Gasdermin D (GSDMD) executes the cell death program of pyroptosis by assembling into oligomers that permeabilize the plasma membrane. Here, by single-molecule imaging, we elucidate the yet unclear mechanism of Gasdermin D pore assembly and the role of cysteine residues in GSDMD oligomerization. We show that GSDMD preassembles at the membrane into dimeric and trimeric building blocks that can either be inserted into the membrane, or further assemble into higher-order oligomers prior to insertion into the membrane. The GSDMD residues Cys39, Cys57, and Cys192 are the only relevant cysteines involved in GSDMD oligomerization. S-palmitoylation of Cys192, combined with the presence of negatively-charged lipids, controls GSDMD membrane targeting. Simultaneous Cys39/57/192-to-alanine (Ala) mutations, but not Ala mutations of Cys192 or the Cys39/57 pair individually, completely abolish GSDMD insertion into artificial membranes as well as into the plasma membrane. Finally, either Cys192 or the Cys39/Cys57 pair are sufficient to enable formation of GSDMD dimers/trimers, but they are all required for functional higher-order oligomer formation. Overall, our study unveils a cooperative role of Cys192 palmitoylation-mediated membrane binding and Cys39/57/192-mediated oligomerization in GSDMD pore assembly. This study supports a model in which Gasdermin D oligomerization relies on a two-step mechanism mediated by specific cysteine residues.
{"title":"Gasdermin D cysteine residues synergistically control its palmitoylation-mediated membrane targeting and assembly.","authors":"Eleonora Margheritis, Shirin Kappelhoff, John Danial, Nadine Gehle, Wladislaw Kohl, Rainer Kurre, Ayelén González Montoro, Katia Cosentino","doi":"10.1038/s44318-024-00190-6","DOIUrl":"10.1038/s44318-024-00190-6","url":null,"abstract":"<p><p>Gasdermin D (GSDMD) executes the cell death program of pyroptosis by assembling into oligomers that permeabilize the plasma membrane. Here, by single-molecule imaging, we elucidate the yet unclear mechanism of Gasdermin D pore assembly and the role of cysteine residues in GSDMD oligomerization. We show that GSDMD preassembles at the membrane into dimeric and trimeric building blocks that can either be inserted into the membrane, or further assemble into higher-order oligomers prior to insertion into the membrane. The GSDMD residues Cys39, Cys57, and Cys192 are the only relevant cysteines involved in GSDMD oligomerization. S-palmitoylation of Cys192, combined with the presence of negatively-charged lipids, controls GSDMD membrane targeting. Simultaneous Cys39/57/192-to-alanine (Ala) mutations, but not Ala mutations of Cys192 or the Cys39/57 pair individually, completely abolish GSDMD insertion into artificial membranes as well as into the plasma membrane. Finally, either Cys192 or the Cys39/Cys57 pair are sufficient to enable formation of GSDMD dimers/trimers, but they are all required for functional higher-order oligomer formation. Overall, our study unveils a cooperative role of Cys192 palmitoylation-mediated membrane binding and Cys39/57/192-mediated oligomerization in GSDMD pore assembly. This study supports a model in which Gasdermin D oligomerization relies on a two-step mechanism mediated by specific cysteine residues.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"4274-4297"},"PeriodicalIF":9.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445239/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-27DOI: 10.1038/s44318-024-00212-3
Jia Xie, Zhao-Ning Lu, Shi-Hao Bai, Xiao-Fang Cui, He-Yuan Lian, Chen-Yi Xie, Na Wang, Lan Wang, Ze-Guang Han
Heterochromatin, a key component of the eukaryotic nucleus, is fundamental to the regulation of genome stability, gene expression and cellular functions. However, the factors and mechanisms involved in heterochromatin formation and maintenance still remain largely unknown. Here, we show that insulin receptor tyrosine kinase substrate (IRTKS), an I-BAR domain protein, is indispensable for constitutive heterochromatin formation via liquid‒liquid phase separation (LLPS). In particular, IRTKS droplets can infiltrate heterochromatin condensates composed of HP1α and diverse DNA-bound nucleosomes. IRTKS can stabilize HP1α by recruiting the E2 ligase Ubc9 to SUMOylate HP1α, which enables it to form larger phase-separated droplets than unmodified HP1α. Furthermore, IRTKS deficiency leads to loss of heterochromatin, resulting in genome-wide changes in chromatin accessibility and aberrant transcription of repetitive DNA elements. This leads to activation of cGAS-STING pathway and type-I interferon (IFN-I) signaling, as well as to the induction of cellular senescence and senescence-associated secretory phenotype (SASP) responses. Collectively, our findings establish a mechanism by which IRTKS condensates consolidate constitutive heterochromatin, revealing an unexpected role of IRTKS as an epigenetic mediator of cellular senescence.
