In this work we prove that every shift of finite type (SFT), sofic shift, and strongly irreducible shift on locally finite groups has strong dynamical properties. These properties include that every sofic shift is an SFT, every SFT is strongly irreducible, every strongly irreducible shift is an SFT, every SFT is entropy minimal, and every SFT has a unique measure of maximal entropy, among others. In addition, we show that if every SFT on a group is strongly irreducible, or if every sofic shift is an SFT, then the group must be locally finite, and this extends to all of the properties we explore. These results are collected in two main theorems which characterize the local finiteness of groups by purely dynamical properties. In pursuit of these results, we present a formal construction of free extension shifts on a group G, which takes a shift on a subgroup H of G, and naturally extends it to a shift on all of G.
在这项工作中,我们证明了局部有限群上的每一个有限型移位(SFT)、sofic 移位和强不可还原移位都具有强动力学性质。这些性质包括:每个sofic shift 都是一个SFT,每个SFT 都是强不可还原的,每个强不可还原的 shift 都是一个SFT,每个SFT 都是熵最小的,每个SFT 都有一个唯一的最大熵量,等等。此外,我们还证明,如果一个群上的每一个 SFT 都是强不可还原的,或者每一个sofic shift 都是一个 SFT,那么这个群一定是局部有限的,这也扩展到了我们探索的所有性质。这些结果集合在两个主要定理中,它们通过纯粹的动力学性质描述了群的局部有限性。为了追寻这些结果,我们提出了群 G 上自由扩展位移的形式构造,它将 G 的一个子群 H 上的位移,自然地扩展为 G 全部上的位移。
{"title":"Shifts of finite type on locally finite groups","authors":"JADE RAYMOND","doi":"10.1017/etds.2024.14","DOIUrl":"https://doi.org/10.1017/etds.2024.14","url":null,"abstract":"In this work we prove that every shift of finite type (SFT), sofic shift, and strongly irreducible shift on locally finite groups has strong dynamical properties. These properties include that every sofic shift is an SFT, every SFT is strongly irreducible, every strongly irreducible shift is an SFT, every SFT is entropy minimal, and every SFT has a unique measure of maximal entropy, among others. In addition, we show that if every SFT on a group is strongly irreducible, or if every sofic shift is an SFT, then the group must be locally finite, and this extends to all of the properties we explore. These results are collected in two main theorems which characterize the local finiteness of groups by purely dynamical properties. In pursuit of these results, we present a formal construction of <jats:italic>free extension</jats:italic> shifts on a group <jats:italic>G</jats:italic>, which takes a shift on a subgroup <jats:italic>H</jats:italic> of <jats:italic>G</jats:italic>, and naturally extends it to a shift on all of <jats:italic>G</jats:italic>.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139979059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we consider random iterations of polynomial maps $z^{2} + c_{n}$ , where $c_{n}$ are complex-valued independent random variables following the uniform distribution on the closed disk with center c and radius r. The aim of this paper is twofold. First, we study the (dis)connectedness of random Julia sets. Here, we reveal the relationships between the bifurcation radius and connectedness of random Julia sets. Second, we investigate the bifurcation of our random iterations and give quantitative estimates of bifurcation parameters. In particular, we prove that for the central parameter $c = -1$ , almost every random Julia set is totally disconnected with much smaller radial parameters r than expected. We also introduce several open questions worth discussing.
