首页 > 最新文献

European Journal of Combinatorics最新文献

英文 中文
List strong and list normal edge-coloring of (sub)cubic graphs (次)三次图的表强边着色和表正规边着色
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-09-11 DOI: 10.1016/j.ejc.2025.104243
Borut Lužar , Edita Máčajová , Roman Soták , Diana Švecová
A strong edge-coloring of a graph is a proper edge-coloring, in which the edges of every path of length 3 receive distinct colors; in other words, every pair of edges at distance at most 2 must be colored differently. The least number of colors needed for a strong edge-coloring of a graph is the strong chromatic index. We consider the list version of the coloring and prove that the list strong chromatic index of graphs with maximum degree 3 is at most 10. This bound is tight and improves the previous bound of 11 colors.
We also consider the question whether the strong chromatic index and the list strong chromatic index always coincide. We answer it in negative by presenting an infinite family of graphs for which the two invariants differ. For the special case of the Petersen graph, we show that its list strong chromatic index equals 7, while its strong chromatic index is 5. Up to our best knowledge, this is the first known edge-coloring for which there are graphs with distinct values of the chromatic index and its list version.
In relation to the above, we also initiate the study of the list version of the normal edge-coloring. A normal edge-coloring of a cubic graph is a proper edge-coloring, in which every edge is adjacent to edges colored with 4 distinct colors or to edges colored with 2 distinct colors. It is conjectured that 5 colors suffice for a normal edge-coloring of any bridgeless cubic graph and this statement is equivalent to the Petersen Coloring Conjecture.
It turns out that similarly to strong edge-coloring, list normal edge-coloring is much more restrictive and consequently for many graphs the list normal chromatic index is greater than the normal chromatic index. In particular, we show that there are cubic graphs with list normal chromatic index at least 9, there are bridgeless cubic graphs with its value at least 8, and there are cyclically 4-edge-connected cubic graphs with value at least 7.
图的强边着色是一种适当边着色,其中长度为3的每条路径的边都有不同的颜色;换句话说,距离不超过2的每对边的颜色必须不同。图的强边着色所需的最少颜色数是强色指数。我们考虑了着色的列表版本,并证明了最大度为3的图的列表强着色指数不超过10。这个边界很紧,并且改进了之前11种颜色的边界。我们还考虑了强色指数与表强色指数是否总是重合的问题。我们通过给出两个不变量不同的无限图族来否定它。对于Petersen图的特殊情况,我们证明了它的表强色指数等于7,而它的强色指数为5。据我们所知,这是已知的第一个具有不同色指数值的图及其列表版本的边着色。在此基础上,我们还对正边着色的列表版进行了研究。三次图的正规边着色是一种适当边着色,其中每条边与4种不同颜色的边相邻或与2种不同颜色的边相邻。我们推测5种颜色足以满足任何无桥三次图的正常边着色,这一说法等价于Petersen着色猜想。结果表明,与强边着色相似,表正规边着色具有更强的限制性,因此对于许多图,表正规色指数大于正规色指数。特别地,我们证明了存在表法线色指数至少为9的三次图,存在其值至少为8的无桥三次图,存在值至少为7的环4边连通三次图。
{"title":"List strong and list normal edge-coloring of (sub)cubic graphs","authors":"Borut Lužar ,&nbsp;Edita Máčajová ,&nbsp;Roman Soták ,&nbsp;Diana Švecová","doi":"10.1016/j.ejc.2025.104243","DOIUrl":"10.1016/j.ejc.2025.104243","url":null,"abstract":"<div><div>A <em>strong edge-coloring</em> of a graph is a proper edge-coloring, in which the edges of every path of length 3 receive distinct colors; in other words, every pair of edges at distance at most 2 must be colored differently. The least number of colors needed for a strong edge-coloring of a graph is the <em>strong chromatic index</em>. We consider the list version of the coloring and prove that the list strong chromatic index of graphs with maximum degree 3 is at most 10. This bound is tight and improves the previous bound of 11 colors.</div><div>We also consider the question whether the strong chromatic index and the list strong chromatic index always coincide. We answer it in negative by presenting an infinite family of graphs for which the two invariants differ. For the special case of the Petersen graph, we show that its list strong chromatic index equals 7, while its strong chromatic index is 5. Up to our best knowledge, this is the first known edge-coloring for which there are graphs with distinct values of the chromatic index and its list version.