Pub Date : 2024-04-27DOI: 10.1016/j.ejc.2024.103976
Jie Han , Lin Sun , Guanghui Wang
Let be the 3-graph with two edges intersecting in two vertices. We prove that every 3-graph on vertices with at least edges contains a -tiling covering more than vertices, for sufficiently large and . The bound on the number of edges is asymptotically best possible and solves a conjecture of the authors for 3-graphs that generalizes the Matching Conjecture of Erdős.
{"title":"Large Y3,2-tilings in 3-uniform hypergraphs","authors":"Jie Han , Lin Sun , Guanghui Wang","doi":"10.1016/j.ejc.2024.103976","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103976","url":null,"abstract":"<div><p>Let <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow></msub></math></span> be the 3-graph with two edges intersecting in two vertices. We prove that every 3-graph <span><math><mi>H</mi></math></span> on <span><math><mi>n</mi></math></span> vertices with at least <span><math><mrow><mo>max</mo><mfenced><mrow><mfenced><mrow><mfrac><mrow><mn>4</mn><mi>α</mi><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></mfenced><mo>,</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></mfenced><mo>−</mo><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mi>α</mi><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></mfenced></mrow></mfenced><mo>+</mo><mi>o</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> edges contains a <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>2</mn></mrow></msub></math></span>-tiling covering more than <span><math><mrow><mn>4</mn><mi>α</mi><mi>n</mi></mrow></math></span> vertices, for sufficiently large <span><math><mi>n</mi></math></span> and <span><math><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn><mo>/</mo><mn>4</mn></mrow></math></span>. The bound on the number of edges is asymptotically best possible and solves a conjecture of the authors for 3-graphs that generalizes the Matching Conjecture of Erdős.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140807169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25DOI: 10.1016/j.ejc.2024.103974
Timothy Sun
We construct several families of minimum genus embeddings of dense graphs using index 2 current graphs. In particular, we complete the genus formula for the octahedral graphs, solving a longstanding conjecture of Jungerman and Ringel, and find triangular embeddings of complete graphs minus a Hamiltonian cycle, making partial progress on a problem of White. Index 2 current graphs are also applied to various cases of the genus of the complete graphs, in some cases yielding simpler solutions, e.g., the nonorientable genus of . In addition, we give a simpler proof of a theorem of Jungerman that shows that a symmetric type of such current graphs might not exist roughly “half of the time”.
{"title":"Jungerman ladders and index 2 constructions for genus embeddings of dense regular graphs","authors":"Timothy Sun","doi":"10.1016/j.ejc.2024.103974","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103974","url":null,"abstract":"<div><p>We construct several families of minimum genus embeddings of dense graphs using index 2 current graphs. In particular, we complete the genus formula for the octahedral graphs, solving a longstanding conjecture of Jungerman and Ringel, and find triangular embeddings of complete graphs minus a Hamiltonian cycle, making partial progress on a problem of White. Index 2 current graphs are also applied to various cases of the genus of the complete graphs, in some cases yielding simpler solutions, e.g., the nonorientable genus of <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>12</mn><mi>s</mi><mo>+</mo><mn>8</mn></mrow></msub><mo>−</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>. In addition, we give a simpler proof of a theorem of Jungerman that shows that a symmetric type of such current graphs might not exist roughly “half of the time”.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000593/pdfft?md5=a4ea0dfe22653b0b9f17b72d23ecb25a&pid=1-s2.0-S0195669824000593-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140644394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.1016/j.ejc.2024.103973
Manuel Concha, Luc Lapointe
Bisymmetric Macdonald polynomials can be obtained through a process of antisymmetrization and -symmetrization of non-symmetric Macdonald polynomials. Using the double affine Hecke algebra, we show that the evaluation of the bisymmetric Macdonald polynomials satisfies a symmetry property generalizing that satisfied by the usual Macdonald polynomials. We then obtain Pieri rules for the bisymmetric Macdonald polynomials where the sums are over certain vertical strips.
