Pub Date : 2024-09-05DOI: 10.1016/j.ejc.2024.104056
Matthias Hamann
We prove that every locally finite quasi-transitive graph that does not contain as a minor is quasi-isometric to some planar quasi-transitive locally finite graph. This solves a problem of Esperet and Giocanti and improves their recent result that such graphs are quasi-isometric to some planar graph of bounded degree.
{"title":"Quasi-transitive K∞-minor free graphs","authors":"Matthias Hamann","doi":"10.1016/j.ejc.2024.104056","DOIUrl":"10.1016/j.ejc.2024.104056","url":null,"abstract":"<div><p>We prove that every locally finite quasi-transitive graph that does not contain <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> as a minor is quasi-isometric to some planar quasi-transitive locally finite graph. This solves a problem of Esperet and Giocanti and improves their recent result that such graphs are quasi-isometric to some planar graph of bounded degree.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001410/pdfft?md5=363aad4468d615e2be63ead62bf9c355&pid=1-s2.0-S0195669824001410-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1016/j.ejc.2024.104055
Jacob A. White
We study the chromatic quasisymmetric class function of a linearized combinatorial Hopf monoid. Given a linearized combinatorial Hopf monoid , and an -structure on a set , there are proper colorings of , generalizing graph colorings and poset partitions. We show that the automorphism group of acts on the set of proper colorings. The chromatic quasisymmetric class function enumerates the fixed points of this action, weighting each coloring with a monomial. For the Hopf monoid of graphs this invariant generalizes Stanley’s chromatic symmetric function and specializes to the orbital chromatic polynomial of Cameron and Kayibi. We deduce various inequalities for the associated orbital polynomial invariants. We apply these results to several examples related to enumerating graph colorings, poset partitions, generic functions on matroids or generalized permutohedra, and others.
我们研究线性化组合霍普夫单元的色度准对称类函数。给定一个线性化组合霍普夫单元 H 和一个集合 N 上的 H 结构 h,就有 h 的适当着色,即图形着色和正集分割的一般化。我们证明了 h 的自变群作用于适当着色的集合。色度准对称类函数枚举了这一作用的定点,用一个单项式对每个着色进行加权。对于图的 Hopf monoid,这个不变量概括了斯坦利的色度对称函数,并特化为卡梅隆和卡伊比的轨道色度多项式。我们推导出了相关轨道多项式不变量的各种不等式。我们将这些结果应用于与枚举图着色、poset 分区、矩阵上的泛函或广义 permutohedra 等相关的几个例子中。
{"title":"Chromatic quasisymmetric class functions for combinatorial Hopf monoids","authors":"Jacob A. White","doi":"10.1016/j.ejc.2024.104055","DOIUrl":"10.1016/j.ejc.2024.104055","url":null,"abstract":"<div><p>We study the chromatic quasisymmetric class function of a linearized combinatorial Hopf monoid. Given a linearized combinatorial Hopf monoid <span><math><mi>H</mi></math></span>, and an <span><math><mi>H</mi></math></span>-structure <span><math><mi>h</mi></math></span> on a set <span><math><mi>N</mi></math></span>, there are proper colorings of <span><math><mi>h</mi></math></span>, generalizing graph colorings and poset partitions. We show that the automorphism group of <span><math><mi>h</mi></math></span> acts on the set of proper colorings. The chromatic quasisymmetric class function enumerates the fixed points of this action, weighting each coloring with a monomial. For the Hopf monoid of graphs this invariant generalizes Stanley’s chromatic symmetric function and specializes to the orbital chromatic polynomial of Cameron and Kayibi. We deduce various inequalities for the associated orbital polynomial invariants. We apply these results to several examples related to enumerating graph colorings, poset partitions, generic functions on matroids or generalized permutohedra, and others.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001409/pdfft?md5=63ba3288644e8ff2f9de5b9b878244e1&pid=1-s2.0-S0195669824001409-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-24DOI: 10.1016/j.ejc.2024.104045