</div><div>In relation to the above, we also initiate the study of the list version of the normal edge-coloring. A <em>normal edge-coloring</em> of a cubic graph is a proper edge-coloring, in which every edge is adjacent to edges colored with 4 distinct colors or to edges colored with 2 distinct colors. It is conjectured that 5 colors suffice for a normal edge-coloring of any bridgeless cubic graph and this statement is equivalent to the Petersen Coloring Conjecture.</div><div>It turns out that similarly to strong edge-coloring, list normal edge-coloring is much more restrictive and consequently for many graphs the list normal chromatic index is greater than the normal chromatic index. In particular, we show that there are cubic graphs with list normal chromatic index at least 9, there are bridgeless cubic graphs with its value at least 8, and there are cyclically 4-edge-connected cubic graphs with value at least 7.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104243"},"PeriodicalIF":0.9,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145049186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The asymptotic uniform distribution of subset sums 子集和的渐近均匀分布
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-09-09 DOI: 10.1016/j.ejc.2025.104239
Jing Wang
Let G be a finite abelian group of order n, and for each aG and integer 1hn let Fa(h) denote the family of all h-element subsets of G whose sum is a. A problem posed by Katona and Makar-Limanov is to determine whether the minimum and maximum sizes of the families Fa(h) (as a ranges over G) become asymptotically equal as n when h=n2. We affirmatively answer this question and in fact show that the same asymptotic equality holds for every 4hn2+1.
设G是n阶的有限阿别群,对于a∈G和整数1≤h≤n,设Fa(h)表示G的所有h元素子集的族,其和为a。Katona和Makar-Limanov提出的一个问题是,当h=n2时,族Fa(h)的最小和最大大小(作为G上的范围)是否渐近等于n→∞。我们肯定地回答了这个问题,并且事实上证明了对于每一个4≤h≤n2+1都成立相同的渐近等式。
{"title":"The asymptotic uniform distribution of subset sums","authors":"Jing Wang","doi":"10.1016/j.ejc.2025.104239","DOIUrl":"10.1016/j.ejc.2025.104239","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a finite abelian group of order <span><math><mi>n</mi></math></span>, and for each <span><math><mrow><mi>a</mi><mo>∈</mo><mi>G</mi></mrow></math></span> and integer <span><math><mrow><mn>1</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><mi>n</mi></mrow></math></span> let <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>h</mi><mo>)</mo></mrow></mrow></math></span> denote the family of all <span><math><mi>h</mi></math></span>-element subsets of <span><math><mi>G</mi></math></span> whose sum is <span><math><mi>a</mi></math></span>. A problem posed by Katona and Makar-Limanov is to determine whether the minimum and maximum sizes of the families <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi></mrow></msub><mrow><mo>(</mo><mi>h</mi><mo>)</mo></mrow></mrow></math></span> (as <span><math><mi>a</mi></math></span> ranges over <span><math><mi>G</mi></math></span>) become asymptotically equal as <span><math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span> when <span><math><mrow><mi>h</mi><mo>=</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow></math></span>. We affirmatively answer this question and in fact show that the same asymptotic equality holds for every <span><math><mrow><mn>4</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104239"},"PeriodicalIF":0.9,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145020225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Palindromic length of infinite aperiodic words 无限非周期性单词的回文长度
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-09-08 DOI: 10.1016/j.ejc.2025.104237
Josef Rukavicka
The palindromic length of the finite word v is equal to the minimal number of palindromes whose concatenation is equal to v. It was conjectured in 2013 that for every infinite aperiodic word x, the palindromic length of its factors is not bounded. We prove this conjecture to be true.
