首页 > 最新文献

Developmental Neuroscience最新文献

英文 中文
Synaptic pruning by microglia: Lessons from genetic studies in mice. 小胶质细胞的突触修剪:小鼠遗传研究的启示
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-09-12 DOI: 10.1159/000541379
Junia Lara de Deus,Oluwaseun Samuel Faborode,Sayan Nandi
BACKGROUNDNeural circuits are subjected to refinement throughout life. The dynamic addition and loss of synapses (pruning) are necessary for maturation of neural circuits and synaptic plasticity. Due to their phagocytic nature, microglia have been considered as the primary mediators of synaptic pruning. Synaptic pruning can strengthen an active synapse by removing excess weaker synapses during development. Inappropriate synaptic pruning can often influence a disease outcome or an injury response.SUMMARYThis review offers a focused discussion on microglial roles in synaptic pruning, based on the evidence gathered from genetic manipulations in mice. Genetically-labeled microglia and synapses often allow assessment of their interactions in real time. Further manipulations involving synaptically-localized molecules, neuronally- or glial-derived diffusible factors, and their respective cognate receptors in microglia, provide critical evidence in support of a direct role of microglia in synaptic pruning.KEY MESSAGEWe discuss microglial contact-dependent "eat-me", "don't-eat-me" and "find-me" signals, as well as recently identified non-contact pruning, under the contexts of neural circuit, brain region, developmental window, and an injury or a disease state.
背景神经回路在人的一生中不断完善。突触的动态增加和丢失(修剪)是神经回路成熟和突触可塑性的必要条件。小胶质细胞具有吞噬特性,因此被认为是突触修剪的主要媒介。突触修剪可以在发育过程中去除多余的较弱突触,从而加强活跃的突触。不恰当的突触修剪往往会影响疾病结果或损伤反应。摘要 本综述基于小鼠遗传操作收集的证据,重点讨论了小胶质细胞在突触修剪中的作用。基因标记的小胶质细胞和突触通常可以实时评估它们之间的相互作用。涉及突触定位分子、神经元或胶质细胞衍生的可扩散因子及其各自在小胶质细胞中的同源受体的进一步操作,为支持小胶质细胞在突触修剪中的直接作用提供了关键证据。关键信息我们讨论了小胶质细胞依赖接触的 "吃我"、"不吃我 "和 "找我 "信号,以及最近在神经回路、脑区、发育窗口、损伤或疾病状态下发现的非接触修剪。
{"title":"Synaptic pruning by microglia: Lessons from genetic studies in mice.","authors":"Junia Lara de Deus,Oluwaseun Samuel Faborode,Sayan Nandi","doi":"10.1159/000541379","DOIUrl":"https://doi.org/10.1159/000541379","url":null,"abstract":"BACKGROUNDNeural circuits are subjected to refinement throughout life. The dynamic addition and loss of synapses (pruning) are necessary for maturation of neural circuits and synaptic plasticity. Due to their phagocytic nature, microglia have been considered as the primary mediators of synaptic pruning. Synaptic pruning can strengthen an active synapse by removing excess weaker synapses during development. Inappropriate synaptic pruning can often influence a disease outcome or an injury response.SUMMARYThis review offers a focused discussion on microglial roles in synaptic pruning, based on the evidence gathered from genetic manipulations in mice. Genetically-labeled microglia and synapses often allow assessment of their interactions in real time. Further manipulations involving synaptically-localized molecules, neuronally- or glial-derived diffusible factors, and their respective cognate receptors in microglia, provide critical evidence in support of a direct role of microglia in synaptic pruning.KEY MESSAGEWe discuss microglial contact-dependent \"eat-me\", \"don't-eat-me\" and \"find-me\" signals, as well as recently identified non-contact pruning, under the contexts of neural circuit, brain region, developmental window, and an injury or a disease state.","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"14 1","pages":"1-26"},"PeriodicalIF":2.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The association between ventricle ratio in preterm infants and motor developmental delay. 早产儿脑室比率与运动发育迟缓之间的关系。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-09-02 DOI: 10.1159/000540754
Hyun Iee Shin, Na Mi Lee, Sun Mi Kim, Hyunchan Hwang, Gangta Choi, Doug Hyun Han, Don-Kyu Kim

Introduction Early prediction and timely intervention are particularly essential for high-risk preterm infants. Brain magnetic resonance imaging (BMRI) is frequently used alongside functional evaluations to improve predictions of developmental outcomes. This study aimed to assess voxel-based brain volumetry in extremely preterm infants using BMRI at term equivalent age (TEA) and investigate its association with developmental outcomes. Methods From March 2016 to December 2019, high-risk preterm infants (birth weight < 1500g or gestational age < 32 weeks) with BMRI at TEA and follow-up developmental data assessed by Bayley-III were included. For BMRI volumetry, manual tracing and segmentation were performed on T1-weighted scans, and after smoothing, voxels were calculated for each brain segment. Forty-seven subjects were enrolled and categorized into typical/delayed motor groups Results Results revealed a significant difference in ventricle size and ventricle ratio in BMRI at TEA between the groups. Even after controlling for other factors that could influence developmental outcomes, ventricle ratio emerged as a robust, single predictor for future motor development. Conclusion This study suggests the potential clinical utility of BMRI volumetry in predicting motor development outcomes.