Milad Ahanjideh , Martin Milanič , Mary Servatius
We continue the study of balanceable graphs, defined by Caro, Hansberg, and Montejano in 2021 as graphs such that any 2-coloring of the edges of a sufficiently large complete graph containing sufficiently many edges of each color contains a balanced copy of (that is, a copy with half the edges of each color). While the problem of recognizing balanceable graphs was conjectured to be -complete by Dailly, Hansberg, and Ventura in 2021, balanceable graphs admit an elegant combinatorial characterization: a graph is balanceable if and only there exist two vertex subsets, one containing half of all the graph’s edges and another one such that the corresponding cut contains half of all the graph’s edges. We consider a special case of this property, namely when one of the two sets is a vertex cover, and call the corresponding graphs simply balanceable. We prove a number of results on balanceable and simply balanceable regular graphs. First, we characterize simply balanceable regular graphs via a condition involving the independence number of the graph. Second, we address a question of Dailly, Hansberg, and Ventura from 2021 and show that every cubic graph is balanceable. Third, using Brooks’ theorem, we show that every 4-regular graph with order divisible by 4 is balanceable. Finally, we show that it is -complete to determine if a 9-regular graph is simply balanceable.
{"title":"On balanceable and simply balanceable regular graphs","authors":"Milad Ahanjideh , Martin Milanič , Mary Servatius","doi":"10.1016/j.ejc.2024.104045","DOIUrl":"10.1016/j.ejc.2024.104045","url":null,"abstract":"<div><p>We continue the study of balanceable graphs, defined by Caro, Hansberg, and Montejano in 2021 as graphs <span><math><mi>G</mi></math></span> such that any 2-coloring of the edges of a sufficiently large complete graph containing sufficiently many edges of each color contains a balanced copy of <span><math><mi>G</mi></math></span> (that is, a copy with half the edges of each color). While the problem of recognizing balanceable graphs was conjectured to be <span><math><mi>NP</mi></math></span>-complete by Dailly, Hansberg, and Ventura in 2021, balanceable graphs admit an elegant combinatorial characterization: a graph is balanceable if and only there exist two vertex subsets, one containing half of all the graph’s edges and another one such that the corresponding cut contains half of all the graph’s edges. We consider a special case of this property, namely when one of the two sets is a vertex cover, and call the corresponding graphs simply balanceable. We prove a number of results on balanceable and simply balanceable regular graphs. First, we characterize simply balanceable regular graphs via a condition involving the independence number of the graph. Second, we address a question of Dailly, Hansberg, and Ventura from 2021 and show that every cubic graph is balanceable. Third, using Brooks’ theorem, we show that every 4-regular graph with order divisible by 4 is balanceable. Finally, we show that it is <span><math><mi>NP</mi></math></span>-complete to determine if a 9-regular graph is simply balanceable.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001306/pdfft?md5=129ec5810b9eb2e86760507f0c3a96ba&pid=1-s2.0-S0195669824001306-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.ejc.2024.104046
Morgan Bauer, Keith Copenhaver
The pop-stack-sorting process is a variation of the stack-sorting process. We consider a deterministic version of this process. We prove a lemma which characterises interior elements of increasing runs after iterations of the process and provide a new lower bound of for the number of iterations of the process to fully sort a uniformly randomly chosen permutation of length .
