi>H</mi></math></span>. A 6-uniform hypergraph has all edges of size 6. On 10 November 2000 Tuza and Vestergaard (2002) conjectured that if <span><math><mi>H</mi></math></span> is a 3-regular 6-uniform hypergraph of order <span><math><mi>n</mi></math></span>, then <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>n</mi></mrow></math></span>. This conjecture was recently proven by the Henning and Yeo (2023) and is now called the Tuza-Vestergaard Theorem. In this paper we extend the Tuza-Vestergaard Theorem by relaxing the 3-regularity constraint and allowing bounded maximum degree 4. We present several applications of the Tuza-Vestergaard Theorem and its extension. We obtain best known upper bounds to date on the transversal number of a (general) 6-uniform hypergraph <span><math><mi>H</mi></math></span> of order <span><math><mi>n</mi></math></span> and size <span><math><mi>m</mi></math></span>. In particular, if <span><math><mi>H</mi></math></span> is a 4-regular 6-uniform hypergraph of order <span><math><mi>n</mi></math></span>, then we show that <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>7</mn></mrow></mfrac><mi>n</mi></mrow></math></span>. The Tuza constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> is defined by <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>=</mo><mo>sup</mo><mfrac><mrow><mi>τ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>+</mo><mi>m</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></mfrac></mrow></math></span>, where the supremum is taken over the class of all 6-uniform hypergraphs <span><math><mi>H</mi></math></span>. Since 1990 the exact value of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> has yet to be determined. We show that <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>210</mn></mrow></mfrac></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac></mrow></math></span> is conjectured to be the correct bound. Moreover we show that if <span><math><mi>G</mi></math></span> is a graph of order <span><math><mi>n</mi></math></span> with <span><math><mrow><mi>δ</mi><mrow><mo>(<
超图H的截线数τ(H)是与H的每条边相交的最小顶点数。一个6-均匀超图的所有边的长度为6。2000年11月10日,Tuza和vesterggaard(2002)推测,如果H是一个n阶的3-正则6-一致超图,则τ(H)≤14n。这个猜想最近被Henning和Yeo(2023)证明,现在被称为tuza - vesterggaard定理。本文通过放宽3正则约束并允许有界最大次4,扩展了tuza - vesterggaard定理。给出了tuza - vesterggaard定理及其推广的几个应用。我们得到了大小为m的n阶(一般)6-均匀超图H的截数的已知上界。特别地,如果H是n阶的4-正则6-均匀超图,则我们证明了τ(H)≤27n。图萨常数c6定义为c6=supτ(H)n(H)+m(H),其中,所有6-一致超图H的类都取至极值。自1990年以来,c6的确切值尚未确定。我们证明了16≤c6≤16+1210,其中c6=16被推测为正确的界。进一步证明了如果G是n阶图且δ(G)≥6,则γt(G)≤413+6217n,其中γt(G)表示G的总支配数,推测γt(G)≤413n为正确界。这些边界改进了迄今为止最知名的边界。
{"title":"Extensions and applications of the Tuza-Vestergaard theorem","authors":"Michael A. Henning ,&nbsp;Anders Yeo","doi":"10.1016/j.ejc.2025.104201","DOIUrl":"10.1016/j.ejc.2025.104201","url":null,"abstract":"&lt;div&gt;&lt;div&gt;The transversal number &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; of a hypergraph &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is the minimum number of vertices that intersect every edge of &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. A 6-uniform hypergraph has all edges of size 6. On 10 November 2000 Tuza and Vestergaard (2002) conjectured that if &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a 3-regular 6-uniform hypergraph of order &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. This conjecture was recently proven by the Henning and Yeo (2023) and is now called the Tuza-Vestergaard Theorem. In this paper we extend the Tuza-Vestergaard Theorem by relaxing the 3-regularity constraint and allowing bounded maximum degree 4. We present several applications of the Tuza-Vestergaard Theorem and its extension. We obtain best known upper bounds to date on the transversal number of a (general) 6-uniform hypergraph &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of order &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and size &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. In particular, if &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a 4-regular 6-uniform hypergraph of order &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, then we show that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The Tuza constant &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is defined by &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;sup&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where the supremum is taken over the class of all 6-uniform hypergraphs &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Since 1990 the exact value of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; has yet to be determined. We show that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;210&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is conjectured to be the correct bound. Moreover we show that if &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a graph of order &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104201"},"PeriodicalIF":1.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144518192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patterns in multi-dimensional permutations 多维排列中的模式
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-07-01 DOI: 10.1016/j.ejc.2025.104203
Shaoshi Chen , Hanqian Fang , Sergey Kitaev , Candice X.T. Zhang
In this paper, we propose a general framework that extends the theory of permutation patterns to higher dimensions and unifies several combinatorial objects studied in the literature. Our approach involves introducing the concept of a “level” for an element in a multi-dimensional permutation, which can be defined in multiple ways. We consider two natural definitions of a level, each establishing connections to other combinatorial sequences found in the Online Encyclopedia of Integer Sequences (OEIS).
Our framework allows us to offer combinatorial interpretations for various sequences found in the OEIS, many of which previously lacked such interpretations. As a notable example, we introduce an elegant combinatorial interpretation for the Springer numbers: they count weakly increasing 3-dimensional permutations under the definition of levels determined by maximal entries.