导言 早期预测和及时干预对高风险早产儿尤为重要。脑磁共振成像(BMRI)经常与功能评估一起使用,以改善对发育结果的预测。本研究旨在使用 BMRI 评估极早产儿在足月等效年龄(TEA)时基于体素的脑容量,并调查其与发育结果的关联。方法 从2016年3月至2019年12月,纳入了在足月等效年龄(TEA)进行BMRI检查并通过Bayley-III评估后续发育数据的高风险早产儿(出生体重< 1500克或胎龄< 32周)。在进行 BMRI 容积测量时,对 T1 加权扫描进行手动追踪和分割,平滑后计算每个脑区的体素。47 名受试者被纳入研究,并被分为典型/延迟运动组 结果 结果显示,在 TEA 时,各组间的脑室大小和脑室比率在 BMRI 中存在显著差异。即使在控制了可能影响发育结果的其他因素后,心室比仍是预测未来运动发育的唯一可靠指标。结论 本研究表明,BMRI 容积测量法在预测运动发育结果方面具有潜在的临床实用性。
{"title":"The association between ventricle ratio in preterm infants and motor developmental delay.","authors":"Hyun Iee Shin, Na Mi Lee, Sun Mi Kim, Hyunchan Hwang, Gangta Choi, Doug Hyun Han, Don-Kyu Kim","doi":"10.1159/000540754","DOIUrl":"https://doi.org/10.1159/000540754","url":null,"abstract":"<p><p>Introduction Early prediction and timely intervention are particularly essential for high-risk preterm infants. Brain magnetic resonance imaging (BMRI) is frequently used alongside functional evaluations to improve predictions of developmental outcomes. This study aimed to assess voxel-based brain volumetry in extremely preterm infants using BMRI at term equivalent age (TEA) and investigate its association with developmental outcomes. Methods From March 2016 to December 2019, high-risk preterm infants (birth weight &lt; 1500g or gestational age &lt; 32 weeks) with BMRI at TEA and follow-up developmental data assessed by Bayley-III were included. For BMRI volumetry, manual tracing and segmentation were performed on T1-weighted scans, and after smoothing, voxels were calculated for each brain segment. Forty-seven subjects were enrolled and categorized into typical/delayed motor groups Results Results revealed a significant difference in ventricle size and ventricle ratio in BMRI at TEA between the groups. Even after controlling for other factors that could influence developmental outcomes, ventricle ratio emerged as a robust, single predictor for future motor development. Conclusion This study suggests the potential clinical utility of BMRI volumetry in predicting motor development outcomes.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protective Effects of Early Neonatal Methylxanthine Treatment on Cognitive and Language Outcomes in Premature Infants with and without High-Risk Perinatal Factors. 新生儿早期甲基黄嘌呤治疗对具有和不具有围产期高危因素的早产儿认知和语言能力的保护作用。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-07-24 DOI: 10.1159/000540540
Ruth M McLeod, Ted S Rosenkrantz, R Holly Fitch

Introduction: Caffeine and theophylline are methylxanthines and nonselective adenosine antagonists commonly used to treat apnea of prematurity. Both human and animal data suggest that xanthines also have clinically important long-term neuroprotective effects in the presence of inflammation in the perinatal period as seen following hypoxic-ischemic brain insults. Moreover, these protective effects appear to be more robust when administered shortly (<48 h) after preterm birth.

Method: To evaluate the importance of the postdelivery therapeutic window, we collected and analyzed medical data from preterm infants meeting criteria (23-30 weeks' gestational age [GA]), born at the University of Connecticut Health Center (UCHC), and cared for at the UCHC/Connecticut Children's Medical Center (CCMC) NICU from 1991 to 2017 (n = 858). Eighteen-month follow-up data included cognitive and language scores from the Neonatal Neurodevelopmental Follow-Up Clinic records, with a retention of 81% of subjects (n = 696). Differences were analyzed via multivariate ANOVA and ANCOVA.

Results: Analyses showed that infants who received xanthine treatment within the first 48 h after preterm birth showed significantly better 18-month behavioral outcomes than those treated later than 48 h, despite a lack of a priori differences in GA, birth, or length of stay. The positive effect of early xanthine therapy was particularly robust for infants exposed prenatally to the inflammatory conditions of chorioamnionitis and/or preeclampsia.

Conclusions: Current findings are consistent with human and animal data, showing that caffeine exerts protective effects, at least in part via attenuation of inflammation. Results add to the evidence supporting routine immediate prophylactic neuroprotective xanthine therapy (i.e., caffeine) in preterm infants. Findings also add important new evidence of the augmented value of caffeine for infants with inflammatory exposure due to mothers with preeclampsia or chorioamnionitis.

简介咖啡因和茶碱是甲基黄嘌呤和非选择性腺苷拮抗剂,常用于治疗早产儿呼吸暂停。人类和动物的数据都表明,黄嘌呤类药物在围产期的炎症中也具有临床上重要的长期神经保护作用,如缺氧缺血性脑损伤后出现的炎症。此外,在早产后不久(48 小时)给药时,这些保护作用似乎更强:为了评估分娩后治疗窗口的重要性,我们收集并分析了符合标准的早产儿(胎龄 23 - 30 周)的医疗数据,这些早产儿于 1991 - 2017 年间在康涅狄格大学健康中心(UCHC)出生,并在康涅狄格大学健康中心/康涅狄格儿童医学中心(CCMC)新生儿重症监护室接受护理(n=858)。18个月的随访数据包括新生儿神经发育随访门诊记录中的认知和语言评分,81%的受试者(n=696)保留了这些数据。差异通过多变量方差分析和方差分析进行分析:分析结果表明,早产后48小时内接受黄嘌呤治疗的婴儿在18个月后的行为结果明显优于48小时后接受治疗的婴儿,尽管GA、出生或住院时间没有先验差异。早期黄嘌呤治疗对产前暴露于绒毛膜羊膜炎和/或子痫前期炎症条件下的婴儿的积极影响尤为明显:目前的研究结果与人类和动物的数据一致,表明咖啡因具有保护作用,至少部分是通过减轻炎症。研究结果为早产儿常规预防性神经保护黄嘌呤疗法(即咖啡因)提供了更多证据。研究结果还提供了重要的新证据,证明咖啡因对有炎症风险的婴儿(包括患有先兆子痫或绒毛膜羊膜炎的母亲)具有更高的价值。
{"title":"Protective Effects of Early Neonatal Methylxanthine Treatment on Cognitive and Language Outcomes in Premature Infants with and without High-Risk Perinatal Factors.","authors":"Ruth M McLeod, Ted S Rosenkrantz, R Holly Fitch","doi":"10.1159/000540540","DOIUrl":"10.1159/000540540","url":null,"abstract":"<p><strong>Introduction: </strong>Caffeine and theophylline are methylxanthines and nonselective adenosine antagonists commonly used to treat apnea of prematurity. Both human and animal data suggest that xanthines also have clinically important long-term neuroprotective effects in the presence of inflammation in the perinatal period as seen following hypoxic-ischemic brain insults. Moreover, these protective effects appear to be more robust when administered shortly (&lt;48 h) after preterm birth.</p><p><strong>Method: </strong>To evaluate the importance of the postdelivery therapeutic window, we collected and analyzed medical data from preterm infants meeting criteria (23-30 weeks' gestational age [GA]), born at the University of Connecticut Health Center (UCHC), and cared for at the UCHC/Connecticut Children's Medical Center (CCMC) NICU from 1991 to 2017 (n = 858). Eighteen-month follow-up data included cognitive and language scores from the Neonatal Neurodevelopmental Follow-Up Clinic records, with a retention of 81% of subjects (n = 696). Differences were analyzed via multivariate ANOVA and ANCOVA.</p><p><strong>Results: </strong>Analyses showed that infants who received xanthine treatment within the first 48 h after preterm birth showed significantly better 18-month behavioral outcomes than those treated later than 48 h, despite a lack of a priori differences in GA, birth, or length of stay. The positive effect of early xanthine therapy was particularly robust for infants exposed prenatally to the inflammatory conditions of chorioamnionitis and/or preeclampsia.</p><p><strong>Conclusions: </strong>Current findings are consistent with human and animal data, showing that caffeine exerts protective effects, at least in part via attenuation of inflammation. Results add to the evidence supporting routine immediate prophylactic neuroprotective xanthine therapy (i.e., caffeine) in preterm infants. Findings also add important new evidence of the augmented value of caffeine for infants with inflammatory exposure due to mothers with preeclampsia or chorioamnionitis.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-11"},"PeriodicalIF":2.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dendritic Morphology of Developing Hippocampal Neurons in Cyp11a1 Null Mice. Cyp11a1无效小鼠海马神经元发育过程中的树突形态。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-07-17 DOI: 10.1159/000540106
Hao-Hua Jiang, Tzu-Hsuan Wu, Li-Jen Lee, Jui-Chen Lee, Bon-Chu Chung, Feng-Ming Yang, Meng-Chun Hu