有限单词v的回文长度等于串接等于v的回文的最小个数。2013年曾推测,对于每一个无限的非周期单词x,其因子的回文长度都是无界的。我们证明这个猜想是正确的。
{"title":"Palindromic length of infinite aperiodic words","authors":"Josef Rukavicka","doi":"10.1016/j.ejc.2025.104237","DOIUrl":"10.1016/j.ejc.2025.104237","url":null,"abstract":"<div><div>The palindromic length of the finite word <span><math><mi>v</mi></math></span> is equal to the minimal number of palindromes whose concatenation is equal to <span><math><mi>v</mi></math></span>. It was conjectured in 2013 that for every infinite aperiodic word <span><math><mi>x</mi></math></span>, the palindromic length of its factors is not bounded. We prove this conjecture to be true.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104237"},"PeriodicalIF":0.9,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145009544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ramsey-type problems for tilings in dense graphs 稠密图中平铺的ramsey型问题
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-09-02 DOI: 10.1016/j.ejc.2025.104228
József Balogh , Andrea Freschi , Andrew Treglown
<div><div>Given a graph <span><math><mi>H</mi></math></span>, the Ramsey number <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is the smallest positive integer <span><math><mi>n</mi></math></span> such that every 2-edge-colouring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> yields a monochromatic copy of <span><math><mi>H</mi></math></span>. We write <span><math><mrow><mi>m</mi><mi>H</mi></mrow></math></span> to denote the union of <span><math><mi>m</mi></math></span> vertex-disjoint copies of <span><math><mi>H</mi></math></span>. The members of the family <span><math><mrow><mo>{</mo><mi>m</mi><mi>H</mi><mo>:</mo><mi>m</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></math></span> are also known as <span><math><mi>H</mi></math></span>-tilings. A well-known result of Burr, Erdős and Spencer states that <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>m</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>5</mn><mi>m</mi></mrow></math></span> for every <span><math><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></math></span>. On the other hand, Moon proved that every 2-edge-colouring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mi>m</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span> yields a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-tiling consisting of <span><math><mi>m</mi></math></span> monochromatic copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, for every <span><math><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></math></span>. Crucially, in Moon’s result, distinct copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> might receive different colours.</div><div>In this paper, we investigate the analogous questions where the complete host graph is replaced by a graph of large minimum degree. We determine the (asymptotic) minimum degree threshold for forcing a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-tiling covering a prescribed proportion of the vertices in a <span><math><mn>2</mn></math></span>-edge-coloured graph such that every copy of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> in the tiling is monochromatic. We also determine the largest size of a monochromatic <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-tiling one can guarantee in any 2-edge-coloured graph of large minimum degree. These results therefore provide generalisations of the theorems of Moon and Burr–Erdős–Spencer to the setting of dense graphs.</div><div>It is also natural to consider generalisations of these problems to <span><math><mi>r</mi></math></span>-edge-colourings (for <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span>) and for <span><math><mi>H</mi></math></sp
给定一个图H,拉姆齐数R(H)是最小的正整数n,使得Kn的每一个2边着色产生H的单色副本。我们用mH表示H的m个顶点不相交副本的并集。族的成员{mH:m≥1}也被称为H-tilings。Burr, Erdős和Spencer的一个著名结果表明,当m≥2时,R(mK3)=5m。另一方面,Moon证明了对于每m≥2,K3m+2的每一个2边着色产生一个由m个K3单色副本组成的K3平铺。至关重要的是,在Moon的结果中,不同的K3拷贝可能会收到不同的颜色。本文研究了用大最小度图代替完全主图的类似问题。我们确定了(渐近的)最小度阈值,用于强制K3平铺覆盖2边彩色图中规定比例的顶点,使得平铺中的每个K3副本都是单色的。我们还确定了在任意最小度较大的2边彩色图中所能保证的单色k3平铺的最大尺寸。因此,这些结果提供了Moon定理和Burr-Erdős-Spencer定理对密集图设置的推广。将这些问题推广到r-边着色(对于r≥2)和H-平铺(对于任意图H)也是很自然的。我们在这个方向上证明了一些结果,并提出了几个开放的问题。
{"title":"Ramsey-type problems for tilings in dense graphs","authors":"József Balogh ,&nbsp;Andrea Freschi ,&nbsp;Andrew Treglown","doi":"10.1016/j.ejc.2025.104228","DOIUrl":"10.1016/j.ejc.2025.104228","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Given a graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, the Ramsey number &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is the smallest positive integer &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; such that every 2-edge-colouring of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; yields a monochromatic copy of &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. We write &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; to denote the union of &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; vertex-disjoint copies of &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. The members of the family &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; are also known as &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-tilings. A well-known result of Burr, Erdős and Spencer states that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for every &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. On the other hand, Moon proved that every 2-edge-colouring of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; yields a &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-tiling consisting of &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; monochromatic copies of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, for every &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Crucially, in Moon’s result, distinct copies of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; might receive different colours.&lt;/div&gt;&lt;div&gt;In this paper, we investigate the analogous questions where the complete host graph is replaced by a graph of large minimum degree. We determine the (asymptotic) minimum degree threshold for forcing a &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-tiling covering a prescribed proportion of the vertices in a &lt;span&gt;&lt;math&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;-edge-coloured graph such that every copy of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; in the tiling is monochromatic. We also determine the largest size of a monochromatic &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;-tiling one can guarantee in any 2-edge-coloured graph of large minimum degree. These results therefore provide generalisations of the theorems of Moon and Burr–Erdős–Spencer to the setting of dense graphs.&lt;/div&gt;&lt;div&gt;It is also natural to consider generalisations of these problems to &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-edge-colourings (for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) and for &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/sp","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104228"},"PeriodicalIF":0.9,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144926739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transitive and Gallai colorings of the complete graph 完全图的传递着色和盖莱着色
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-08-21 DOI: 10.1016/j.ejc.2025.104225
Ron M. Adin , Arkady Berenstein , Jacob Greenstein , Jian-Rong Li , Avichai Marmor , Yuval Roichman
A Gallai coloring of the complete graph is an edge-coloring with no rainbow triangle. This concept first appeared in the study of incomparability graphs and anti-Ramsey theory. A directed analogue, called transitive coloring, was introduced by Berenstein, Greenstein and Li in a rather general setting. It is studied here for the acyclic tournament. The interplay of the two notions yields new enumerative results and algebraic perspectives.