pop 堆栈排序过程是堆栈排序过程的一种变体。我们考虑这一过程的确定性版本。我们证明了一个 Lemma,该 Lemma 描述了该过程 t 次迭代后递增运行的内部元素,并提供了一个新的下限,即对长度为 n 的均匀随机选择的排列进行完全排序的过程的迭代次数为 35n。
{"title":"A new lower bound for deterministic pop-stack-sorting","authors":"Morgan Bauer, Keith Copenhaver","doi":"10.1016/j.ejc.2024.104046","DOIUrl":"10.1016/j.ejc.2024.104046","url":null,"abstract":"<div><p>The pop-stack-sorting process is a variation of the stack-sorting process. We consider a deterministic version of this process. We prove a lemma which characterises interior elements of increasing runs after <span><math><mi>t</mi></math></span> iterations of the process and provide a new lower bound of <span><math><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mi>n</mi></mrow></math></span> for the number of iterations of the process to fully sort a uniformly randomly chosen permutation of length <span><math><mi>n</mi></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001318/pdfft?md5=8663c72484e70fd60026d39c421da4b1&pid=1-s2.0-S0195669824001318-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1016/j.ejc.2024.104043
Amena Assem , Marcel Koloschin , Max Pitz
Nash-Williams proved in 1960 that a finite graph admits a -arc-connected orientation if and only if it is -edge-connected, and conjectured that the same result should hold for all infinite graphs, too.
Progress on Nash-Williams’s problem was made by C. Thomassen, who proved in 2016 that all -edge-connected infinite graphs admit a -arc connected orientation, and by the first author, who recently showed that edge-connectivity of suffices for locally-finite, 1-ended graphs.
In the present article, we establish the optimal bound in Nash-Williams’s conjecture for all locally finite graphs with countably many ends.
纳什-威廉姆斯(Nash-Williams)在 1960 年证明,当且仅当一个有限图是 2k 边连接时,它才会有一个 k 弧连接的方向,并猜想同样的结果也应该适用于所有无限图。托马森(C. Thomassen)在 2016 年证明了所有 8k 边连接的无限图都承认 k 弧连接的方向,而第一作者最近也证明了对于局部有限的 1 端图,4k 的边连接性就足够了。在本文中,我们为所有具有可数端点的局部有限图建立了 Nash-Williams 猜想中的最优约束 2k。
{"title":"The Nash-Williams orientation theorem for graphs with countably many ends","authors":"Amena Assem , Marcel Koloschin , Max Pitz","doi":"10.1016/j.ejc.2024.104043","DOIUrl":"10.1016/j.ejc.2024.104043","url":null,"abstract":"<div><p>Nash-Williams proved in 1960 that a finite graph admits a <span><math><mi>k</mi></math></span>-arc-connected orientation if and only if it is <span><math><mrow><mn>2</mn><mi>k</mi></mrow></math></span>-edge-connected, and conjectured that the same result should hold for all infinite graphs, too.</p><p>Progress on Nash-Williams’s problem was made by C. Thomassen, who proved in 2016 that all <span><math><mrow><mn>8</mn><mi>k</mi></mrow></math></span>-edge-connected infinite graphs admit a <span><math><mi>k</mi></math></span>-arc connected orientation, and by the first author, who recently showed that edge-connectivity of <span><math><mrow><mn>4</mn><mi>k</mi></mrow></math></span> suffices for locally-finite, 1-ended graphs.</p><p>In the present article, we establish the optimal bound <span><math><mrow><mn>2</mn><mi>k</mi></mrow></math></span> in Nash-Williams’s conjecture for all locally finite graphs with countably many ends.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001288/pdfft?md5=aee14e19cbba10a0a057111710d01339&pid=1-s2.0-S0195669824001288-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142021180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.1016/j.ejc.2024.104042
F. Botler , A. Jiménez , C.N. Lintzmayer , A. Pastine , D.A. Quiroz , M. Sambinelli
The analogue of Hadwiger’s conjecture for the immersion relation states that every graph contains an immersion of . For graphs with independence number 2, this is equivalent to stating that every such -vertex graph contains an immersion of . We show that every -vertex graph with independence number 2 contains every complete bipartite graph on vertices as an immersion.