Introduction: Neurosteroids have a variety of neurological functions, such as neurite growth, neuroprotection, myelination, and neurogenesis. P450scc, encoded by CYP11A1 gene, is the cholesterol side chain cleavage enzyme that catalyzes the first and rate-limiting step in steroidogenesis. In this study, we examine the dendritic morphology in developing hippocampal neurons of Cyp11a1 null mice at P15, a critical period for synapse formation and maturation.

Methods: Knockout mice were maintained until P15 with hormone administration. The Golgi-Cox method stained CA1 and CA3 pyramidal neurons in the hippocampus to reveal dendritic morphology.

Results: We demonstrated that Cyp11a1 null mice usually die within 7 days after birth and thus collected brain samples at postnatal day 5 (P5) for examination. There was significant shrinkage of dendrite size and diminishment of dendritic branching in CA1 and CA3 pyramidal neurons in the hippocampus of Cyp11a1 null mice, suggesting a developmental delay. We wonder if this delay may catch up later in life. Since the age of P15 is a critical period for synapse formation and maturation, the Cyp11a1 null mice were rescued by receiving hormone administration until P15 that the dendritic morphology in the developing hippocampal neurons could be examined. The results indicated that the total dendritic length, the number of dendritic branches, as well as dendritic arborization in the CA1 and CA3 pyramidal neurons are significantly decreased in P15 knockout mice when compared to the wild type. The spine densities were also significantly decreased. In addition, the Western blot analysis revealed decreased PSD-95 expression levels in the knockout mice compared to the wild type at P15.

Conclusion: These results suggested that Cyp11a1 deficiency impairs the dendritic structures in the developing hippocampal pyramidal neurons.