异染色质是真核生物细胞核的重要组成部分,是调控基因组稳定性、基因表达和细胞功能的基础。然而,异染色质的形成和维持所涉及的因素和机制在很大程度上仍然未知。在这里,我们通过液-液相分离(LLPS)研究发现,胰岛素受体酪氨酸激酶底物(IRTKS)--一种I-BAR结构域蛋白--对于组成型异染色质的形成是不可或缺的。特别是,IRTKS液滴可以渗入由HP1α和多种DNA结合核小体组成的异染色质凝聚体。IRTKS可以通过招募E2连接酶Ubc9对HP1α进行SUMO化来稳定HP1α,从而使其形成比未修饰的HP1α更大的相分离液滴。此外,IRTKS 的缺乏会导致异染色质的缺失,导致染色质可及性的全基因组变化和重复 DNA 元素的异常转录。这导致 cGAS-STING 通路和 I 型干扰素(IFN-I)信号的激活,以及细胞衰老和衰老相关分泌表型(SASP)反应的诱导。总之,我们的研究结果建立了一种IRTKS凝集物巩固组成型异染色质的机制,揭示了IRTKS作为细胞衰老的表观遗传介质所起的意想不到的作用。
{"title":"Heterochromatin formation and remodeling by IRTKS condensates counteract cellular senescence.","authors":"Jia Xie, Zhao-Ning Lu, Shi-Hao Bai, Xiao-Fang Cui, He-Yuan Lian, Chen-Yi Xie, Na Wang, Lan Wang, Ze-Guang Han","doi":"10.1038/s44318-024-00212-3","DOIUrl":"10.1038/s44318-024-00212-3","url":null,"abstract":"<p><p>Heterochromatin, a key component of the eukaryotic nucleus, is fundamental to the regulation of genome stability, gene expression and cellular functions. However, the factors and mechanisms involved in heterochromatin formation and maintenance still remain largely unknown. Here, we show that insulin receptor tyrosine kinase substrate (IRTKS), an I-BAR domain protein, is indispensable for constitutive heterochromatin formation via liquid‒liquid phase separation (LLPS). In particular, IRTKS droplets can infiltrate heterochromatin condensates composed of HP1α and diverse DNA-bound nucleosomes. IRTKS can stabilize HP1α by recruiting the E2 ligase Ubc9 to SUMOylate HP1α, which enables it to form larger phase-separated droplets than unmodified HP1α. Furthermore, IRTKS deficiency leads to loss of heterochromatin, resulting in genome-wide changes in chromatin accessibility and aberrant transcription of repetitive DNA elements. This leads to activation of cGAS-STING pathway and type-I interferon (IFN-I) signaling, as well as to the induction of cellular senescence and senescence-associated secretory phenotype (SASP) responses. Collectively, our findings establish a mechanism by which IRTKS condensates consolidate constitutive heterochromatin, revealing an unexpected role of IRTKS as an epigenetic mediator of cellular senescence.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"4542-4577"},"PeriodicalIF":9.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-16DOI: 10.1038/s44318-024-00209-y
William Teale, Daniel Klimmeck
{"title":"Metabolism: getting things right!","authors":"William Teale, Daniel Klimmeck","doi":"10.1038/s44318-024-00209-y","DOIUrl":"10.1038/s44318-024-00209-y","url":null,"abstract":"","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"4443"},"PeriodicalIF":9.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-14DOI: 10.1038/s44318-024-00194-2
Luca Cirillo, Rose Young, Sapthaswaran Veerapathiran, Annalisa Roberti, Molly Martin, Azzah Abubacar, Camilla Perosa, Catherine Coates, Reyhan Muhammad, Theodoros I Roumeliotis, Jyoti S Choudhary, Claudio Alfieri, Jonathon Pines
The proper control of mitosis depends on the ubiquitin-mediated degradation of the right mitotic regulator at the right time. This is effected by the Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase that is regulated by the Spindle Assembly Checkpoint (SAC). The SAC prevents the APC/C from recognising Cyclin B1, the essential anaphase and cytokinesis inhibitor, until all chromosomes are attached to the spindle. Once chromosomes are attached, Cyclin B1 is rapidly degraded to enable chromosome segregation and cytokinesis. We have a good understanding of how the SAC inhibits the APC/C, but relatively little is known about how the APC/C recognises Cyclin B1 as soon as the SAC is turned off. Here, by combining live-cell imaging, in vitro reconstitution biochemistry, and structural analysis by cryo-electron microscopy, we provide evidence that the rapid recognition of Cyclin B1 in metaphase requires spatial regulation of the APC/C. Using fluorescence cross-correlation spectroscopy, we find that Cyclin B1 and the APC/C primarily