We first count Gallai and transitive colorings of the complete graph which use the maximal number of colors. The quasisymmetric generating functions of these colorings, equipped with a natural descent set, are shown to be Schur-positive for any number of colors. Explicit Schur expansions are described when the number of colors is maximal. It follows that descent sets of maximal Gallai and transitive colorings are equidistributed with descent sets of perfect matchings and pattern-avoiding indecomposable permutations, respectively.
Corresponding commutative algebras are also studied. Their dimensions are shown to be equal to the number of Gallai colorings of the complete graph and the number of transitive colorings of the acyclic tournament, respectively. Relations to Orlik-Terao algebras are established.
完全图的盖莱着色是一种没有彩虹三角形的边着色。这个概念最早出现在不可比较图和反拉姆齐理论的研究中。Berenstein, Greenstein和Li在一般情况下引入了一种称为传递着色的定向类似物。这是为无环锦标赛研究的。这两个概念的相互作用产生了新的枚举结果和代数观点。我们首先计算了完全图中使用最大颜色数的盖勒着色和传递着色。具有自然下降集的这些着色的拟对称生成函数对于任意数量的颜色都是schur正的。当颜色数量达到最大值时,描述显式舒尔展开。由此可知,极大加勒着色和传递着色的下降集分别与完美匹配和避免模式不可分解置换的下降集是等分布的。并研究了相应的交换代数。它们的维数分别等于完全图的加勒着色的个数和无环比赛场的传递着色的个数。建立了与orlikterao代数的关系。
{"title":"Transitive and Gallai colorings of the complete graph","authors":"Ron M. Adin ,&nbsp;Arkady Berenstein ,&nbsp;Jacob Greenstein ,&nbsp;Jian-Rong Li ,&nbsp;Avichai Marmor ,&nbsp;Yuval Roichman","doi":"10.1016/j.ejc.2025.104225","DOIUrl":"10.1016/j.ejc.2025.104225","url":null,"abstract":"<div><div>A Gallai coloring of the complete graph is an edge-coloring with no rainbow triangle. This concept first appeared in the study of incomparability graphs and anti-Ramsey theory. A directed analogue, called transitive coloring, was introduced by Berenstein, Greenstein and Li in a rather general setting. It is studied here for the acyclic tournament. The interplay of the two notions yields new enumerative results and algebraic perspectives.</div><div>We first count Gallai and transitive colorings of the complete graph which use the maximal number of colors. The quasisymmetric generating functions of these colorings, equipped with a natural descent set, are shown to be Schur-positive for any number of colors. Explicit Schur expansions are described when the number of colors is maximal. It follows that descent sets of maximal Gallai and transitive colorings are equidistributed with descent sets of perfect matchings and pattern-avoiding indecomposable permutations, respectively.</div><div>Corresponding commutative algebras are also studied. Their dimensions are shown to be equal to the number of Gallai colorings of the complete graph and the number of transitive colorings of the acyclic tournament, respectively. Relations to Orlik-Terao algebras are established.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104225"},"PeriodicalIF":0.9,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144878330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decomposition of triangle-free planar graphs 无三角形平面图的分解
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-08-19 DOI: 10.1016/j.ejc.2025.104227
Rongxing Xu , Xuding Zhu
A decomposition of a graph G is a family of subgraphs of G whose edge sets form a partition of E(G). In this paper, we prove that every triangle-free planar graph G can be decomposed into a 2-degenerate graph and a matching. Consequently, every triangle-free planar graph G has a matching M such that GM is online 3-DP-colorable. This strengthens an earlier result in Škrekovski (1999) that every triangle-free planar graph is 1-defective 3-choosable.