在本文中,我们考虑多项式映射 $z^{2} + c_{n}$ 的随机迭代。+ c_{n}$ ,其中 $c_{n}$ 是复值独立随机变量,在以 c 为圆心、r 为半径的封闭圆盘上服从均匀分布。首先,我们研究随机 Julia 集的(不)连通性。在这里,我们揭示了随机 Julia 集的分岔半径和连通性之间的关系。其次,我们研究了随机迭代的分岔,并给出了分岔参数的定量估计。特别是,我们证明了对于中心参数 $c = -1$ ,几乎每个随机 Julia 集都是完全断开的,其径向参数 r 比预期的要小得多。我们还介绍了几个值得讨论的开放问题。
{"title":"On the stochastic bifurcations regarding random iterations of polynomials of the form","authors":"TAKAYUKI WATANABE","doi":"10.1017/etds.2024.17","DOIUrl":"https://doi.org/10.1017/etds.2024.17","url":null,"abstract":"In this paper, we consider random iterations of polynomial maps <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000178_inline2.png\" /> <jats:tex-math> $z^{2} + c_{n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000178_inline3.png\" /> <jats:tex-math> $c_{n}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are complex-valued independent random variables following the uniform distribution on the closed disk with center <jats:italic>c</jats:italic> and radius <jats:italic>r</jats:italic>. The aim of this paper is twofold. First, we study the (dis)connectedness of random Julia sets. Here, we reveal the relationships between the bifurcation radius and connectedness of random Julia sets. Second, we investigate the bifurcation of our random iterations and give quantitative estimates of bifurcation parameters. In particular, we prove that for the central parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000178_inline4.png\" /> <jats:tex-math> $c = -1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, almost every random Julia set is totally disconnected with much smaller radial parameters <jats:italic>r</jats:italic> than expected. We also introduce several open questions worth discussing.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139978846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DIEGO BARROS, CHRISTIAN BONATTI, MARIA JOSÉ PACIFICO
We present a modified version of the well-known geometric Lorenz attractor. It consists of a $C^1$ open set ${mathcal O}$ of vector fields in ${mathbb R}^3$ having an attracting region ${mathcal U}$ satisfying three properties. Namely, a unique singularity $sigma $ ; a unique attractor $Lambda $ including the singular point and the maximal invariant in ${mathcal U}$ has at most two chain recurrence classes, which are $Lambda $ and (at most) one hyperbolic horseshoe. The horseshoe and the singular attractor have a collision along with the union of $2$ codimension $1$
{"title":"Upper, down, two-sided Lorenz attractor, collisions, merging, and switching","authors":"DIEGO BARROS, CHRISTIAN BONATTI, MARIA JOSÉ PACIFICO","doi":"10.1017/etds.2024.8","DOIUrl":"https://doi.org/10.1017/etds.2024.8","url":null,"abstract":"We present a modified version of the well-known geometric Lorenz attractor. It consists of a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline1.png\" /> <jats:tex-math> $C^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> open set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline2.png\" /> <jats:tex-math> ${mathcal O}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of vector fields in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline3.png\" /> <jats:tex-math> ${mathbb R}^3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> having an attracting region <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline4.png\" /> <jats:tex-math> ${mathcal U}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying three properties. Namely, a unique singularity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline5.png\" /> <jats:tex-math> $sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>; a unique attractor <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline6.png\" /> <jats:tex-math> $Lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> including the singular point and the maximal invariant in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline7.png\" /> <jats:tex-math> ${mathcal U}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has at most two chain recurrence classes, which are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline8.png\" /> <jats:tex-math> $Lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and (at most) one hyperbolic horseshoe. The horseshoe and the singular attractor have a collision along with the union of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline9.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> codimension <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline10.png\" /> <jats:tex-math> $1$ </jats:t","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139923275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We find sufficient conditions for bounded density shifts to have a unique measure of maximal entropy. We also prove that every measure of maximal entropy of a bounded density shift is fully supported. As a consequence of this, we obtain that bounded density shifts are surjunctive.