双对称麦克唐纳多项式可以通过非对称麦克唐纳多项式的反对称化和 t 对称化过程得到。利用双仿射赫克代数,我们证明了双对称麦克唐纳多项式的求值满足一般麦克唐纳多项式所满足的对称性。然后,我们得到了双对称麦克唐纳多项式的皮耶里规则,其中和是在某些垂直条带上。
{"title":"Symmetry and Pieri rules for the bisymmetric Macdonald polynomials","authors":"Manuel Concha, Luc Lapointe","doi":"10.1016/j.ejc.2024.103973","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103973","url":null,"abstract":"<div><p>Bisymmetric Macdonald polynomials can be obtained through a process of antisymmetrization and <span><math><mi>t</mi></math></span>-symmetrization of non-symmetric Macdonald polynomials. Using the double affine Hecke algebra, we show that the evaluation of the bisymmetric Macdonald polynomials satisfies a symmetry property generalizing that satisfied by the usual Macdonald polynomials. We then obtain Pieri rules for the bisymmetric Macdonald polynomials where the sums are over certain vertical strips.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140644393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-18DOI: 10.1016/j.ejc.2024.103971
Raphael Steiner
Hadwiger’s conjecture, among the most famous open problems in graph theory, states that every graph that does not contain as a minor is properly -colorable.
The purpose of this work is to demonstrate that a natural extension of Hadwiger’s problem to hypergraph coloring exists, and to derive some first partial results and applications.
Generalizing ordinary graph minors to hypergraphs, we say that a hypergraph is a minor of a hypergraph , if a hypergraph isomorphic to can be obtained from via a finite sequence of the following operations:
• deleting vertices and hyperedges,
• contracting a hyperedge (i.e., merging the vertices of the hyperedge into a single vertex).
First we show that a weak extension of Hadwiger’s conjecture to hypergraphs holds true: For every , there exists a finite (smallest) integer such that every hypergraph with no -minor is -colorable, and we prove where denotes the maximum chromatic number of graphs with no -minor. Using the recent result by Delcourt and Postle that , this yields .
{"title":"Coloring hypergraphs with excluded minors","authors":"Raphael Steiner","doi":"10.1016/j.ejc.2024.103971","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103971","url":null,"abstract":"<div><p>Hadwiger’s conjecture, among the most famous open problems in graph theory, states that every graph that does not contain <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> as a minor is properly <span><math><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-colorable.</p><p>The purpose of this work is to demonstrate that a natural extension of Hadwiger’s problem to hypergraph coloring exists, and to derive some first partial results and applications.</p><p>Generalizing ordinary graph minors to hypergraphs, we say that a hypergraph <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is a minor of a hypergraph <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, if a hypergraph isomorphic to <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> can be obtained from <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> via a finite sequence of the following operations:</p><p>• deleting vertices and hyperedges,</p><p>• contracting a hyperedge (i.e., merging the vertices of the hyperedge into a single vertex).</p><p>First we show that a weak extension of Hadwiger’s conjecture to hypergraphs holds true: For every <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, there exists a finite (smallest) integer <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> such that every hypergraph with no <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-minor is <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>-colorable, and we prove <span><math><mrow><mfenced><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></mfenced><mo>≤</mo><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>g</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> denotes the maximum chromatic number of graphs with no <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-minor. Using the recent result by Delcourt and Postle that <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mi>t</mi><mo>log</mo><mo>log</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>, this yields <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mi>t</mi><mo>log</mo><mo>log</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>.</p><p>We further conjecture that <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000568/pdfft?md5=7ddba04d4bd02c12e555b22107b8bb39&pid=1-s2.0-S0195669824000568-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140606814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-16DOI: 10.1016/j.ejc.2024.103972
Bing Xie , Yigeng Zhao , Yongqiang Zhao
In this paper, we apply the combinatorial results on counting permutations with fixed pinnacle and vale sets to evaluate the special values of the spectral zeta functions of Sturm–Liouville differential operators. As applications, we get a combinatorial formula for the special values of spectral zeta functions and give a new explicit formula for Bernoulli numbers.