哈德维格猜想的浸入关系类似于每个图 G 都包含 Kχ(G)的浸入关系。对于独立数为 2 的图,这等同于说每个这样的 n 顶点图都包含 K⌈n/2⌉ 的一个浸没。我们证明,每一个独立性为 2 的 n 顶点图都含⌈n/2⌉顶点上的每一个完整双方图作为一个浸没。
{"title":"Biclique immersions in graphs with independence number 2","authors":"F. Botler , A. Jiménez , C.N. Lintzmayer , A. Pastine , D.A. Quiroz , M. Sambinelli","doi":"10.1016/j.ejc.2024.104042","DOIUrl":"10.1016/j.ejc.2024.104042","url":null,"abstract":"<div><p>The analogue of Hadwiger’s conjecture for the immersion relation states that every graph <span><math><mi>G</mi></math></span> contains an immersion of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msub></math></span>. For graphs with independence number 2, this is equivalent to stating that every such <span><math><mi>n</mi></math></span>-vertex graph contains an immersion of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌉</mo></mrow></mrow></msub></math></span>. We show that every <span><math><mi>n</mi></math></span>-vertex graph with independence number 2 contains every complete bipartite graph on <span><math><mrow><mo>⌈</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌉</mo></mrow></math></span> vertices as an immersion.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.1016/j.ejc.2024.104041
Van Magnan, Cory Palmer , Ryan Wood
Let be an intersecting family of sets and let be the maximum degree in , i.e., the maximum number of edges of containing a fixed vertex. The diversity of is defined as . Diversity can be viewed as a measure of distance from the ‘trivial’ maximum-size intersecting family given by the Erdős–Ko–Rado Theorem. Indeed, the diversity of this family is 0. Moreover, the diversity of the largest non-trivial intersecting family, due to Hilton–Milner, is 1. It is known that the maximum possible diversity of an intersecting family is as long as is large enough.
We introduce a generalization called the -weighted diversity of as . We determine the maximum value of for intersecting families and characterize the maximal families for as well as give general bounds for all . Our results imply, for large , a recent conjecture of Frankl and Wang concerning a related diversity-like measure. Our primary technique is a variant of Frankl’s Delta-system method.
设 F⊆[n]r 是一个相交集合族,设 Δ(F) 是 F 中的最大度数,即 F 中包含固定顶点的最大边数。F 的多样性定义为 d(F)≔|F|-Δ(F)。多样性可视为与厄尔多斯-柯-拉多定理给出的 "微不足道 "的最大相交族的距离的度量。此外,根据希尔顿-米尔纳(Hilton-Milner)定理,最大非琐碎相交系的多样性为 1。众所周知,只要 n 足够大,相交系 F⊆[n]r 的最大可能多样性为 n-3r-2。我们引入一个广义的 F 的 C 加权多样性,即 dC(F)≔|F|-C⋅Δ(F)。我们确定了相交族 F⊆[n]r 的 dC(F) 最大值,描述了 C∈0,73 的最大族的特征,并给出了所有 C 的一般界限。对于大 n,我们的结果暗示了 Frankl 和 Wang 最近关于类似多样性度量的猜想。我们的主要技术是弗兰克尔三角系统方法的变体。
{"title":"A generalization of diversity for intersecting families","authors":"Van Magnan, Cory Palmer , Ryan Wood","doi":"10.1016/j.ejc.2024.104041","DOIUrl":"10.1016/j.ejc.2024.104041","url":null,"abstract":"<div><p>Let <span><math><mrow><mi>F</mi><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><mi>r</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> be an intersecting family of sets and let <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> be the maximum degree in <span><math><mi>F</mi></math></span>, i.e., the maximum number of edges of <span><math><mi>F</mi></math></span> containing a fixed vertex. The <em>diversity</em> of <span><math><mi>F</mi></math></span> is defined as <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow><mo>≔</mo><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>−</mo><mi>Δ</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>. Diversity can be viewed as a measure of distance from the ‘trivial’ maximum-size intersecting family given by the Erdős–Ko–Rado Theorem. Indeed, the diversity of this family is 0. Moreover, the diversity of the largest non-trivial intersecting family, due to Hilton–Milner, is 1. It is known that the maximum possible diversity of an intersecting family <span><math><mrow><mi>F</mi><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><mi>r</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> is <span><math><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></mfenced></math></span> as long as <span><math><mi>n</mi></math></span> is large enough.