{"title":"Measures of maximal entropy of bounded density shifts","authors":"FELIPE GARCÍA-RAMOS, RONNIE PAVLOV, CARLOS REYES","doi":"10.1017/etds.2024.6","DOIUrl":"https://doi.org/10.1017/etds.2024.6","url":null,"abstract":"We find sufficient conditions for bounded density shifts to have a unique measure of maximal entropy. We also prove that every measure of maximal entropy of a bounded density shift is fully supported. As a consequence of this, we obtain that bounded density shifts are surjunctive.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139923465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Let $ G $ be a connected semisimple real algebraic group and $Gamma <G$ be a Zariski dense discrete subgroup. Let N denote a maximal horospherical subgroup of G, and $P=MAN$ the minimal parabolic subgroup which is the normalizer of N. Let $mathcal E$ denote the unique P-minimal subset of $Gamma backslash G$ and let $mathcal E_0$ be a $P^circ $ -minimal subset. We consider a notion of a horospherical limit point in the Furstenberg boundary $ G/P $ and show that the following are equivalent for any $[g]in mathcal E_0$ : (1)
{"title":"On denseness of horospheres in higher rank homogeneous spaces","authors":"OR LANDESBERG, HEE OH","doi":"10.1017/etds.2024.12","DOIUrl":"https://doi.org/10.1017/etds.2024.12","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline1.png\" /> <jats:tex-math> $ G $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a connected semisimple real algebraic group and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline2.png\" /> <jats:tex-math> $Gamma <G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a Zariski dense discrete subgroup. Let <jats:italic>N</jats:italic> denote a maximal horospherical subgroup of <jats:italic>G</jats:italic>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline3.png\" /> <jats:tex-math> $P=MAN$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> the minimal parabolic subgroup which is the normalizer of <jats:italic>N</jats:italic>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline4.png\" /> <jats:tex-math> $mathcal E$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the unique <jats:italic>P</jats:italic>-minimal subset of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline5.png\" /> <jats:tex-math> $Gamma backslash G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline6.png\" /> <jats:tex-math> $mathcal E_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline7.png\" /> <jats:tex-math> $P^circ $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-minimal subset. We consider a notion of a horospherical limit point in the Furstenberg boundary <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline8.png\" /> <jats:tex-math> $ G/P $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and show that the following are equivalent for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000129_inline9.png\" /> <jats:tex-math> $[g]in mathcal E_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>: <jats:list list-type=\"number\"> <jats:list-item> <jats:label>(1)</jats:label> <jats:inline-formula> <jats:alternatives> <jats:inline-gra","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139909838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
IZTOK BANIČ, RENE GRIL ROGINA, JUDY KENNEDY, VAN NALL
We introduce the notions of returns and well-aligned sets for closed relations on compact metric spaces and then use them to obtain non-trivial sufficient conditions for such a relation to have non-zero entropy. In addition, we give a characterization of finite relations with non-zero entropy in terms of Li–Yorke and DC2 chaos.
{"title":"Sufficient conditions for non-zero entropy of closed relations","authors":"IZTOK BANIČ, RENE GRIL ROGINA, JUDY KENNEDY, VAN NALL","doi":"10.1017/etds.2024.11","DOIUrl":"https://doi.org/10.1017/etds.2024.11","url":null,"abstract":"We introduce the notions of returns and well-aligned sets for closed relations on compact metric spaces and then use them to obtain non-trivial sufficient conditions for such a relation to have non-zero entropy. In addition, we give a characterization of finite relations with non-zero entropy in terms of Li–Yorke and DC2 chaos.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139766847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TULLIO CECCHERINI-SILBERSTEIN, MICHEL COORNAERT, XUAN KIEN PHUNG
Let G be a group and let V be an algebraic variety over an algebraically closed field K. Let A denote the set of K-points of V. We introduce algebraic sofic subshifts ${Sigma subset A^G}$ and study endomorphisms $tau colon Sigma to Sigma $ . We generalize several results for dynamical invariant sets and nilpotency of $tau $ that are well known for finite alphabet cellular automata. Under mild assumptions, we prove that $tau $ is nilpotent if and only if its limit set, that is, the intersection of the images of its iterates, is a singleton. If moreover G is infinite, finitely generated and $Sigma $ is topologically mixing, we show that $tau $ is nilpotent if and only if its limit set consists of periodic configurations and has a finite set of alphabet values.