简介神经类固醇具有多种神经功能,如神经元生长、神经保护、髓鞘化和神经发生。CYP11A1基因编码的P450scc是胆固醇侧链裂解酶,催化类固醇生成的第一步,也是限制速率的一步。在本研究中,我们研究了Cyp11a1基因缺失小鼠海马神经元在P15发育阶段的树突形态,P15是突触形成和成熟的关键时期:方法:用激素维持基因敲除小鼠至P15。用 Golgi-Cox 法对海马的 CA1 和 CA3 锥体神经元进行染色,以显示树突形态:结果:我们证实,Cyp11a1无效小鼠通常在出生后7天内死亡,因此在出生后第5天(P5)采集脑样本进行检查。Cyp11a1无效小鼠海马CA1和CA3锥体神经元的树突大小明显缩小,树突分支减少,这表明小鼠发育迟缓。我们不禁要问,这种发育迟缓是否会在以后的生活中出现。由于P15岁是突触形成和成熟的关键时期,Cyp11a1无效小鼠在P15岁之前一直接受激素治疗,以检测发育中海马神经元的树突形态。结果表明,与野生型相比,P15基因敲除小鼠CA1和CA3锥体神经元的树突总长度、树突分支数量以及树突轴化均显著下降。棘突密度也明显降低。此外,Western 印迹分析显示,与野生型相比,P15 基因敲除小鼠的 PSD-95 表达水平下降:这些结果表明,Cyp11a1缺乏会损害发育中海马锥体神经元的树突结构。
{"title":"Dendritic Morphology of Developing Hippocampal Neurons in Cyp11a1 Null Mice.","authors":"Hao-Hua Jiang, Tzu-Hsuan Wu, Li-Jen Lee, Jui-Chen Lee, Bon-Chu Chung, Feng-Ming Yang, Meng-Chun Hu","doi":"10.1159/000540106","DOIUrl":"10.1159/000540106","url":null,"abstract":"<p><strong>Introduction: </strong>Neurosteroids have a variety of neurological functions, such as neurite growth, neuroprotection, myelination, and neurogenesis. P450scc, encoded by CYP11A1 gene, is the cholesterol side chain cleavage enzyme that catalyzes the first and rate-limiting step in steroidogenesis. In this study, we examine the dendritic morphology in developing hippocampal neurons of Cyp11a1 null mice at P15, a critical period for synapse formation and maturation.</p><p><strong>Methods: </strong>Knockout mice were maintained until P15 with hormone administration. The Golgi-Cox method stained CA1 and CA3 pyramidal neurons in the hippocampus to reveal dendritic morphology.</p><p><strong>Results: </strong>We demonstrated that Cyp11a1 null mice usually die within 7 days after birth and thus collected brain samples at postnatal day 5 (P5) for examination. There was significant shrinkage of dendrite size and diminishment of dendritic branching in CA1 and CA3 pyramidal neurons in the hippocampus of Cyp11a1 null mice, suggesting a developmental delay. We wonder if this delay may catch up later in life. Since the age of P15 is a critical period for synapse formation and maturation, the Cyp11a1 null mice were rescued by receiving hormone administration until P15 that the dendritic morphology in the developing hippocampal neurons could be examined. The results indicated that the total dendritic length, the number of dendritic branches, as well as dendritic arborization in the CA1 and CA3 pyramidal neurons are significantly decreased in P15 knockout mice when compared to the wild type. The spine densities were also significantly decreased. In addition, the Western blot analysis revealed decreased PSD-95 expression levels in the knockout mice compared to the wild type at P15.</p><p><strong>Conclusion: </strong>These results suggested that Cyp11a1 deficiency impairs the dendritic structures in the developing hippocampal pyramidal neurons.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-15"},"PeriodicalIF":2.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peripuberty Is a Sensitive Period for Prefrontal Parvalbumin Interneuron Activity to Impact Adult Cognitive Flexibility. 围青春期是前额叶旁脑中间神经元活动影响成人认知灵活性的敏感期。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-06-03 DOI: 10.1159/000539584
Gabriella M Sahyoun, Trang Dao Do, Amanda Anqueira-Gonzàlez, Ava Hornblass, Sarah E Canetta
<p><strong>Introduction: </strong>Developmental windows in which experiences can elicit long-lasting effects on brain circuitry and behavior are called "sensitive periods" and reflect a state of heightened plasticity. The classic example of a sensitive period comes from studies of sensory systems, like the visual system, where early visual experience is required for normal wiring of primary visual cortex and proper visual functioning. At a mechanistic level, loss of incoming visual input results in a decrease in activity in thalamocortical neurons representing the affected eye, resulting in an activity-dependent reduction in the representation of those inputs in the visual cortex and loss of visual perception in that eye. While associative cortical regions like the medial prefrontal cortex (mPFC) do not receive direct sensory input, recent findings demonstrate that changes in activity levels experienced by this region during defined windows in early development may also result in long-lasting changes in prefrontal cortical circuitry, network function, and behavior. For example, we recently demonstrated that decreasing the activity of mPFC parvalbumin-expressing (PV) interneurons during a period of time encompassing peripuberty (postnatal day P14) to adolescence (P50) led to a long-lasting decrease in their functional inhibition of pyramidal cells, as well as impairments in cognitive flexibility. While the effects of manipulating mPFC PV interneuron activity were selective to development, and not adulthood, the exact timing of the sensitive period for this manipulation remains unknown.</p><p><strong>Methods: </strong>To refine the sensitive period in which inhibiting mPFC PV cell activity can lead to persistent effects on prefrontal functioning, we used a chemogenetic approach to restrict our inhibition of mPFC PV activity to two distinct windows: (1) peripuberty (P14-P32) and (2) early adolescence (P33-P50). We then investigated adult behavior after P90. In parallel, we performed histological analysis of molecular markers associated with sensitive period onset and offset in visual cortex, to define the onset and offset of peak-sensitive period plasticity in the mPFC.</p><p><strong>Results: </strong>We found that inhibition of mPFC PV interneurons in peripuberty (P14-P32), but not adolescence (P33-P50), led to an impairment in set-shifting behavior in adulthood manifest as an increase in trials to reach criterion performance and errors. Consistent with a pubertal onset of sensitive period plasticity in the PFC, we found that histological markers of sensitive period onset and offset also demarcated P14 and P35, respectively. The time course of expression of these markers was similar in visual cortex.</p><p><strong>Conclusion: </strong>Both lines of research converge on the peripubertal period (P14-P32) as one of heightened sensitive period plasticity in the mPFC. Further, our direct comparison of markers of sensitive period plasticity across the pr
导言在发育过程中,一些经历会对大脑回路和行为产生持久的影响,这些经历被称为 "敏感期",反映了一种高度可塑性的状态。敏感期的典型例子来自对感觉系统(如视觉系统)的研究,在视觉系统中,初级视觉皮层的正常连接和正常的视觉功能需要早期的视觉经验。从机理上讲,失去视觉输入会导致代表受影响眼睛的丘脑皮层神经元活动减少,从而导致视觉皮层对这些输入的表征随活动而减少,并导致该眼睛失去视觉感知能力。虽然像内侧前额叶皮层(mPFC)这样的联想皮层区域并不接受直接的感觉输入,但最近的研究结果表明,该区域在早期发育的特定窗口期所经历的活动水平变化也可能导致前额叶皮层电路、网络功能和行为的长期变化。例如,我们最近证明,在围青春期(出生后第 P14 天)至青春期(第 P50 天)这段时间内,降低 mPFC 副发光素表达(PV)中间神经元的活动会导致其对锥体细胞的功能抑制长期下降,并导致认知灵活性受损。虽然操纵 mPFC PV 神经元间活动的影响对发育期而非成年期具有选择性,但这种操纵的敏感期的确切时间仍然未知:为了确定抑制 mPFC PV 细胞活动可对前额叶功能产生持续影响的敏感期,我们使用化学遗传学方法将 mPFC PV 活动的抑制限制在两个不同的窗口期:1)青春期(P14-P32)和2)青春早期(P33-P50)。然后,我们研究了 P90 之后的成人行为。与此同时,我们还对视觉皮层中与敏感期起始和偏移相关的分子标记进行了组织学分析,以确定 mPFC 中敏感期可塑性峰值的起始和偏移:我们发现,在青春期(P14-P32)而非青春期(P33-P50)抑制mPFC PV中间神经元会导致成年期的集合转换行为受损,表现为达到标准表现的试验次数和误差增加。与前脑功能区敏感期可塑性的青春期起始相一致,我们发现敏感期起始和偏移的组织学标记也分别以 P14 和 P35 为界。这些标志物在视觉皮层中的表达时间过程相似:结论:这两项研究都认为,围青春期(P14-32)是 mPFC 敏感期可塑性增强的时期。此外,我们对前额叶和视皮层敏感期可塑性标志物的直接比较表明,敏感期的表达具有相似的时间过程,这对敏感期分等级发生的观点提出了挑战。总之,这些发现扩展了我们对发育中 mPFC 敏感期可塑性的性质和时间的认识。
{"title":"Peripuberty Is a Sensitive Period for Prefrontal Parvalbumin Interneuron Activity to Impact Adult Cognitive Flexibility.","authors":"Gabriella M Sahyoun, Trang Dao Do, Amanda Anqueira-Gonzàlez, Ava Hornblass, Sarah E Canetta","doi":"10.1159/000539584","DOIUrl":"10.1159/000539584","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Introduction: &lt;/strong&gt;Developmental windows in which experiences can elicit long-lasting effects on brain circuitry and behavior are called \"sensitive periods\" and reflect a state of heightened plasticity. The classic example of a sensitive period comes from studies of sensory systems, like the visual system, where early visual experience is required for normal wiring of primary visual cortex and proper visual functioning. At a mechanistic level, loss of incoming visual input results in a decrease in activity in thalamocortical neurons representing the affected eye, resulting in an activity-dependent reduction in the representation of those inputs in the visual cortex and loss of visual perception in that eye. While associative cortical regions like the medial prefrontal cortex (mPFC) do not receive direct sensory input, recent findings demonstrate that changes in activity levels experienced by this region during defined windows in early development may also result in long-lasting changes in prefrontal cortical circuitry, network function, and behavior. For example, we recently demonstrated that decreasing the activity of mPFC parvalbumin-expressing (PV) interneurons during a period of time encompassing peripuberty (postnatal day P14) to adolescence (P50) led to a long-lasting decrease in their functional inhibition of pyramidal cells, as well as impairments in cognitive flexibility. While the effects of manipulating mPFC PV interneuron activity were selective to development, and not adulthood, the exact timing of the sensitive period for this manipulation remains unknown.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;To refine the sensitive period in which inhibiting mPFC PV cell activity can lead to persistent effects on prefrontal functioning, we used a chemogenetic approach to restrict our inhibition of mPFC PV activity to two distinct windows: (1) peripuberty (P14-P32) and (2) early adolescence (P33-P50). We then investigated adult behavior after P90. In parallel, we performed histological analysis of molecular markers associated with sensitive period onset and offset in visual cortex, to define the onset and offset of peak-sensitive period plasticity in the mPFC.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;We found that inhibition of mPFC PV interneurons in peripuberty (P14-P32), but not adolescence (P33-P50), led to an impairment in set-shifting behavior in adulthood manifest as an increase in trials to reach criterion performance and errors. Consistent with a pubertal onset of sensitive period plasticity in the PFC, we found that histological markers of sensitive period onset and offset also demarcated P14 and P35, respectively. The time course of expression of these markers was similar in visual cortex.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusion: &lt;/strong&gt;Both lines of research converge on the peripubertal period (P14-P32) as one of heightened sensitive period plasticity in the mPFC. Further, our direct comparison of markers of sensitive period plasticity across the pr","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-12"},"PeriodicalIF":2.3,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and Functional Effects of C5aR1 Antagonism in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy. 新生儿缺氧缺血性脑病大鼠模型中 C5aR1 拮抗剂的结构和功能影响
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-05-25 DOI: 10.1159/000539506
Angela Saadat, Haree Pallera, Frank Lattanzio, Daley Owens, Amy Gaines, Sai Susmitha Ravi, Tushar Shah