{"title":"Special values of spectral zeta functions and combinatorics: Sturm–Liouville problems","authors":"Bing Xie , Yigeng Zhao , Yongqiang Zhao","doi":"10.1016/j.ejc.2024.103972","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103972","url":null,"abstract":"<div><p>In this paper, we apply the combinatorial results on counting permutations with fixed pinnacle and vale sets to evaluate the special values of the spectral zeta functions of Sturm–Liouville differential operators. As applications, we get a combinatorial formula for the special values of spectral zeta functions and give a new explicit formula for Bernoulli numbers.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140558403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-13DOI: 10.1016/j.ejc.2024.103966
Xin Li , Mingqing Zhai , Jinlong Shu
Brualdi–Hoffman–Turán-type problem asks what is the maximum spectral radius of an -free graph on edges? This problem gives a spectral perspective on the existence of a subgraph . A significant result, due to Nikiforov, states that for every -free graph (Nikiforov, 2002). Bollobás and Nikiforov further conjectured for every -free graph (Bollobás and Nikiforov, 2007). Let denote the graph obtained from a -cycle by adding a chord between two vertices of distance two. Zhai, Lin and Shu conjectured that for and sufficiently large, if is a -free or -free graph, then , with equality if and only if
布鲁尔迪-霍夫曼-图兰(Brualdi-Hoffman-Turán-type)问题问的是,m 边上无 H 图 G 的最大谱半径 λ1(G) 是多少?尼基福罗夫(Nikiforov)提出的一个重要结果表明,对于每个无 Kr+1 图 G,λ1(G)≤2m(1-1r)(Nikiforov,2002 年)。Bollobás 和 Nikiforov 进一步猜想,对于每个无 Kr+1 图形 G,λ12(G)+λ22(G)≤2m(1-1r) (Bollobás and Nikiforov, 2007)。让 Ck+ 表示通过在距离为 2 的两个顶点之间添加一条弦而从 k 循环中得到的图。翟、林和舒猜想,对于 k≥2 和 m 足够大的情况,如果 G 是无 C2k+1 或无 C2k+2 的图,那么 λ1(G)≤k-1+4m-k2+12,当且仅当 G≅Kk∇(mk-k-12)K1 时相等(翟等人,2021 年)。这一猜想也被刘和宁列为谱图理论中二十个未解问题之一。最近,李永泰提出了一个更强的猜想,即上述谱界对于无 C2k+1+ 和无 C2k+2+ 的图成立。在本文中,我们利用 k 核方法和光谱技术证实了这两个猜想。这提出了一种研究 Brualdi-Hoffman-Turán 问题的新方法
{"title":"A Brualdi–Hoffman–Turán problem on cycles","authors":"Xin Li , Mingqing Zhai , Jinlong Shu","doi":"10.1016/j.ejc.2024.103966","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103966","url":null,"abstract":"<div><p>Brualdi–Hoffman–Turán-type problem asks what is the maximum spectral radius <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of an <span><math><mi>H</mi></math></span>-free graph <span><math><mi>G</mi></math></span> on <span><math><mi>m</mi></math></span> edges? This problem gives a spectral perspective on the existence of a subgraph <span><math><mi>H</mi></math></span>. A significant result, due to Nikiforov, states that <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><msqrt><mrow><mn>2</mn><mi>m</mi><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac><mo>)</mo></mrow></mrow></msqrt></mrow></math></span> for every <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graph <span><math><mi>G</mi></math></span> (Nikiforov, 2002). Bollobás and Nikiforov further conjectured <span><math><mrow><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><mi>m</mi><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac><mo>)</mo></mrow></mrow></math></span> for every <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graph <span><math><mi>G</mi></math></span> (Bollobás and Nikiforov, 2007). Let <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> denote the graph obtained from a <span><math><mi>k</mi></math></span>-cycle by adding a chord between two vertices of distance two. Zhai, Lin and Shu conjectured that for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and <span><math><mi>m</mi></math></span> sufficiently large, if <span><math><mi>G</mi></math></span> is a <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free or <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span>-free graph, then <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>1</mn><mo>+</mo><msqrt><mrow><mn>4</mn><mi>m</mi><mo>−</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, with equality if and only if <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∇</mo><mrow><mo>(</mo><mfrac><mrow><mi>m</mi></","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140550821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-13DOI: 10.1016/j.ejc.2024.103957
Amanda Burcroff
We complete the classification of compact hyperbolic Coxeter -polytopes with facets for and 5. By previous work of Felikson and Tumarkin, the only remaining dimension where new polytopes may arise is . We derive a new method for generating the combinatorial types of these polytopes via the classification of point set order types. In dimensions 4 and 5, there are 348 and 51 polytopes, respectively, yielding many new examples for further study (also discovered independently by Ma and Zheng).
We furthermore provide new upper bounds on the dimension of compact hyperbolic Coxeter polytopes with facets for . It was shown by Vinberg in 1985 that for any , we have , and no better bounds have previously been published for . As a consequence of our bounds, we prove that a compact hyperbolic Coxeter 29-polytope has at least 40 facets.