</p><p>We introduce a generalization called the <span><math><mi>C</mi></math></span><em>-weighted diversity</em> of <span><math><mi>F</mi></math></span> as <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>C</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow><mo>≔</mo><mrow><mo>|</mo><mi>F</mi><mo>|</mo></mrow><mo>−</mo><mi>C</mi><mi>⋅</mi><mi>Δ</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>. We determine the maximum value of <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>C</mi></mrow></msub><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> for intersecting families <span><math><mrow><mi>F</mi><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><mi>r</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> and characterize the maximal families for <span><math><mrow><mi>C</mi><mo>∈</mo><mfenced><mrow><mn>0</mn><mo>,</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></mfenced></mrow></math></span> as well as give general bounds for all <span><math><mi>C</mi></math></span>. Our results imply, for large <span><math><mi>n</mi></math></span>, a recent conjecture of Frankl and Wang concerning a related diversity-like measure. Our primary technique is a variant of Frankl’s Delta-system method.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.1016/j.ejc.2024.104034
Leo Versteegen
The domination game is an optimization game played by two players, Dominator and Staller, who alternately select vertices in a graph . A vertex is said to be dominated if it has been selected or is adjacent to a selected vertex. Each selected vertex must strictly increase the number of dominated vertices at the time of its selection, and the game ends once every vertex in is dominated. Dominator aims to keep the game as short as possible, while Staller tries to achieve the opposite. In this article, we prove that for any graph on vertices, Dominator has a strategy to end the game in at most moves, which was conjectured by Kinnersley, West and Zamani.
支配博弈是一种优化博弈,由支配者(Dominator)和拖延者(Staller)两人交替选择图 G 中的顶点。每个被选中的顶点在被选中时必须严格增加被支配顶点的数量,一旦 G 中的每个顶点都被支配,游戏就结束。Dominator 的目标是尽可能缩短博弈时间,而 Staller 则相反。在本文中,我们将证明对于 n 个顶点上的任何图 G,Dominator 有一种最多用 3n/5 步结束对局的策略,这是 Kinnersley、West 和 Zamani 的猜想。
{"title":"A proof of the 3/5-conjecture in the domination game","authors":"Leo Versteegen","doi":"10.1016/j.ejc.2024.104034","DOIUrl":"10.1016/j.ejc.2024.104034","url":null,"abstract":"<div><p>The <em>domination game</em> is an optimization game played by two players, Dominator and Staller, who alternately select vertices in a graph <span><math><mi>G</mi></math></span>. A vertex is said to be <em>dominated</em> if it has been selected or is adjacent to a selected vertex. Each selected vertex must strictly increase the number of dominated vertices at the time of its selection, and the game ends once every vertex in <span><math><mi>G</mi></math></span> is dominated. Dominator aims to keep the game as short as possible, while Staller tries to achieve the opposite. In this article, we prove that for any graph <span><math><mi>G</mi></math></span> on <span><math><mi>n</mi></math></span> vertices, Dominator has a strategy to end the game in at most <span><math><mrow><mn>3</mn><mi>n</mi><mo>/</mo><mn>5</mn></mrow></math></span> moves, which was conjectured by Kinnersley, West and Zamani.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001197/pdfft?md5=517476e63692f9fbe5ae394f3cc97396&pid=1-s2.0-S0195669824001197-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.1016/j.ejc.2024.104032
Adva Mond, Julien Portier
We prove that for every , the online Ramsey number for paths and satisfies , matching up to a linear term in the upper bound recently obtained by Bednarska-Bzdęga (2024). In particular, this implies , whenever , disproving a conjecture by Cyman et al. (2015).