interact at the mitotic apparatus. We show that this is because Cyclin B1, like the APC/C, binds to nucleosomes, and identify an 'arginine-anchor' in the N-terminus as necessary and sufficient for binding to the nucleosome. Mutating the arginine anchor on Cyclin B1 reduces its interaction with the APC/C and delays its degradation: cells with the mutant, non-nucleosome-binding Cyclin B1 become aneuploid, demonstrating the physiological relevance of our findings. Together, our data demonstrate that mitotic chromosomes promote the efficient interaction between Cyclin B1 and the APC/C to ensure the timely degradation of Cyclin B1 and genomic stability.
{"title":"Spatial control of the APC/C ensures the rapid degradation of cyclin B1.","authors":"Luca Cirillo, Rose Young, Sapthaswaran Veerapathiran, Annalisa Roberti, Molly Martin, Azzah Abubacar, Camilla Perosa, Catherine Coates, Reyhan Muhammad, Theodoros I Roumeliotis, Jyoti S Choudhary, Claudio Alfieri, Jonathon Pines","doi":"10.1038/s44318-024-00194-2","DOIUrl":"10.1038/s44318-024-00194-2","url":null,"abstract":"<p><p>The proper control of mitosis depends on the ubiquitin-mediated degradation of the right mitotic regulator at the right time. This is effected by the Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase that is regulated by the Spindle Assembly Checkpoint (SAC). The SAC prevents the APC/C from recognising Cyclin B1, the essential anaphase and cytokinesis inhibitor, until all chromosomes are attached to the spindle. Once chromosomes are attached, Cyclin B1 is rapidly degraded to enable chromosome segregation and cytokinesis. We have a good understanding of how the SAC inhibits the APC/C, but relatively little is known about how the APC/C recognises Cyclin B1 as soon as the SAC is turned off. Here, by combining live-cell imaging, in vitro reconstitution biochemistry, and structural analysis by cryo-electron microscopy, we provide evidence that the rapid recognition of Cyclin B1 in metaphase requires spatial regulation of the APC/C. Using fluorescence cross-correlation spectroscopy, we find that Cyclin B1 and the APC/C primarily interact at the mitotic apparatus. We show that this is because Cyclin B1, like the APC/C, binds to nucleosomes, and identify an 'arginine-anchor' in the N-terminus as necessary and sufficient for binding to the nucleosome. Mutating the arginine anchor on Cyclin B1 reduces its interaction with the APC/C and delays its degradation: cells with the mutant, non-nucleosome-binding Cyclin B1 become aneuploid, demonstrating the physiological relevance of our findings. Together, our data demonstrate that mitotic chromosomes promote the efficient interaction between Cyclin B1 and the APC/C to ensure the timely degradation of Cyclin B1 and genomic stability.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"4324-4355"},"PeriodicalIF":9.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-16DOI: 10.1038/s44318-024-00201-6
Xiaoyu Qian, Jin Cai, Yi Zhang, Shengqi Shen, Mingjie Wang, Shengzhi Liu, Xiang Meng, Junjiao Zhang, Zijian Ye, Shiqiao Qiu, Xiuying Zhong, Ping Gao
While immune checkpoint blockade (ICB) has shown promise for clinical cancer therapy, its efficacy has only been observed in a limited subset of patients and the underlying mechanisms regulating innate and acquired resistance to ICB of tumor cells remain poorly understood. Here, we identified ependymin-related protein 1 (EPDR1) as an important tumor-intrinsic regulator of PD-L1 expression and tumor immune evasion. Aberrant expression of EPDR1 in hepatocellular carcinoma is associated with immunosuppression. Mechanistically, EPDR1 binds to E3 ligase TRIM21 and disrupts its interaction with IkappaB kinase-b, suppressing its ubiquitylation and autophagosomal degradation and enhancing NF-κB-mediated transcriptional activation of PD-L1. Further, we validated through a mouse liver cancer model that EPDR1 mediates exhaustion of CD8+ T cells and promotes tumor progression. In addition, we observed a positive correlation between EPDR1 and PD-L1 expression in both human and mouse liver cancer samples. Collectively, our study reveals a previously unappreciated role of EPDR1 in orchestrating tumor immune evasion and cancer progression.