让 G 是一个群,让 V 是一个代数封闭域 K 上的代数簇,让 A 表示 V 的 K 点集合。我们引入代数的 sofic 子转移 ${Sigma subset A^G}$ 并研究 $tau colon Sigma to Sigma $ 的内同构。我们对有限字母蜂窝自动机中众所周知的动力学不变集和 $tau $ 的无势性的几个结果进行了归纳。在温和的假设条件下,我们证明当且仅当 $tau $ 的极限集(即其迭代的图像的交集)是单子时,它才是无穷的。此外,如果 G 是无限的、有限生成的,并且 $Sigma $ 是拓扑混合的,那么我们证明,只有当其极限集由周期性配置组成,并且具有有限的字母值集时,$tau $ 才是无穷的。
{"title":"Invariant sets and nilpotency of endomorphisms of algebraic sofic shifts","authors":"TULLIO CECCHERINI-SILBERSTEIN, MICHEL COORNAERT, XUAN KIEN PHUNG","doi":"10.1017/etds.2023.120","DOIUrl":"https://doi.org/10.1017/etds.2023.120","url":null,"abstract":"Let <jats:italic>G</jats:italic> be a group and let <jats:italic>V</jats:italic> be an algebraic variety over an algebraically closed field <jats:italic>K</jats:italic>. Let <jats:italic>A</jats:italic> denote the set of <jats:italic>K</jats:italic>-points of <jats:italic>V</jats:italic>. We introduce algebraic sofic subshifts <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001207_inline1.png\" /> <jats:tex-math> ${Sigma subset A^G}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and study endomorphisms <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001207_inline2.png\" /> <jats:tex-math> $tau colon Sigma to Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We generalize several results for dynamical invariant sets and nilpotency of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001207_inline3.png\" /> <jats:tex-math> $tau $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> that are well known for finite alphabet cellular automata. Under mild assumptions, we prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001207_inline4.png\" /> <jats:tex-math> $tau $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is nilpotent if and only if its limit set, that is, the intersection of the images of its iterates, is a singleton. If moreover <jats:italic>G</jats:italic> is infinite, finitely generated and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001207_inline5.png\" /> <jats:tex-math> $Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is topologically mixing, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385723001207_inline6.png\" /> <jats:tex-math> $tau $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is nilpotent if and only if its limit set consists of periodic configurations and has a finite set of alphabet values.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139767237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Let $Ksubset {mathbb {R}}^d$ be a self-similar set generated by an iterated function system ${varphi _i}_{i=1}^m$ satisfying the strong separation condition and let f be a contracting similitude with $f(K)subseteq K$ . We show that $f(K)$ is relatively open in K if all $varphi _i$ share a common contraction ratio and orthogonal part. We also provide a counterexample when the orthogonal parts are allowed to vary. This partially answers a question of Elekes, Keleti and Máthé [Ergod. Th. & Dynam. Sys.30 (2010), 399–440]. As a byproduct of our argument, when $d=1$ and K admits two homogeneous generating iterated function systems satisfying the strong separation condition but with contraction ratios of opposite signs, we show that K is symmetric. This partially answers a question of Feng and Wang [Adv. Math.222 (2009), 1964–1981].
让 $Ksubset {mathbb {R}}^d$ 是由满足强分离条件的迭代函数系统 ${varphi _i}_{i=1}^m$ 生成的自相似集合,并让 f 是具有 $f(K)subseteq K$ 的收缩相似。我们证明,如果所有 $varphi _i$ 都有一个共同的收缩比和正交部分,那么 $f(K)$ 在 K 中是相对开放的。当允许正交部分变化时,我们还提供了一个反例。这部分回答了埃莱克斯、凯莱蒂和马特的一个问题[Ergod.作为我们论证的副产品,当 $d=1$ 且 K 包含两个满足强分离条件但收缩比符号相反的同质生成迭代函数系统时,我们证明 K 是对称的。这部分回答了冯和王的一个问题[Adv. Math.222 (2009), 1964-1981]。
{"title":"On a self-embedding problem for self-similar sets","authors":"JIAN-CI XIAO","doi":"10.1017/etds.2024.2","DOIUrl":"https://doi.org/10.1017/etds.2024.2","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000026_inline1.png\" /> <jats:tex-math> $Ksubset {mathbb {R}}^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a self-similar set generated by an iterated function system <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000026_inline2.png\" /> <jats:tex-math> ${varphi _i}_{i=1}^m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying the strong separation condition and let <jats:italic>f</jats:italic> be a contracting similitude with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000026_inline3.png\" /> <jats:tex-math> $f(K)subseteq K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000026_inline4.png\" /> <jats:tex-math> $f(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is relatively open in <jats:italic>K</jats:italic> if all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000026_inline5.png\" /> <jats:tex-math> $varphi _i$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> share a common contraction ratio and orthogonal part. We also provide a counterexample when the orthogonal parts are allowed to vary. This partially answers a question of Elekes, Keleti and Máthé [<jats:italic>Ergod. Th. & Dynam. Sys.</jats:italic>30 (2010), 399–440]. As a byproduct of our argument, when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000026_inline6.png\" /> <jats:tex-math> $d=1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>K</jats:italic> admits two homogeneous generating iterated function systems satisfying the strong separation condition but with contraction ratios of opposite signs, we show that <jats:italic>K</jats:italic> is symmetric. This partially answers a question of Feng and Wang [<jats:italic>Adv. Math.</jats:italic>222 (2009), 1964–1981].","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139767086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we consider random dynamical systems formed by concatenating maps acting on the unit interval $[0,1]$ in an independent and identically distributed (i.i.d.) fashion. Considered as a stationary Markov process, the random dynamical system possesses a unique stationary measure $nu $ . We consider a class of non-square-integrable observables $phi $ , mostly of form $phi (x)=d(x,x_0)^{-{1}/{alpha }}$ , where $x_0$ is a non-recurrent point (in particular a non-periodic point) satisfying some other genericity conditions and, more generally, regularly varying observables with index $alpha in (0,2)$ . The two types of maps we concatenate are a class of piecewise $C^2$ expanding maps and a class of intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and $alpha $ , we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law, and functional stable limit laws in both the annealed and quenched case. The scaling constants fo