{"title":"The asymptotic of off-diagonal online Ramsey numbers for paths","authors":"Adva Mond, Julien Portier","doi":"10.1016/j.ejc.2024.104032","DOIUrl":"10.1016/j.ejc.2024.104032","url":null,"abstract":"<div><p>We prove that for every <span><math><mrow><mi>k</mi><mo>≥</mo><mn>10</mn></mrow></math></span>, the online Ramsey number for paths <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> satisfies <span><math><mrow><mover><mrow><mi>r</mi></mrow><mrow><mo>̃</mo></mrow></mover><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>≥</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>n</mi><mo>+</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>9</mn></mrow></mfrac><mo>−</mo><mn>4</mn></mrow></math></span>, matching up to a linear term in <span><math><mi>k</mi></math></span> the upper bound recently obtained by Bednarska-Bzdęga (2024). In particular, this implies <span><math><mrow><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><mfrac><mrow><mover><mrow><mi>r</mi></mrow><mrow><mo>̃</mo></mrow></mover><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></math></span>, whenever <span><math><mrow><mn>10</mn><mo>≤</mo><mi>k</mi><mo>=</mo><mi>o</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, disproving a conjecture by Cyman et al. (2015).</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001173/pdfft?md5=649b71645f651f52b84e0b2428cf8265&pid=1-s2.0-S0195669824001173-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1016/j.ejc.2024.104040
Joseph E. Bonin
A matroid of rank on elements is a positroid if it has a representation by an by matrix over , each by submatrix of which has nonnegative determinant. Earlier characterizations of connected positroids and results about direct sums of positroids involve connected flats and non-crossing partitions. We prove another characterization of positroids of a similar flavor and give some applications of the characterization. We show that if and are positroids and the intersection of their ground sets is an independent set and a set of clones in both and , then the free amalgam of and is a positroid, and we prove a second result of that type. Also, we identify several multi-parameter infinite families of excluded minors for the class of positroids.
如果在 R 上有一个 r×n 矩阵,每个 r×r 矩阵的子矩阵都有非负行列式,那么 n 个元素上的 r 阶矩阵就是正多边形。早先对连通正方数的描述和关于正方数直接和的结果涉及连通平面和非交叉分区。我们证明了正多边形的另一个类似特征,并给出了该特征的一些应用。我们证明,如果 M 和 N 都是正方体,并且它们的地面集的交集是一个独立集,并且在 M 和 N 中都有一个克隆集,那么 M 和 N 的自由汞齐就是正方体,我们还证明了该类型的第二个结果。此外,我们还为正方体类确定了几个多参数的无限排除最小族。
{"title":"A characterization of positroids, with applications to amalgams and excluded minors","authors":"Joseph E. Bonin","doi":"10.1016/j.ejc.2024.104040","DOIUrl":"10.1016/j.ejc.2024.104040","url":null,"abstract":"<div><p>A matroid of rank <span><math><mi>r</mi></math></span> on <span><math><mi>n</mi></math></span> elements is a positroid if it has a representation by an <span><math><mi>r</mi></math></span> by <span><math><mi>n</mi></math></span> matrix over <span><math><mi>R</mi></math></span>, each <span><math><mi>r</mi></math></span> by <span><math><mi>r</mi></math></span> submatrix of which has nonnegative determinant. Earlier characterizations of connected positroids and results about direct sums of positroids involve connected flats and non-crossing partitions. We prove another characterization of positroids of a similar flavor and give some applications of the characterization. We show that if <span><math><mi>M</mi></math></span> and <span><math><mi>N</mi></math></span> are positroids and the intersection of their ground sets is an independent set and a set of clones in both <span><math><mi>M</mi></math></span> and <span><math><mi>N</mi></math></span>, then the free amalgam of <span><math><mi>M</mi></math></span> and <span><math><mi>N</mi></math></span> is a positroid, and we prove a second result of that type. Also, we identify several multi-parameter infinite families of excluded minors for the class of positroids.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}