We propose a Poisson model for zero-inflated spatial counts contaminated by measurement error: we accommodate the excess of zeroes in the counts, consider the possible under/over reporting of the response and account for the neighboring structure of spatial areal units. Bayesian inferences are provided by MCMC implementation through the R package NIMBLE. To evaluate the model performance, a simulation study is carried out under configurations that allow for structured and unstructured spatial random effects. The proposed model is applied to investigate the distribution of the counts of wildfire occurrences in the municipal areas of two neighboring Italian regions for the summer season 2021. Fire counts are obtained by processing MODIS satellite data, while several socio-economic and environmental-driven potential risk factors are also considered in the model formulation. Data from multiple sources with different spatial support are processed in order to comply with the municipal units. Results suggest the appropriateness of the approach and provide some insights on the features of wildfire occurrences.
我们为受测量误差污染的零膨胀空间计数提出了一个泊松模型:我们考虑了计数中过多的零,考虑了可能存在的反应不足/过多的报告,并考虑了空间区域单位的邻近结构。贝叶斯推论是通过 R 软件包 NIMBLE 的 MCMC 实现的。为了评估模型的性能,在允许结构化和非结构化空间随机效应的配置下进行了模拟研究。提出的模型被用于研究 2021 年夏季意大利两个相邻大区市镇地区野火发生次数的分布情况。火灾次数是通过处理 MODIS 卫星数据获得的,同时,在建立模型时还考虑了一些由社会经济和环境驱动的潜在风险因素。对来自不同空间支持的多个来源的数据进行了处理,以符合市政单位的要求。结果表明该方法是适当的,并对野火发生的特点提供了一些启示。
{"title":"A zero-inflated Poisson spatial model with misreporting for wildfire occurrences in southern Italian municipalities","authors":"Serena Arima, Crescenza Calculli, Alessio Pollice","doi":"10.1002/env.2853","DOIUrl":"10.1002/env.2853","url":null,"abstract":"<p>We propose a Poisson model for zero-inflated spatial counts contaminated by measurement error: we accommodate the excess of zeroes in the counts, consider the possible under/over reporting of the response and account for the neighboring structure of spatial areal units. Bayesian inferences are provided by MCMC implementation through the R package NIMBLE. To evaluate the model performance, a simulation study is carried out under configurations that allow for structured and unstructured spatial random effects. The proposed model is applied to investigate the distribution of the counts of wildfire occurrences in the municipal areas of two neighboring Italian regions for the summer season 2021. Fire counts are obtained by processing MODIS satellite data, while several socio-economic and environmental-driven potential risk factors are also considered in the model formulation. Data from multiple sources with different spatial support are processed in order to comply with the municipal units. Results suggest the appropriateness of the approach and provide some insights on the features of wildfire occurrences.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140834422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Data depth is an efficient tool for robustly summarizing the distribution of functional data and detecting potential magnitude and shape outliers. Commonly used functional data depth notions, such as the modified band depth and extremal depth, are estimated from pointwise depth for each observed functional observation. However, these techniques require calculating one single depth value for each functional observation, which may not be sufficient to characterize the distribution of the functional data and detect potential outliers. This article presents an innovative approach to make the best use of pointwise depth. We propose using the pointwise depth distribution for magnitude outlier visualization and the correlation between pairwise depth for shape outlier detection. Furthermore, a bootstrap-based testing procedure has been introduced for the correlation to test whether there is any shape outlier. The proposed univariate methods are then extended to bivariate functional data. The performance of the proposed methods is examined and compared to conventional outlier detection techniques by intensive simulation studies. In addition, the developed methods are applied to simulated solar energy datasets from a photovoltaic system. Results revealed that the proposed method offers superior detection performance over conventional techniques. These findings will benefit engineers and practitioners in monitoring photovoltaic systems by detecting unnoticed anomalies and outliers.
{"title":"Pointwise data depth for univariate and multivariate functional outlier detection","authors":"Cristian F. Jiménez-Varón, Fouzi Harrou, Ying Sun","doi":"10.1002/env.2851","DOIUrl":"10.1002/env.2851","url":null,"abstract":"<p>Data depth is an efficient tool for robustly summarizing the distribution of functional data and detecting potential magnitude and shape outliers. Commonly used functional data depth notions, such as the modified band depth and extremal depth, are estimated from pointwise depth for each observed functional observation. However, these techniques require calculating one single depth value for each functional observation, which may not be sufficient to characterize the distribution of the functional data and detect potential outliers. This article presents an innovative approach to make the best use of pointwise depth. We propose using the pointwise depth distribution for magnitude outlier visualization and the correlation between pairwise depth for shape outlier detection. Furthermore, a bootstrap-based testing procedure has been introduced for the correlation to test whether there is any shape outlier. The proposed univariate methods are then extended to bivariate functional data. The performance of the proposed methods is examined and compared to conventional outlier detection techniques by intensive simulation studies. In addition, the developed methods are applied to simulated solar energy datasets from a photovoltaic system. Results revealed that the proposed method offers superior detection performance over conventional techniques. These findings will benefit engineers and practitioners in monitoring photovoltaic systems by detecting unnoticed anomalies and outliers.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 5","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Identifying the underlying trajectory pattern in the spatial-temporal data analysis is a fundamental but challenging task. In this paper, we study the problem of simultaneously identifying temporal trends and spatial clusters of spatial-temporal trajectories. To achieve this goal, we propose a novel method named spatial clustered and sparse nonparametric regression (