Introduction: The complement response activates upon reperfusion in neonatal hypoxic-ischemic encephalopathy (HIE) and contributes to excessive neuroinflammation and worse outcomes. C5a is a powerful anaphylatoxin central to each of the complement pathways, and its engagement with C5aR1 is directly tied to brain injury and neuronal death. Reasoning C5aR1 antagonism can decrease excessive neuroinflammation and thereby improve neurological and functional outcomes, we tested this hypothesis in a rat model of HIE with PMX205, a small molecule that inhibits C5a-C5aR1 interaction.

Methods: Term-equivalent pups (P10-12) were subjected to mild-moderate HIE by Vannucci's method and treated with PMX205. We compared motor and cognitive outcomes with two behavioral tests each (food handling and accelerod; novel object recognition [NOR] and open field) to improve the accuracy of our conclusions.

Results: Improvements were observed in fine motor function, balance, and exploratory behaviors, but little to no improvement in recognition memory and gross motor function. Lesion area and histological assessments showed robust cortical neuroprotection from treatment but persistent injury to the CA1 region of the hippocampus. Better structural and functional outcomes were seen within 1 day of treatment, suggesting C5aR1 antagonism beyond the latent injury phase may impair recovery. In a dose-response experiment, cerebral area loss from injury was improved only in female rats, suggesting underlying sexual dimorphisms in the complement response.

Conclusion: These results demonstrate proof-of-concept for targeting C5aR1 signaling in neonatal HIE with PMX205 and underscore the role of sex in hypoxic-ischemic injury.