{"title":"EPDR1 promotes PD-L1 expression and tumor immune evasion by inhibiting TRIM21-dependent ubiquitylation of IkappaB kinase-β.","authors":"Xiaoyu Qian, Jin Cai, Yi Zhang, Shengqi Shen, Mingjie Wang, Shengzhi Liu, Xiang Meng, Junjiao Zhang, Zijian Ye, Shiqiao Qiu, Xiuying Zhong, Ping Gao","doi":"10.1038/s44318-024-00201-6","DOIUrl":"10.1038/s44318-024-00201-6","url":null,"abstract":"<p><p>While immune checkpoint blockade (ICB) has shown promise for clinical cancer therapy, its efficacy has only been observed in a limited subset of patients and the underlying mechanisms regulating innate and acquired resistance to ICB of tumor cells remain poorly understood. Here, we identified ependymin-related protein 1 (EPDR1) as an important tumor-intrinsic regulator of PD-L1 expression and tumor immune evasion. Aberrant expression of EPDR1 in hepatocellular carcinoma is associated with immunosuppression. Mechanistically, EPDR1 binds to E3 ligase TRIM21 and disrupts its interaction with IkappaB kinase-b, suppressing its ubiquitylation and autophagosomal degradation and enhancing NF-κB-mediated transcriptional activation of PD-L1. Further, we validated through a mouse liver cancer model that EPDR1 mediates exhaustion of CD8<sup>+</sup> T cells and promotes tumor progression. In addition, we observed a positive correlation between EPDR1 and PD-L1 expression in both human and mouse liver cancer samples. Collectively, our study reveals a previously unappreciated role of EPDR1 in orchestrating tumor immune evasion and cancer progression.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"4248-4273"},"PeriodicalIF":9.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445549/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-27DOI: 10.1038/s44318-024-00176-4
Matei A Banu, Athanassios Dovas, Michael G Argenziano, Wenting Zhao, Colin P Sperring, Henar Cuervo Grajal, Zhouzerui Liu, Dominique Mo Higgins, Misha Amini, Brianna Pereira, Ling F Ye, Aayushi Mahajan, Nelson Humala, Julia L Furnari, Pavan S Upadhyayula, Fereshteh Zandkarimi, Trang Tt Nguyen, Damian Teasley, Peter B Wu, Li Hai, Charles Karan, Tyrone Dowdy, Aida Razavilar, Markus D Siegelin, Jan Kitajewski, Mioara Larion, Jeffrey N Bruce, Brent R Stockwell, Peter A Sims, Peter Canoll
Glioma cells hijack developmental programs to control cell state. Here, we uncover a glioma cell state-specific metabolic liability that can be therapeutically targeted. To model cell conditions at brain tumor inception, we generated genetically engineered murine gliomas, with deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling astrocyte differentiation during brain development. N1IC tumors harbored quiescent astrocyte-like transformed cell populations while p53 tumors were predominantly comprised of proliferating progenitor-like cell states. Further, N1IC transformed cells exhibited increased mitochondrial lipid peroxidation, high ROS production and depletion of reduced glutathione. This altered mitochondrial phenotype rendered the astrocyte-like, quiescent populations more sensitive to pharmacologic or genetic inhibition of the lipid hydroperoxidase GPX4 and induction of ferroptosis. Treatment of patient-derived early-passage cell lines and glioma slice cultures generated from surgical samples with a GPX4 inhibitor induced selective depletion of quiescent astrocyte-like glioma cell populations with similar metabolic profiles. Collectively, these findings reveal a specific therapeutic vulnerability to ferroptosis linked to mitochondrial redox imbalance in a subpopulation of quiescent astrocyte-like glioma cells resistant to standard forms of treatment.