图G的分解是G的一组子图,这些子图的边集构成E(G)的一个划分。本文证明了每一个无三角形平面图G都可以分解为一个2-简并图和一个匹配图。因此,每一个无三角形平面图G都有一个匹配的M,使得G−M是在线3- dp可着色的。这加强了Škrekovski(1999)中先前的一个结果,即每个无三角形平面图都是1-缺陷3-可选的。
{"title":"Decomposition of triangle-free planar graphs","authors":"Rongxing Xu ,&nbsp;Xuding Zhu","doi":"10.1016/j.ejc.2025.104227","DOIUrl":"10.1016/j.ejc.2025.104227","url":null,"abstract":"<div><div>A decomposition of a graph <span><math><mi>G</mi></math></span> is a family of subgraphs of <span><math><mi>G</mi></math></span> whose edge sets form a partition of <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we prove that every triangle-free planar graph <span><math><mi>G</mi></math></span> can be decomposed into a 2-degenerate graph and a matching. Consequently, every triangle-free planar graph <span><math><mi>G</mi></math></span> has a matching <span><math><mi>M</mi></math></span> such that <span><math><mrow><mi>G</mi><mo>−</mo><mi>M</mi></mrow></math></span> is online 3-DP-colorable. This strengthens an earlier result in Škrekovski (1999) that every triangle-free planar graph is 1-defective 3-choosable.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104227"},"PeriodicalIF":0.9,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144865280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The exact Turán number of disjoint graphs– A generalization of Simonovits’ theorem, and beyond 不相交图的确切Turán数目——Simonovits定理的推广及以后
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-08-05 DOI: 10.1016/j.ejc.2025.104226
Guantao Chen , Xingyu Lei , Shuchao Li
<div><div>For a given graph <span><math><mi>H</mi></math></span>, we say that a graph <span><math><mi>G</mi></math></span> is <span><math><mi>H</mi></math></span><em>-free</em> if it does not contain <span><math><mi>H</mi></math></span> as a subgraph. Let <span><math><mrow><mtext>ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> (resp. <span><math><mrow><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>) denote the maximum size (resp. spectral radius) of an <span><math><mi>n</mi></math></span>-vertex <span><math><mi>H</mi></math></span>-free graph, and <span><math><mrow><mtext>Ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> (resp. <span><math><mrow><msub><mrow><mtext>Ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>) denote the set of all <span><math><mi>n</mi></math></span>-vertex <span><math><mi>H</mi></math></span>-free graphs with <span><math><mrow><mtext>ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> edges (resp. spectral radius <span><math><mrow><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>). We call <span><math><mrow><mtext>ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> (resp. <span><math><mrow><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>) the <em>Turán number</em> (resp. <em>spectral Turán number</em>) of <span><math><mi>H</mi></math></span>. Suppose that we know the exact values of Turán numbers of <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span>, respectively. Can we get the exact value of the Turán number of the disjoint union of <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><mo>⋯</mo><mo>∪</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span>? Moon considered the disjoint union of complete graphs. A graph <span><math><mi>G</mi></math></span> is <em>color-critical</em> if there exists an edge <span><math><mi>e</mi></math></span> such that <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>−</mo><mi>e</mi><mo>)</mo></mrow><mo><</mo><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Simonovits extended Moon’s result to the disjoint union of <em>color-critical graphs</em> for sufficiently large <span><math><mi>n</mi></math></span>. Erdős et al. determined the Turán number of triangles sha
对于给定的图H,如果图G不包含H作为子图,我们说它是无H的。设ex(n,H) (p。exsp(n,H))表示最大大小。谱半径),Ex(n,H) (resp。Exsp(n,H))表示所有边为ex(n,H)的n顶点无H图的集合。谱半径exsp(n,H))。我们称ex(n,H) (p。exp (n,H)) Turán number (p. 0)假设我们分别知道G1,…,Gk的Turán个数的确切值。我们能否得到G1∪∪Gk的Turán个数的确切值?Moon考虑了完全图的不相交并。如果存在一条边e使得χ(G−e)<χ(G),则图G是颜色临界的。Simonovits将Moon的结果推广到足够大n的色临界图的不相交并。Erdős等人确定了Turán刚好共享一个顶点的三角形的数量。Chen等人将结果扩展到只共享一个顶点的完全图。设F是Fi的一个不相交并,其中Fi是将一个顶点与所有的顶点联结在一起得到的一个图,每个Fij都是一个色临界图。对于较大的n,我们确定了ex(n,F)和exsp(n,F)。此外,我们证明了对于这些图中的每一个F,只要n足够大,Exsp(n,F)任任(n,F),这就提供了一大类图,对Liu和Ning最近提出的一个开放问题给出了一个正答案:刻画满足Exsp(n,F)任任(n,F)的图F。