引言 新生儿缺氧缺血性脑病(HIE)再灌注时会激活补体反应,导致过度神经炎症和预后恶化。C5a 是一种强大的苊毒素,是每种补体途径的核心,它与 C5aR1 的接触直接导致脑损伤和神经元死亡。我们认为 C5aR1 拮抗剂可减少过度的神经炎症,从而改善神经和功能预后,因此我们用 PMX205(一种抑制 C5a-C5aR1 相互作用的小分子)在 HIE 大鼠模型中测试了这一假设。方法 用范努奇法对等龄幼鼠(P10-12)进行轻度-中度 HIE,并用 PMX205 治疗。我们分别通过两种行为测试(食物处理和加速度;新物体识别(NOR)和空地)来比较运动和认知结果,以提高结论的准确性。结果 观察到精细运动功能、平衡能力和探索行为有所改善,但识别记忆和粗大运动功能几乎没有改善。病变区域和组织学评估显示,治疗对大脑皮层神经有很强的保护作用,但对海马CA1区的损伤仍持续存在。治疗1天后,患者的结构和功能均得到改善,这表明C5aR1拮抗超过潜伏损伤阶段可能会损害恢复。在剂量反应实验中,只有雌性大鼠的脑损伤面积损失有所改善,这表明补体反应存在潜在的性双态性。结论 这些结果证明了用 PMX205 靶向新生儿 HIE 中 C5aR1 信号的概念,并强调了性别在缺氧缺血性损伤中的作用。
{"title":"Structural and Functional Effects of C5aR1 Antagonism in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy.","authors":"Angela Saadat, Haree Pallera, Frank Lattanzio, Daley Owens, Amy Gaines, Sai Susmitha Ravi, Tushar Shah","doi":"10.1159/000539506","DOIUrl":"10.1159/000539506","url":null,"abstract":"<p><strong>Introduction: </strong>The complement response activates upon reperfusion in neonatal hypoxic-ischemic encephalopathy (HIE) and contributes to excessive neuroinflammation and worse outcomes. C5a is a powerful anaphylatoxin central to each of the complement pathways, and its engagement with C5aR1 is directly tied to brain injury and neuronal death. Reasoning C5aR1 antagonism can decrease excessive neuroinflammation and thereby improve neurological and functional outcomes, we tested this hypothesis in a rat model of HIE with PMX205, a small molecule that inhibits C5a-C5aR1 interaction.</p><p><strong>Methods: </strong>Term-equivalent pups (P10-12) were subjected to mild-moderate HIE by Vannucci's method and treated with PMX205. We compared motor and cognitive outcomes with two behavioral tests each (food handling and accelerod; novel object recognition [NOR] and open field) to improve the accuracy of our conclusions.</p><p><strong>Results: </strong>Improvements were observed in fine motor function, balance, and exploratory behaviors, but little to no improvement in recognition memory and gross motor function. Lesion area and histological assessments showed robust cortical neuroprotection from treatment but persistent injury to the CA1 region of the hippocampus. Better structural and functional outcomes were seen within 1 day of treatment, suggesting C5aR1 antagonism beyond the latent injury phase may impair recovery. In a dose-response experiment, cerebral area loss from injury was improved only in female rats, suggesting underlying sexual dimorphisms in the complement response.</p><p><strong>Conclusion: </strong>These results demonstrate proof-of-concept for targeting C5aR1 signaling in neonatal HIE with PMX205 and underscore the role of sex in hypoxic-ischemic injury.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-15"},"PeriodicalIF":2.3,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-Term Neurologic Consequences following Fetal Growth Restriction: The Impact on Brain Reserve. 胎儿生长受限的长期神经后果;对大脑储备的影响。
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-05-14 DOI: 10.1159/000539266
Divyen K Shah, Susana Pereira, Gregory A Lodygensky

Background: Fetal growth restriction (FGR) corresponds to the fetus's inability to achieve an adequate weight gain based on genetic potential and gestational age. It is an important cause of morbidity and mortality.

Summary: In this review, we address the challenges of diagnosis and classification of FGR. We review how chronic fetal hypoxia impacts brain development. We describe recent advances on placental and fetal brain imaging using magnetic resonance imaging and how they offer new noninvasive means to study growth restriction in humans. We go on to review the impact of FGR on brain integrity in the neonatal period, later childhood, and adulthood and review available therapies.

Key messages: FGR consequences are not limited to the perinatal period. We hypothesize that impaired brain reserve, as defined by structure and size, may predict some concerning epidemiological data of impaired cognitive outcomes and dementia with aging in this group of patients.

背景:胎儿生长受限(FGR)是指胎儿无法根据遗传潜能和胎龄获得足够的体重增长。摘要:在这篇综述中,我们探讨了 FGR 诊断和分类所面临的挑战。我们回顾了胎儿长期缺氧对大脑发育的影响。我们介绍了使用核磁共振成像技术进行胎盘和胎儿大脑成像的最新进展,以及这些技术如何为研究人类生长受限提供新的非侵入性手段。接下来,我们将回顾胎儿生长受限对新生儿期、儿童后期和成年期大脑完整性的影响,并回顾现有的治疗方法:关键信息:胎儿生长受限的后果不仅限于围产期。我们假设,根据结构和大小定义的大脑储备受损可能预示着这组患者认知能力受损和老年痴呆症的一些流行病学数据。
{"title":"Long-Term Neurologic Consequences following Fetal Growth Restriction: The Impact on Brain Reserve.","authors":"Divyen K Shah, Susana Pereira, Gregory A Lodygensky","doi":"10.1159/000539266","DOIUrl":"10.1159/000539266","url":null,"abstract":"<p><strong>Background: </strong>Fetal growth restriction (FGR) corresponds to the fetus's inability to achieve an adequate weight gain based on genetic potential and gestational age. It is an important cause of morbidity and mortality.</p><p><strong>Summary: </strong>In this review, we address the challenges of diagnosis and classification of FGR. We review how chronic fetal hypoxia impacts brain development. We describe recent advances on placental and fetal brain imaging using magnetic resonance imaging and how they offer new noninvasive means to study growth restriction in humans. We go on to review the impact of FGR on brain integrity in the neonatal period, later childhood, and adulthood and review available therapies.</p><p><strong>Key messages: </strong>FGR consequences are not limited to the perinatal period. We hypothesize that impaired brain reserve, as defined by structure and size, may predict some concerning epidemiological data of impaired cognitive outcomes and dementia with aging in this group of patients.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-8"},"PeriodicalIF":2.9,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140917406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beta Spectral Power during Passive Listening in Preschool Children with Specific Language Impairment. 有特殊语言障碍的学龄前儿童被动聆听时的β频谱功率
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-05-09 DOI: 10.1159/000539135
Saška Fatić, Nina Stanojević, Ljiljana Jeličić, Ružica Bilibajkić, Maša Marisavljević, Slavica Maksimović, Aleksandar Gavrilović, Miško Subotić

Introduction: Children with specific language impairment (SLI) have difficulties in different speech and language domains. Electrophysiological studies have documented that auditory processing in children with SLI is atypical and probably caused by delayed and abnormal auditory maturation. During the resting state, or different auditory tasks, children with SLI show low or high beta spectral power, which could be a clinical correlate for investigating brain rhythms.