{"title":"A cell state-specific metabolic vulnerability to GPX4-dependent ferroptosis in glioblastoma.","authors":"Matei A Banu, Athanassios Dovas, Michael G Argenziano, Wenting Zhao, Colin P Sperring, Henar Cuervo Grajal, Zhouzerui Liu, Dominique Mo Higgins, Misha Amini, Brianna Pereira, Ling F Ye, Aayushi Mahajan, Nelson Humala, Julia L Furnari, Pavan S Upadhyayula, Fereshteh Zandkarimi, Trang Tt Nguyen, Damian Teasley, Peter B Wu, Li Hai, Charles Karan, Tyrone Dowdy, Aida Razavilar, Markus D Siegelin, Jan Kitajewski, Mioara Larion, Jeffrey N Bruce, Brent R Stockwell, Peter A Sims, Peter Canoll","doi":"10.1038/s44318-024-00176-4","DOIUrl":"10.1038/s44318-024-00176-4","url":null,"abstract":"<p><p>Glioma cells hijack developmental programs to control cell state. Here, we uncover a glioma cell state-specific metabolic liability that can be therapeutically targeted. To model cell conditions at brain tumor inception, we generated genetically engineered murine gliomas, with deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling astrocyte differentiation during brain development. N1IC tumors harbored quiescent astrocyte-like transformed cell populations while p53 tumors were predominantly comprised of proliferating progenitor-like cell states. Further, N1IC transformed cells exhibited increased mitochondrial lipid peroxidation, high ROS production and depletion of reduced glutathione. This altered mitochondrial phenotype rendered the astrocyte-like, quiescent populations more sensitive to pharmacologic or genetic inhibition of the lipid hydroperoxidase GPX4 and induction of ferroptosis. Treatment of patient-derived early-passage cell lines and glioma slice cultures generated from surgical samples with a GPX4 inhibitor induced selective depletion of quiescent astrocyte-like glioma cell populations with similar metabolic profiles. Collectively, these findings reveal a specific therapeutic vulnerability to ferroptosis linked to mitochondrial redox imbalance in a subpopulation of quiescent astrocyte-like glioma cells resistant to standard forms of treatment.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"4492-4521"},"PeriodicalIF":9.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-27DOI: 10.1038/s44318-024-00211-4
Dominique S Stolle, Lena Osterhoff, Paul Treimer, Jan Lambertz, Marie Karstens, Jakob-Maximilian Keller, Ines Gerlach, Annika Bischoff, Beatrix Dünschede, Anja Rödiger, Christian Herrmann, Sacha Baginsky, Eckhard Hofmann, Reimo Zoschke, Ute Armbruster, Marc M Nowaczyk, Danja Schünemann
Chloroplast-encoded multi-span thylakoid membrane proteins are crucial for photosynthetic complexes, yet the coordination of their biogenesis remains poorly understood. To identify factors that specifically support the cotranslational biogenesis of the reaction center protein D1 of photosystem (PS) II, we generated and affinity-purified stalled ribosome-nascent chain complexes (RNCs) bearing D1 nascent chains. Stalled RNCs translating the soluble ribosomal subunit uS2c were used for comparison. Quantitative tandem-mass spectrometry of the purified RNCs identified around 140 proteins specifically associated with D1 RNCs, mainly involved in protein and cofactor biogenesis, including chlorophyll biosynthesis, and other metabolic pathways. Functional analysis of STIC2, a newly identified D1 RNC interactor, revealed its cooperation with chloroplast protein SRP54 in the de novo biogenesis and repair of D1, and potentially other cotranslationally-targeted reaction center subunits of PSII and PSI. The primary binding interface between STIC2 and the thylakoid insertase Alb3 and its homolog Alb4 was mapped to STIC2's β-sheet region, and the conserved Motif III in the C-terminal regions of Alb3/4.