{"title":"Near classification of compact hyperbolic Coxeter d-polytopes with d+4 facets and related dimension bounds","authors":"Amanda Burcroff","doi":"10.1016/j.ejc.2024.103957","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103957","url":null,"abstract":"<div><p>We complete the classification of compact hyperbolic Coxeter <span><math><mi>d</mi></math></span>-polytopes with <span><math><mrow><mi>d</mi><mo>+</mo><mn>4</mn></mrow></math></span> facets for <span><math><mrow><mi>d</mi><mo>=</mo><mn>4</mn></mrow></math></span> and 5. By previous work of Felikson and Tumarkin, the only remaining dimension where new polytopes may arise is <span><math><mrow><mi>d</mi><mo>=</mo><mn>6</mn></mrow></math></span>. We derive a new method for generating the combinatorial types of these polytopes via the classification of point set order types. In dimensions 4 and 5, there are 348 and 51 polytopes, respectively, yielding many new examples for further study (also discovered independently by Ma and Zheng).</p><p>We furthermore provide new upper bounds on the dimension <span><math><mi>d</mi></math></span> of compact hyperbolic Coxeter polytopes with <span><math><mrow><mi>d</mi><mo>+</mo><mi>k</mi></mrow></math></span> facets for <span><math><mrow><mi>k</mi><mo>≤</mo><mn>10</mn></mrow></math></span>. It was shown by Vinberg in 1985 that for any <span><math><mi>k</mi></math></span>, we have <span><math><mrow><mi>d</mi><mo>≤</mo><mn>29</mn></mrow></math></span>, and no better bounds have previously been published for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span>. As a consequence of our bounds, we prove that a compact hyperbolic Coxeter 29-polytope has at least 40 facets.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140551697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-13DOI: 10.1016/j.ejc.2024.103965
Seung-Il Choi , Young-Hun Kim , Young-Tak Oh
Duchamp–Hivert–Thibon introduced the construction of a right -module, denoted as , for any partial order on the set . This module is defined by specifying a suitable action of on the set of linear extensions of . In this paper, we refer to this module as the poset module associated with . Firstly, we show that has a Hopf algebra structure that is isomorphic to the Hopf algebra of quasisymmetric functions, where is the full subcategory of whose objects are direct sums of finitely many isomorphic copies of poset modules and is the Grothendieck group of . We also demonstrate how (anti-) automorphism twists interact with these modules, the induction product and restrictions. Secondly, we investigate the (type 1) quasisymmetric power sum expansion of some quasi-analogues of Schur functions, where is a composition. We show that they can be expressed as the sum of the -partition generating functions of specific posets, which allows us to utilize the result established by Liu–Weselcouch. Additionally, we provide a new algorithm for obtaining these posets. Using these findings, for the dual immaculate function and the extended Schur function, we express the coefficients appearing in the quasisymmetric power sum expansions in terms of border strip tableaux.
杜尚-希沃特-蒂蓬(Duchamp-Hivert-Thibon)为集合 [n] 上的任意偏序 P 引入了右 Hn(0)模块的构造,用 MP 表示。在本文中,我们把这个模块称为与 P 相关的 poset 模块。首先,我们证明⨁n≥0G0(P(n))具有与准对称函数的霍普夫代数同构的霍普夫代数结构,其中 P(n) 是 mod -Hn(0)的全子类,其对象是有限多个同构的 poset 模块副本的直和,G0(P(n)) 是 P(n) 的格罗内迪克群。我们还演示了(反)自动态孪晶如何与这些模块、归纳积和限制相互作用。其次,我们研究了舒尔函数的一些准类似 Yα 的(类型 1)准对称幂和展开,其中 α 是一个组合。我们证明,它们可以表示为特定正集的 P 部分生成函数之和,这使我们可以利用刘-韦塞尔库奇建立的结果。此外,我们还提供了一种新算法来获得这些集合。利用这些发现,对于对偶无懈可击函数和扩展舒尔函数,我们用边界条表法表达了出现在准对称幂和展开式中的系数。
{"title":"Poset modules of the 0-Hecke algebras and related quasisymmetric power sum expansions","authors":"Seung-Il Choi , Young-Hun Kim , Young-Tak Oh","doi":"10.1016/j.ejc.2024.103965","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103965","url":null,"abstract":"<div><p>Duchamp–Hivert–Thibon introduced the construction of a right <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span>-module, denoted as <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span>, for any partial order <span><math><mi>P</mi></math></span> on the set <span><math><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></math></span>. This module is defined by specifying a suitable action of <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span> on the set of linear extensions of <span><math><mi>P</mi></math></span>. In this paper, we refer to this module as the poset module associated with <span><math><mi>P</mi></math></span>. Firstly, we show that <span><math><mrow><msub><mrow><mo>⨁</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>P</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> has a Hopf algebra structure that is isomorphic to the Hopf algebra of quasisymmetric functions, where <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> is the full subcategory of <span><math><mrow><mi>mod −</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span> whose objects are direct sums of finitely many isomorphic copies of poset modules and <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>P</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> is the Grothendieck group of <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. We also demonstrate how (anti-) automorphism twists interact with these modules, the induction product and restrictions. Secondly, we investigate the (type 1) quasisymmetric power sum expansion of some quasi-analogues <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> of Schur functions, where <span><math><mi>α</mi></math></span> is a composition. We show that they can be expressed as the sum of the <span><math><mi>P</mi></math></span>-partition generating functions of specific posets, which allows us to utilize the result established by Liu–Weselcouch. Additionally, we provide a new algorithm for obtaining these posets. Using these findings, for the dual immaculate function and the extended Schur function, we express the coefficients appearing in the quasisymmetric power sum expansions in terms of border strip tableaux.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140551698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-13DOI: 10.1016/j.ejc.2024.103964
Brian Alspach , Primož Šparl
We investigate connected cubic vertex-transitive graphs whose edge sets admit a partition into a 2-factor and a 1-factor that is invariant under a vertex-transitive subgroup of the automorphism group of the graph and where the quotient graph with respect to is a cycle. There are two essentially different types of such cubic graphs. In this paper we focus on the examples of what we call the alternating type. We classify all such examples admitting a vertex-transitive subgroup of the automorphism group of the graph preserving the corresponding 2-factor and also determine the ones for which the 2-factor is invariant under the full automorphism group of the graph. In this way we introduce a new infinite family of cubic vertex-transitive graphs that is a natural generalization of the well-known generalized Petersen graphs as well as of the honeycomb toroidal graphs. The family contains an infinite subfamily of arc-regular examples and an infinite subfamily of 2-arc-regular examples.
我们研究了连通的立方顶点传递图,这些图的边集可以划分为一个 2 因子 C 和一个 1 因子,后者在图的自动变形群的顶点传递子群下不变,并且相对于 C 的商图是一个循环。这种立方图有两种本质上不同的类型。在本文中,我们将重点讨论我们称之为交替类型的例子。我们会对所有这样的例子进行分类,这些例子中的图的自变群的顶点传递子群会保留相应的 2 因子,同时我们还会确定哪些例子的 2 因子在图的全自变群下是不变的。通过这种方法,我们引入了一个新的无穷立方顶点传递图族,它是著名的广义彼得森图和蜂巢环形图的自然概括。该族包含一个弧不规则的无限子族和一个2-弧不规则的无限子族。
{"title":"Cubic factor-invariant graphs of cycle quotient type—The alternating case","authors":"Brian Alspach , Primož Šparl","doi":"10.1016/j.ejc.2024.103964","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103964","url":null,"abstract":"<div><p>We investigate connected cubic vertex-transitive graphs whose edge sets admit a partition into a 2-factor <span><math><mi>C</mi></math></span> and a 1-factor that is invariant under a vertex-transitive subgroup of the automorphism group of the graph and where the quotient graph with respect to <span><math><mi>C</mi></math></span> is a cycle. There are two essentially different types of such cubic graphs. In this paper we focus on the examples of what we call the alternating type. We classify all such examples admitting a vertex-transitive subgroup of the automorphism group of the graph preserving the corresponding 2-factor and also determine the ones for which the 2-factor is invariant under the full automorphism group of the graph. In this way we introduce a new infinite family of cubic vertex-transitive graphs that is a natural generalization of the well-known generalized Petersen graphs as well as of the honeycomb toroidal graphs. The family contains an infinite subfamily of arc-regular examples and an infinite subfamily of 2-arc-regular examples.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000490/pdfft?md5=9aafdb85196268b7bd37d9ff8366aa0b&pid=1-s2.0-S0195669824000490-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140551696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-12DOI: 10.1016/j.ejc.2024.103969
Deepak Bal , Louis DeBiasio , Allan Lo
The -color size-Ramsey number of a -uniform hypergraph , denoted by , is the minimum number of edges in a -uniform hypergraph such that for every -coloring of the edges of there exists a monochromatic copy of . In the case of 2-uniform paths , it is known that with the best bounds essentially due to Krivelevich (2019). In a recent breakthrough result, Letzter et al. (2021) gave a linear upper bound on the -color size-Ramsey number of the -uniform tight path ; i.e. . At about the same time, Winter (2023) gave the first non-trivial lower bounds on the 2-color size-Ramsey number of for ; i.e.