Methods: The aim of this study was to examine the electrophysiological cortical activity of the beta rhythm while listening to words and nonwords in children with SLI in comparison to typical development (TD) children. The participants were 50 children with SLI, aged 4 and 5 years, and 50 age matched TD children. The children were divided into two subgroups according to age: (1) children 4 years of age; (2) children 5 years of age.

Results: The older group differed from the younger group in beta auditory processing, with increased values of beta spectral power in the right frontal, temporal, and parietal regions. In addition, children with SLI have higher beta spectral power than TD children in the bilateral temporal regions.

Conclusion: Complex beta auditory activation in TD and SLI children indicates the presence of early changes in functional brain connectivity.

简介特殊语言障碍(SLI)儿童在不同的言语和语言领域都存在困难。电生理学研究表明,SLI 儿童的听觉处理能力不典型,可能是由于听觉成熟延迟和异常造成的。在静息状态或不同的听觉任务中,SLI 儿童表现出低或高β频谱功率,这可能是研究大脑节奏的临床相关因素:本研究旨在研究 SLI 儿童与典型发育(TD)儿童在听单词和非单词时的β节奏的电生理皮层活动。研究对象包括 50 名 4 至 5 岁的 SLI 儿童和 50 名年龄相仿的 TD 儿童。根据年龄将儿童分为两组:1)4 岁儿童;2)5 岁儿童:结果显示:大龄组与小龄组在贝塔听觉处理方面存在差异,右侧额叶、颞叶和顶叶区域的贝塔频谱功率值增加。此外,在双侧颞叶区域,SLI 儿童的 beta 频谱功率高于 TD 儿童:结论:TD 和 SLI 儿童复杂的 beta 听觉激活表明大脑功能连接存在早期变化。
{"title":"Beta Spectral Power during Passive Listening in Preschool Children with Specific Language Impairment.","authors":"Saška Fatić, Nina Stanojević, Ljiljana Jeličić, Ružica Bilibajkić, Maša Marisavljević, Slavica Maksimović, Aleksandar Gavrilović, Miško Subotić","doi":"10.1159/000539135","DOIUrl":"10.1159/000539135","url":null,"abstract":"<p><strong>Introduction: </strong>Children with specific language impairment (SLI) have difficulties in different speech and language domains. Electrophysiological studies have documented that auditory processing in children with SLI is atypical and probably caused by delayed and abnormal auditory maturation. During the resting state, or different auditory tasks, children with SLI show low or high beta spectral power, which could be a clinical correlate for investigating brain rhythms.</p><p><strong>Methods: </strong>The aim of this study was to examine the electrophysiological cortical activity of the beta rhythm while listening to words and nonwords in children with SLI in comparison to typical development (TD) children. The participants were 50 children with SLI, aged 4 and 5 years, and 50 age matched TD children. The children were divided into two subgroups according to age: (1) children 4 years of age; (2) children 5 years of age.</p><p><strong>Results: </strong>The older group differed from the younger group in beta auditory processing, with increased values of beta spectral power in the right frontal, temporal, and parietal regions. In addition, children with SLI have higher beta spectral power than TD children in the bilateral temporal regions.</p><p><strong>Conclusion: </strong>Complex beta auditory activation in TD and SLI children indicates the presence of early changes in functional brain connectivity.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-14"},"PeriodicalIF":2.9,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140899631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preclinical Milestones in MECP2 Gene Transfer for Treating Rett Syndrome. 用于治疗雷特综合征的 MECP2 基因转移的临床前里程碑。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-05-09 DOI: 10.1159/000539267
Indumathy Jagadeeswaran, Jiyoung Oh, Sarah E Sinnett

Background: Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). After gene transfer in mice, exogenous MeCP2 expression must be regulated to avoid dose-dependent toxicity.

Summary: The preclinical gene therapy literature for treating RTT illustrates a duly diligent progression that begins with proof-of-concept studies and advances toward the development of safer, regulated MECP2 viral genome designs. This design progression was partly achieved through international collaborative studies. In 2023, clinicians administered investigational gene therapies for RTT to patients a decade after the first preclinical gene therapy publications for RTT (clinical trial numbers NCT05606614 and NCT05898620). As clinicians take on a more prominent role in MECP2 gene therapy research, preclinical researchers may continue to test more nuanced hypotheses regarding the safety, efficacy, and mechanism of MECP2 gene transfer.

Key message: This review summarizes the history of preclinical MECP2 gene transfer for treating RTT and acknowledges major contributions among colleagues in the field. The first clinical injections are a shared milestone.