在本文中,我们提出了一个将排列模式理论扩展到更高维度的通用框架,并将文献中研究的几种组合对象统一起来。我们的方法包括为多维排列中的元素引入“级别”的概念,它可以用多种方式定义。我们考虑级别的两个自然定义,每个定义都建立了与整数序列在线百科全书(OEIS)中发现的其他组合序列的联系。我们的框架允许我们为OEIS中发现的各种序列提供组合解释,其中许多序列以前缺乏这样的解释。作为一个值得注意的例子,我们为施普林格数引入了一种优雅的组合解释:它们在由最大条目决定的级别定义下计数弱增加的三维排列。
{"title":"Patterns in multi-dimensional permutations","authors":"Shaoshi Chen ,&nbsp;Hanqian Fang ,&nbsp;Sergey Kitaev ,&nbsp;Candice X.T. Zhang","doi":"10.1016/j.ejc.2025.104203","DOIUrl":"10.1016/j.ejc.2025.104203","url":null,"abstract":"<div><div>In this paper, we propose a general framework that extends the theory of permutation patterns to higher dimensions and unifies several combinatorial objects studied in the literature. Our approach involves introducing the concept of a “level” for an element in a multi-dimensional permutation, which can be defined in multiple ways. We consider two natural definitions of a level, each establishing connections to other combinatorial sequences found in the Online Encyclopedia of Integer Sequences (OEIS).</div><div>Our framework allows us to offer combinatorial interpretations for various sequences found in the OEIS, many of which previously lacked such interpretations. As a notable example, we introduce an elegant combinatorial interpretation for the Springer numbers: they count weakly increasing 3-dimensional permutations under the definition of levels determined by maximal entries.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104203"},"PeriodicalIF":1.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144518193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the C-diversity of intersecting k-graphs 关于相交k图的c分集
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-06-23 DOI: 10.1016/j.ejc.2025.104199
Peter Frankl , Jian Wang
<div><div>Let <span><math><mrow><mi>F</mi><mo>⊂</mo><mfenced><mrow><mfrac><mrow><mi>X</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> be a family consisting of <span><math><mi>k</mi></math></span>-subsets of the <span><math><mi>n</mi></math></span>-set <span><math><mi>X</mi></math></span>. Suppose that <span><math><mi>F</mi></math></span> is intersecting, i.e., <span><math><mrow><mi>F</mi><mo>∩</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≠</mo><mo>0̸</mo></mrow></math></span> for all <span><math><mrow><mi>F</mi><mo>,</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>F</mi></mrow></math></span>. Let <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> be the maximum degree of <span><math><mi>F</mi></math></span>. For a constant <span><math><mrow><mi>C</mi><mo>≥</mo><mn>1</mn></mrow></math></span> the <span><math><mi>C</mi></math></span><em>-diversity</em> <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> is defined as <span><math><mrow><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>−</mo><mi>C</mi><mi>Δ</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>, which was introduced by Magnan, Palmer and Wood recently. Define <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>123</mn></mrow></msub><mo>=</mo><mfenced><mrow><mi>F</mi><mo>∈</mo><mfenced><mrow><mfrac><mrow><mi>X</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></mfenced><mo>:</mo><mrow><mo>|</mo><mi>F</mi><mo>∩</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></mrow><mo>|</mo></mrow><mo>=</mo><mn>2</mn></mrow></mfenced></mrow></math></span>. It has <span><math><mi>C</mi></math></span>-diversity <span><math><mrow><mrow><mo>(</mo><mn>3</mn><mo>−</mo><mn>2</mn><mi>C</mi><mo>)</mo></mrow><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow></math></span>. The main result shows that for <span><math><mrow><mn>1</mn><mo><</mo><mi>C</mi><mo><</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≥</mo><mfrac><mrow><mn>42</mn></mrow><mrow><mn>3</mn><mo>−</mo><mn>2</mn><mi>C</mi></mrow></mfrac><mi>k</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow><mo>≤</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>C</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>123</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> with equality if and only if <span><math><mi>F</mi></math></span> is isomorphic to <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>123</mn></mrow></msub></math></span>. For the case of ordinary diversity <span><math><mrow><mo>(</mo><mi>C</mi><mo>=</mo><mn
设F∧Xk是一个由n集合x的k个子集组成的族,设F相交,即对于所有F,F′∈F,F∩F′≠0′。设Δ(F)为F的最大度。对于常数C≥1,C分集γC(F)定义为|F|−CΔ(F),这是最近由Magnan, Palmer和Wood引入的。定义F123 = F∈Xk: | F∩{1,2,3}| = 2。它具有c -多样性(3−2C)n−3k−2。主要结果表明,对于1<;C<;32和n≥423−2Ck, γC(F)≤γC(F123)当且仅当F同构于F123时,二者相等。对于普通分集(C=1)的情况,证明了它的强稳定性。
{"title":"On the C-diversity of intersecting k-graphs","authors":"Peter Frankl ,&nbsp;Jian Wang","doi":"10.1016/j.ejc.2025.104199","DOIUrl":"10.1016/j.ejc.2025.104199","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be a family consisting of &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-subsets of the &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-set &lt;span&gt;&lt;math&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Suppose that &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is intersecting, i.e., &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mo&gt;0̸&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be the maximum degree of &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. For a constant &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; the &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;em&gt;-diversity&lt;/em&gt; &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is defined as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, which was introduced by Magnan, Palmer and Wood recently. Define &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;123&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. It has &lt;span&gt;&lt;math&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-diversity &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The main result shows that for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;42&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;123&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with equality if and only if &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is isomorphic to &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;123&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. For the case of ordinary diversity &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104199"},"PeriodicalIF":1.0,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144338491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Journal of Combinatorics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1