k-uniform hypergraph H 的 r-color size-Ramsey number(用 Rˆr(H)表示)是 k-uniform hypergraph G 中最小的边数,对于 G 的边的每一个 r-coloring,都存在 H 的单色副本。在 2-uniform paths Pn 的情况下,已知 Ω(r2n)=Rˆr(Pn)=O((r2logr)n) ,最佳边界基本上是 Krivelevich(2019)提出的。在最近的一项突破性成果中,Letzter 等人(2021 年)给出了 k 条均匀紧密路径 Pn(k) 的 r 色大小-拉姆齐数的线性上界,即 Rˆr(Pn(k))=Or,k(n)。大约与此同时,Winter (2023) 首次给出了 k≥3 时 Pn(k) 的双色大小-拉姆齐数的非难下界;即 Rˆ2(Pn(3))≥83n-O(1) 和 k≥4 时 Rˆ2(Pn(k))≥log2(k+1)n-Ok(1) 。我们的主要结果是 Rˆr(Pn(k))=Ωk(rkn),它概括了上述已知图形下限。我们证明的关键要素之一是一个有趣的结果。我们证明,在所有 1≤m≤k 的情况下,Rˆr(Pk+m(k))=Θk(rm);也就是说,我们确定了每条足够短的紧密路径的 r 色大小-拉姆齐数的正确数量级。我们的所有结果都可以推广到 ℓ-overlapping k-uniform paths Pn(k,ℓ)。我们特别注意到,当 1≤ℓ≤k2 时,我们有 Ωk(r2n)=Rˆr(Pn(k,ℓ))=O((r2logr)n),这基本上与上述图的已知最佳边界相吻合。此外,在 k=3、ℓ=2 和 r=2 的情况下,我们给出了一个更精确的估计值,即 Rˆ2(Pn(3))≥289n-O(1),比上述 k=3 情况下的 Winter 下限有所提高。
{"title":"A lower bound on the multicolor size-Ramsey numbers of paths in hypergraphs","authors":"Deepak Bal , Louis DeBiasio , Allan Lo","doi":"10.1016/j.ejc.2024.103969","DOIUrl":"https://doi.org/10.1016/j.ejc.2024.103969","url":null,"abstract":"<div><p>The <span><math><mi>r</mi></math></span>-color size-Ramsey number of a <span><math><mi>k</mi></math></span>-uniform hypergraph <span><math><mi>H</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum number of edges in a <span><math><mi>k</mi></math></span>-uniform hypergraph <span><math><mi>G</mi></math></span> such that for every <span><math><mi>r</mi></math></span>-coloring of the edges of <span><math><mi>G</mi></math></span> there exists a monochromatic copy of <span><math><mi>H</mi></math></span>. In the case of 2-uniform paths <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, it is known that <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>n</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mrow><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mi>r</mi><mo>)</mo></mrow><mi>n</mi><mo>)</mo></mrow></mrow></math></span> with the best bounds essentially due to Krivelevich (2019). In a recent breakthrough result, Letzter et al. (2021) gave a linear upper bound on the <span><math><mi>r</mi></math></span>-color size-Ramsey number of the <span><math><mi>k</mi></math></span>-uniform tight path <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></math></span>; i.e. <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. At about the same time, Winter (2023) gave the first non-trivial lower bounds on the 2-color size-Ramsey number of <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></math></span> for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>; i.e. <span><math><mrow><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>≥</mo><mfrac><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>n</mi><mo>−</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000544/pdfft?md5=8ed971a8a16a37bfa808eabee4a3a84c&pid=1-s2.0-S0195669824000544-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140549964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}