{"title":"The exact Turán number of disjoint graphs– A generalization of Simonovits’ theorem, and beyond","authors":"Guantao Chen ,&nbsp;Xingyu Lei ,&nbsp;Shuchao Li","doi":"10.1016/j.ejc.2025.104226","DOIUrl":"10.1016/j.ejc.2025.104226","url":null,"abstract":"&lt;div&gt;&lt;div&gt;For a given graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, we say that a graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;em&gt;-free&lt;/em&gt; if it does not contain &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; as a subgraph. Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;ex&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; (resp. &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mtext&gt;ex&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) denote the maximum size (resp. spectral radius) of an &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-vertex &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-free graph, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;Ex&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; (resp. &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mtext&gt;Ex&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) denote the set of all &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-vertex &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-free graphs with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;ex&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; edges (resp. spectral radius &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mtext&gt;ex&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;). We call &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;ex&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; (resp. &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mtext&gt;ex&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) the &lt;em&gt;Turán number&lt;/em&gt; (resp. &lt;em&gt;spectral Turán number&lt;/em&gt;) of &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Suppose that we know the exact values of Turán numbers of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, respectively. Can we get the exact value of the Turán number of the disjoint union of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;∪&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;? Moon considered the disjoint union of complete graphs. A graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is &lt;em&gt;color-critical&lt;/em&gt; if there exists an edge &lt;span&gt;&lt;math&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Simonovits extended Moon’s result to the disjoint union of &lt;em&gt;color-critical graphs&lt;/em&gt; for sufficiently large &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Erdős et al. determined the Turán number of triangles sha","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104226"},"PeriodicalIF":0.9,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144772968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Splitter theorems for graph immersions 图浸入式的分裂定理
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-08-02 DOI: 10.1016/j.ejc.2025.104223
Matt DeVos, Mahdieh Malekian
We establish splitter theorems for graph immersions for two families of graphs, k-edge-connected graphs, with k even, and 3-edge-connected, internally 4-edge-connected graphs. As a corollary, we prove that every 3-edge-connected, internally 4-edge-connected graph on at least seven vertices that immerses K5 also has K3,3 as an immersion.
我们建立了两个图族的图浸入的分裂定理,k边连通图,有k偶,3边连通图,内部4边连通图。作为推论,我们证明了每个3边连接,内部4边连接的图在至少7个顶点上,浸入K5也有k3,3作为浸入。
{"title":"Splitter theorems for graph immersions","authors":"Matt DeVos,&nbsp;Mahdieh Malekian","doi":"10.1016/j.ejc.2025.104223","DOIUrl":"10.1016/j.ejc.2025.104223","url":null,"abstract":"<div><div>We establish splitter theorems for graph immersions for two families of graphs, <span><math><mi>k</mi></math></span>-edge-connected graphs, with <span><math><mi>k</mi></math></span> even, and 3-edge-connected, internally 4-edge-connected graphs. As a corollary, we prove that every 3-edge-connected, internally 4-edge-connected graph on at least seven vertices that immerses <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span> also has <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span> as an immersion.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104223"},"PeriodicalIF":0.9,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144763810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability properties for subgroups generated by return words 由返回字生成的子组的稳定性
IF 1 3区 数学 Q1 MATHEMATICS Pub Date : 2025-07-26 DOI: 10.1016/j.ejc.2025.104224
France Gheeraert , Herman Goulet-Ouellet , Julien Leroy , Pierre Stas
Return words are a classical tool for studying shift spaces with low factor complexity. In recent years, their projection inside groups have attracted some attention, for instance in the context of dendric shift spaces, of generation of pseudorandom numbers (through the welldoc property), and of profinite invariants of shift spaces. Aiming at unifying disparate works, we introduce a notion of stability for subgroups generated by return words. Within this framework, we revisit several existing results and generalize some of them. We also study general aspects of stability, such as decidability or closure under certain operations.