{"title":"STIC2 selectively binds ribosome-nascent chain complexes in the cotranslational sorting of Arabidopsis thylakoid proteins.","authors":"Dominique S Stolle, Lena Osterhoff, Paul Treimer, Jan Lambertz, Marie Karstens, Jakob-Maximilian Keller, Ines Gerlach, Annika Bischoff, Beatrix Dünschede, Anja Rödiger, Christian Herrmann, Sacha Baginsky, Eckhard Hofmann, Reimo Zoschke, Ute Armbruster, Marc M Nowaczyk, Danja Schünemann","doi":"10.1038/s44318-024-00211-4","DOIUrl":"10.1038/s44318-024-00211-4","url":null,"abstract":"<p><p>Chloroplast-encoded multi-span thylakoid membrane proteins are crucial for photosynthetic complexes, yet the coordination of their biogenesis remains poorly understood. To identify factors that specifically support the cotranslational biogenesis of the reaction center protein D1 of photosystem (PS) II, we generated and affinity-purified stalled ribosome-nascent chain complexes (RNCs) bearing D1 nascent chains. Stalled RNCs translating the soluble ribosomal subunit uS2c were used for comparison. Quantitative tandem-mass spectrometry of the purified RNCs identified around 140 proteins specifically associated with D1 RNCs, mainly involved in protein and cofactor biogenesis, including chlorophyll biosynthesis, and other metabolic pathways. Functional analysis of STIC2, a newly identified D1 RNC interactor, revealed its cooperation with chloroplast protein SRP54 in the de novo biogenesis and repair of D1, and potentially other cotranslationally-targeted reaction center subunits of PSII and PSI. The primary binding interface between STIC2 and the thylakoid insertase Alb3 and its homolog Alb4 was mapped to STIC2's β-sheet region, and the conserved Motif III in the C-terminal regions of Alb3/4.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"4699-4719"},"PeriodicalIF":9.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480477/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In mammals, the transition from mitosis to meiosis facilitates the successful production of gametes. However, the regulatory mechanisms that control meiotic initiation remain unclear, particularly in the context of complex histone modifications. Herein, we show that KDM2A, acting as a lysine demethylase targeting H3K36me3 in male germ cells, plays an essential role in modulating meiotic entry and progression. Conditional deletion of Kdm2a in mouse pre-meiotic germ cells results in complete male sterility, with spermatogenesis ultimately arrested at the zygotene stage of meiosis. KDM2A deficiency disrupts H3K36me2/3 deposition in c-KIT+ germ cells, characterized by a reduction in H3K36me2 but a dramatic increase in H3K36me3. Furthermore, KDM2A recruits the transcription factor E2F1 and its co-factor HCFC1 to the promoters of key genes required for meiosis entry and progression, such as Stra8, Meiosin, Spo11, and Sycp1. Collectively, our study unveils an essential role for KDM2A in mediating H3K36me2/3 deposition and controlling the programmed gene expression necessary for the transition from mitosis to meiosis during spermatogenesis.