{"title":"Stable laws for random dynamical systems","authors":"ROMAIN AIMINO, MATTHEW NICOL, ANDREW TÖRÖK","doi":"10.1017/etds.2024.5","DOIUrl":"https://doi.org/10.1017/etds.2024.5","url":null,"abstract":"In this paper, we consider random dynamical systems formed by concatenating maps acting on the unit interval <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline1.png\" /> <jats:tex-math> $[0,1]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in an independent and identically distributed (i.i.d.) fashion. Considered as a stationary Markov process, the random dynamical system possesses a unique stationary measure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline2.png\" /> <jats:tex-math> $nu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We consider a class of non-square-integrable observables <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline3.png\" /> <jats:tex-math> $phi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, mostly of form <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline4.png\" /> <jats:tex-math> $phi (x)=d(x,x_0)^{-{1}/{alpha }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline5.png\" /> <jats:tex-math> $x_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a non-recurrent point (in particular a non-periodic point) satisfying some other genericity conditions and, more generally, regularly varying observables with index <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline6.png\" /> <jats:tex-math> $alpha in (0,2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The two types of maps we concatenate are a class of piecewise <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline7.png\" /> <jats:tex-math> $C^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> expanding maps and a class of intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline8.png\" /> <jats:tex-math> $alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law, and functional stable limit laws in both the annealed and quenched case. The scaling constants fo","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Let $f: Mrightarrow M$ be a $C^{1+alpha }$ diffeomorphism on an $m_0$ -dimensional compact smooth Riemannian manifold M and $mu $ a hyperbolic ergodic f-invariant probability measure. This paper obtains an upper bound for the stable (unstable) pointwise dimension of $mu $ , which is given by the unique solution of an equation involving the sub-additive measure-theoretic pressure. If $mu $ is a Sinai–Ruelle–Bowen (SRB) measure, then the Kaplan–Yorke conjecture is true under some additional conditions and the Lyapunov dimension of $mu $ can be approximated gradually by the Hausdorff dimension of a sequence of hyperbolic sets ${Lambda _n}_{ngeq 1}$ . The limit behaviour of the Carathéodory singular dimension of $Lambda _n$
{"title":"Dimension estimates and approximation in non-uniformly hyperbolic systems","authors":"JUAN WANG, YONGLUO CAO, YUN ZHAO","doi":"10.1017/etds.2024.3","DOIUrl":"https://doi.org/10.1017/etds.2024.3","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline1.png\" /> <jats:tex-math> $f: Mrightarrow M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline2.png\" /> <jats:tex-math> $C^{1+alpha }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> diffeomorphism on an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline3.png\" /> <jats:tex-math> $m_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional compact smooth Riemannian manifold <jats:italic>M</jats:italic> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline4.png\" /> <jats:tex-math> $mu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> a hyperbolic ergodic <jats:italic>f</jats:italic>-invariant probability measure. This paper obtains an upper bound for the stable (unstable) pointwise dimension of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline5.png\" /> <jats:tex-math> $mu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is given by the unique solution of an equation involving the sub-additive measure-theoretic pressure. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline6.png\" /> <jats:tex-math> $mu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a Sinai–Ruelle–Bowen (SRB) measure, then the Kaplan–Yorke conjecture is true under some additional conditions and the Lyapunov dimension of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline7.png\" /> <jats:tex-math> $mu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> can be approximated gradually by the Hausdorff dimension of a sequence of hyperbolic sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline8.png\" /> <jats:tex-math> ${Lambda _n}_{ngeq 1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The limit behaviour of the Carathéodory singular dimension of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000038_inline9.png\" /> <jats:tex-math> $Lambda _n$ </jats:tex-math> </jats:alternatives> </jats:inl","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}