返回词是研究低因子复杂度移位空间的经典工具。近年来,它们在群内的投影引起了一些关注,例如在枝状移位空间,伪随机数的生成(通过welldoc性质)以及移位空间的无限不变量的背景下。为了统一不同的作品,我们引入了由返回词生成的子群的稳定性概念。在这个框架内,我们回顾了几个现有的结果,并概括了其中的一些。我们还研究了稳定性的一般方面,例如在某些操作下的可判决性或闭包性。
{"title":"Stability properties for subgroups generated by return words","authors":"France Gheeraert ,&nbsp;Herman Goulet-Ouellet ,&nbsp;Julien Leroy ,&nbsp;Pierre Stas","doi":"10.1016/j.ejc.2025.104224","DOIUrl":"10.1016/j.ejc.2025.104224","url":null,"abstract":"<div><div>Return words are a classical tool for studying shift spaces with low factor complexity. In recent years, their projection inside groups have attracted some attention, for instance in the context of dendric shift spaces, of generation of pseudorandom numbers (through the welldoc property), and of profinite invariants of shift spaces. Aiming at unifying disparate works, we introduce a notion of stability for subgroups generated by return words. Within this framework, we revisit several existing results and generalize some of them. We also study general aspects of stability, such as decidability or closure under certain operations.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104224"},"PeriodicalIF":1.0,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144711391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A consistent sandpile torsor algorithm for regular matroids 正则拟阵的一致沙堆变形算法
IF 0.9 3区 数学 Q1 MATHEMATICS Pub Date : 2025-07-16 DOI: 10.1016/j.ejc.2025.104218
Changxin Ding , Alex McDonough , Lilla Tóthmérész , Chi Ho Yuen
Every regular matroid is associated with a sandpile group, which acts simply transitively on the set of bases in various ways. Ganguly and the second author introduced the notion of consistency to describe classes of actions that respect deletion–contraction in a precise sense, and proved the consistency of rotor-routing torsors (and uniqueness thereof) for plane graphs.
In this work, we prove that the class of actions introduced by Backman, Baker, and the fourth author, is consistent for regular matroids. More precisely, we prove the consistency of its generalization given by Backman, Santos and the fourth author, and independently by the first author. This extends the above existence assertion, as well as makes progress on the goal of classifying all consistent actions.
每个正则矩阵都与一个沙堆群相关联,沙堆群以各种方式简单地传递在基集上。Ganguly和第二作者引入一致性的概念来描述精确意义上尊重删除-收缩的动作类,并证明了平面图的转子路由体的一致性(及其唯一性)。在这项工作中,我们证明了Backman, Baker和第四作者引入的一类作用对于正则拟阵是一致的。更确切地说,我们证明了Backman, Santos和第四作者给出的推广的一致性,以及第一作者独立给出的推广的一致性。这扩展了上述存在性断言,并在对所有一致行为进行分类的目标上取得了进展。
{"title":"A consistent sandpile torsor algorithm for regular matroids","authors":"Changxin Ding ,&nbsp;Alex McDonough ,&nbsp;Lilla Tóthmérész ,&nbsp;Chi Ho Yuen","doi":"10.1016/j.ejc.2025.104218","DOIUrl":"10.1016/j.ejc.2025.104218","url":null,"abstract":"<div><div>Every regular matroid is associated with a <em>sandpile group</em>, which acts simply transitively on the set of bases in various ways. Ganguly and the second author introduced the notion of <em>consistency</em> to describe classes of actions that respect deletion–contraction in a precise sense, and proved the consistency of rotor-routing torsors (and uniqueness thereof) for plane graphs.</div><div>In this work, we prove that the class of actions introduced by Backman, Baker, and the fourth author, is consistent for regular matroids. More precisely, we prove the consistency of its generalization given by Backman, Santos and the fourth author, and independently by the first author. This extends the above existence assertion, as well as makes progress on the goal of classifying all consistent actions.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104218"},"PeriodicalIF":0.9,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144831559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Journal of Combinatorics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1