{"title":"Histone demethylase KDM2A recruits HCFC1 and E2F1 to orchestrate male germ cell meiotic entry and progression.","authors":"Shenglei Feng, Yiqian Gui, Shi Yin, Xinxin Xiong, Kuan Liu, Jinmei Li, Juan Dong, Xixiang Ma, Shunchang Zhou, Bingqian Zhang, Shiyu Yang, Fengli Wang, Xiaoli Wang, Xiaohua Jiang, Shuiqiao Yuan","doi":"10.1038/s44318-024-00203-4","DOIUrl":"10.1038/s44318-024-00203-4","url":null,"abstract":"<p><p>In mammals, the transition from mitosis to meiosis facilitates the successful production of gametes. However, the regulatory mechanisms that control meiotic initiation remain unclear, particularly in the context of complex histone modifications. Herein, we show that KDM2A, acting as a lysine demethylase targeting H3K36me3 in male germ cells, plays an essential role in modulating meiotic entry and progression. Conditional deletion of Kdm2a in mouse pre-meiotic germ cells results in complete male sterility, with spermatogenesis ultimately arrested at the zygotene stage of meiosis. KDM2A deficiency disrupts H3K36me2/3 deposition in c-KIT<sup>+</sup> germ cells, characterized by a reduction in H3K36me2 but a dramatic increase in H3K36me3. Furthermore, KDM2A recruits the transcription factor E2F1 and its co-factor HCFC1 to the promoters of key genes required for meiosis entry and progression, such as Stra8, Meiosin, Spo11, and Sycp1. Collectively, our study unveils an essential role for KDM2A in mediating H3K36me2/3 deposition and controlling the programmed gene expression necessary for the transition from mitosis to meiosis during spermatogenesis.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"4197-4227"},"PeriodicalIF":9.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448500/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-22DOI: 10.1038/s44318-024-00206-1
Man Xu, Jason J Hong, Xiyuan Zhang, Ming Sun, Xingyu Liu, Jeeyoun Kang, Hannah Stack, Wendy Fang, Haiyan Lei, Xavier Lacoste, Reona Okada, Raina Jung, Rosa Nguyen, Jack F Shern, Carol J Thiele, Zhihui Liu
Tumor cell heterogeneity defines therapy responsiveness in neuroblastoma (NB), a cancer derived from neural crest cells. NB consists of two primary subtypes: adrenergic and mesenchymal. Adrenergic traits predominate in NB tumors, while mesenchymal features becomes enriched post-chemotherapy or after relapse. The interconversion between these subtypes contributes to NB lineage plasticity, but the underlying mechanisms driving this phenotypic switching remain unclear. Here, we demonstrate that SWI/SNF chromatin remodeling complex ATPases are essential in establishing an mesenchymal gene-permissive chromatin state in adrenergic-type NB, facilitating lineage plasticity. Targeting SWI/SNF ATPases with SMARCA2/4 dual degraders effectively inhibits NB cell proliferation, invasion, and notably, cellular plasticity, thereby preventing chemotherapy resistance. Mechanistically, depletion of SWI/SNF ATPases compacts cis-regulatory elements, diminishes enhancer activity, and displaces core transcription factors (MYCN, HAND2, PHOX2B, and GATA3) from DNA, thereby suppressing transcriptional programs associated with plasticity. These findings underscore the pivotal role of SWI/SNF ATPases in driving intrinsic plasticity and therapy resistance in neuroblastoma, highlighting an epigenetic target for combinational treatments in this cancer.
肿瘤细胞的异质性决定了神经母细胞瘤(NB)的治疗反应性,这是一种源自神经嵴细胞的癌症。神经母细胞瘤包括两种主要亚型:肾上腺素能型和间质型。肾上腺素能特性在 NB 肿瘤中占主导地位,而间质特性则在化疗后或复发后变得丰富。这些亚型之间的相互转换有助于NB血统的可塑性,但驱动这种表型转换的潜在机制仍不清楚。在这里,我们证明了SWI/SNF染色质重塑复合体ATP酶在肾上腺素能型NB中建立间质基因允许的染色质状态、促进谱系可塑性方面的重要作用。用SMARCA2/4双降解器靶向SWI/SNF ATP酶可有效抑制NB细胞的增殖、侵袭,尤其是细胞的可塑性,从而防止化疗耐药。从机理上讲,耗尽SWI/SNF ATP酶会压缩顺式调节元件,降低增强子活性,并从DNA中移除核心转录因子(MYCN、HAND2、PHOX2B和GATA3),从而抑制与可塑性相关的转录程序。这些发现强调了SWI/SNF ATP酶在驱动神经母细胞瘤内在可塑性和耐药性方面的关键作用,突出了该癌症综合治疗的表观遗传学靶点。
{"title":"Targeting SWI/SNF ATPases reduces neuroblastoma cell plasticity.","authors":"Man Xu, Jason J Hong, Xiyuan Zhang, Ming Sun, Xingyu Liu, Jeeyoun Kang, Hannah Stack, Wendy Fang, Haiyan Lei, Xavier Lacoste, Reona Okada, Raina Jung, Rosa Nguyen, Jack F Shern, Carol J Thiele, Zhihui Liu","doi":"10.1038/s44318-024-00206-1","DOIUrl":"10.1038/s44318-024-00206-1","url":null,"abstract":"<p><p>Tumor cell heterogeneity defines therapy responsiveness in neuroblastoma (NB), a cancer derived from neural crest cells. NB consists of two primary subtypes: adrenergic and mesenchymal. Adrenergic traits predominate in NB tumors, while mesenchymal features becomes enriched post-chemotherapy or after relapse. The interconversion between these subtypes contributes to NB lineage plasticity, but the underlying mechanisms driving this phenotypic switching remain unclear. Here, we demonstrate that SWI/SNF chromatin remodeling complex ATPases are essential in establishing an mesenchymal gene-permissive chromatin state in adrenergic-type NB, facilitating lineage plasticity. Targeting SWI/SNF ATPases with SMARCA2/4 dual degraders effectively inhibits NB cell proliferation, invasion, and notably, cellular plasticity, thereby preventing chemotherapy resistance. Mechanistically, depletion of SWI/SNF ATPases compacts cis-regulatory elements, diminishes enhancer activity, and displaces core transcription factors (MYCN, HAND2, PHOX2B, and GATA3) from DNA, thereby suppressing transcriptional programs associated with plasticity. These findings underscore the pivotal role of SWI/SNF ATPases in driving intrinsic plasticity and therapy resistance in neuroblastoma, highlighting an epigenetic target for combinational treatments in this cancer.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"4522-4541"},"PeriodicalIF":9.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1038/s44318-024-00230-1
Joycelyn Tan, Sam Virtue, Dougall M Norris, Olivia J Conway, Ming Yang, Guillaume Bidault, Christopher Gribben, Fatima Lugtu, Ioannis Kamzolas, James R Krycer, Richard J Mills, Lu Liang, Conceição Pereira, Martin Dale, Amber S Shun-Shion, Harry Jm Baird, James A Horscroft, Alice P Sowton, Marcella Ma, Stefania Carobbio, Evangelia Petsalaki, Andrew J Murray, David C Gershlick, James A Nathan, James E Hudson, Ludovic Vallier, Kelsey H Fisher-Wellman, Christian Frezza, Antonio Vidal-Puig, Daniel J Fazakerley
{"title":"Author Correction: Limited oxygen in standard cell culture alters metabolism and function of differentiated cells.","authors":"Joycelyn Tan, Sam Virtue, Dougall M Norris, Olivia J Conway, Ming Yang, Guillaume Bidault, Christopher Gribben, Fatima Lugtu, Ioannis Kamzolas, James R Krycer, Richard J Mills, Lu Liang, Conceição Pereira, Martin Dale, Amber S Shun-Shion, Harry Jm Baird, James A Horscroft, Alice P Sowton, Marcella Ma, Stefania Carobbio, Evangelia Petsalaki, Andrew J Murray, David C Gershlick, James A Nathan, James E Hudson, Ludovic Vallier, Kelsey H Fisher-Wellman, Christian Frezza, Antonio Vidal-Puig, Daniel J Fazakerley","doi":"10.1038/s44318-024-00230-1","DOIUrl":"10.1038/s44318-024-00230-1","url":null,"abstract":"","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"4439"},"PeriodicalIF":9.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445423/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}