背景:雷特综合征(RTT)是一种由转录调节因子甲基-CpG结合蛋白2(MeCP2)突变引起的神经发育障碍。摘要:治疗雷特综合征(RTT)的临床前基因治疗文献说明了一个适当的努力过程,即从概念验证研究开始,向开发更安全、受调控的 MECP2 病毒基因组设计迈进。这一设计进展部分是通过国际合作研究实现的。2023 年,在首次发表 RTT 临床前基因疗法论文(临床试验编号 NCT05606614 和 NCT05898620)十年后,临床医生为患者使用了 RTT 研究性基因疗法。随着临床医生在 MECP2 基因治疗研究中扮演更重要的角色,临床前研究人员可能会继续测试有关 MECP2 基因转移的安全性、有效性和机制的更多细微假设:这篇综述总结了临床前 MECP2 基因转移治疗 RTT 的历史,并肯定了该领域同行的主要贡献。首次临床注射是一个共同的里程碑。
{"title":"Preclinical Milestones in MECP2 Gene Transfer for Treating Rett Syndrome.","authors":"Indumathy Jagadeeswaran, Jiyoung Oh, Sarah E Sinnett","doi":"10.1159/000539267","DOIUrl":"10.1159/000539267","url":null,"abstract":"<p><strong>Background: </strong>Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). After gene transfer in mice, exogenous MeCP2 expression must be regulated to avoid dose-dependent toxicity.</p><p><strong>Summary: </strong>The preclinical gene therapy literature for treating RTT illustrates a duly diligent progression that begins with proof-of-concept studies and advances toward the development of safer, regulated MECP2 viral genome designs. This design progression was partly achieved through international collaborative studies. In 2023, clinicians administered investigational gene therapies for RTT to patients a decade after the first preclinical gene therapy publications for RTT (clinical trial numbers NCT05606614 and NCT05898620). As clinicians take on a more prominent role in MECP2 gene therapy research, preclinical researchers may continue to test more nuanced hypotheses regarding the safety, efficacy, and mechanism of MECP2 gene transfer.</p><p><strong>Key message: </strong>This review summarizes the history of preclinical MECP2 gene transfer for treating RTT and acknowledges major contributions among colleagues in the field. The first clinical injections are a shared milestone.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-10"},"PeriodicalIF":2.3,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140899633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinguishing Laterality in Brain Injury in Rabbit Fetal Magnetic Resonance Imaging Using Novel Volume Rendering Techniques. 利用新型容积渲染技术区分兔胎儿核磁共振成像中脑损伤的侧向性
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-05-06 DOI: 10.1159/000539212
Gaurav Ambwani, Zhongjie Shi, Kehuan Luo, Jeong-Won Jeong, Sidhartha Tan

Introduction: Our laboratory has been exploring the MRI detection of fetal brain injury, which previously provided a prognostic biomarker for newborn hypertonia in an animal model of cerebral palsy (CP). The biomarker relies on distinct patterns of diffusion-weighted imaging-defined apparent diffusion coefficient (ADC) in fetal brains during uterine hypoxia-ischemia (H-I). Despite the challenges posed by small brains and tissue acquisition, our objective was to differentiate between left and right brain ADC changes.

Methods: A novel aspect involved utilizing three-dimensional rendering techniques to refine ADC measurements within spheroids encompassing fetal brain tissue. 25-day gestation age of rabbit fetuses underwent global hypoxia due to maternal uterine ischemia.

Results: Successful differentiation of left and right brain regions was achieved in 28% of the fetal brains. Ordinal analysis revealed predominantly higher ADC on the left side compared to the right at baseline and across the entire time series. During H-I and reperfusion-reoxygenation, the right side exhibited a favored percentage change. Among these fetal brains, 73% exhibited the ADC pattern predictive of hypertonia. No significant differences between left and right sides were observed in patterns predicting hypertonia, except for one timepoint during H-I. This study also highlights a balance between left-sided and right-sided alterations within the population.

Conclusion: This study emphasizes the importance of investigating laterality and asymmetric hemispheric lesions for early diagnosis of brain injury, leading to CP. The technological limitations in obtaining a clear picture of the entire fetal brain for every fetus mirror the challenges encountered in human studies.

简介:我们的实验室一直在探索通过核磁共振成像检测胎儿脑损伤,该方法曾为脑瘫(CP)动物模型中新生儿张力过高症提供了预后生物标志物。该生物标志物依赖于胎儿大脑在子宫缺血(H-I)期间弥散加权成像定义的表观弥散系数(ADC)的不同模式。尽管小脑和组织采集带来了挑战,但我们的目标是区分左脑和右脑的 ADC 变化:方法:一个新颖的方面是利用三维渲染技术来完善胎儿脑组织球体内的 ADC 测量。妊娠 25 天的兔胎儿因母体子宫缺血而整体缺氧:结果:28%的胎儿大脑成功区分了左右脑区域。顺序分析显示,在基线和整个时间序列中,左侧的 ADC 主要高于右侧。在H-I和再灌注-再氧合过程中,右侧的百分比变化更大。在这些胎儿大脑中,73%的胎儿大脑表现出预示张力过高的 ADC 模式。除了缺氧缺血期间的一个时间点外,左右侧在预测张力亢进的模式上没有明显差异。本研究还强调了人群中左侧和右侧改变之间的平衡:本研究强调了调查侧位和不对称半球病变对于早期诊断脑损伤导致的 CP 的重要性。为每个胎儿获取清晰的整个胎儿大脑图像的技术限制反映了人类研究中遇到的挑战。
{"title":"Distinguishing Laterality in Brain Injury in Rabbit Fetal Magnetic Resonance Imaging Using Novel Volume Rendering Techniques.","authors":"Gaurav Ambwani, Zhongjie Shi, Kehuan Luo, Jeong-Won Jeong, Sidhartha Tan","doi":"10.1159/000539212","DOIUrl":"10.1159/000539212","url":null,"abstract":"<p><strong>Introduction: </strong>Our laboratory has been exploring the MRI detection of fetal brain injury, which previously provided a prognostic biomarker for newborn hypertonia in an animal model of cerebral palsy (CP). The biomarker relies on distinct patterns of diffusion-weighted imaging-defined apparent diffusion coefficient (ADC) in fetal brains during uterine hypoxia-ischemia (H-I). Despite the challenges posed by small brains and tissue acquisition, our objective was to differentiate between left and right brain ADC changes.</p><p><strong>Methods: </strong>A novel aspect involved utilizing three-dimensional rendering techniques to refine ADC measurements within spheroids encompassing fetal brain tissue. 25-day gestation age of rabbit fetuses underwent global hypoxia due to maternal uterine ischemia.</p><p><strong>Results: </strong>Successful differentiation of left and right brain regions was achieved in 28% of the fetal brains. Ordinal analysis revealed predominantly higher ADC on the left side compared to the right at baseline and across the entire time series. During H-I and reperfusion-reoxygenation, the right side exhibited a favored percentage change. Among these fetal brains, 73% exhibited the ADC pattern predictive of hypertonia. No significant differences between left and right sides were observed in patterns predicting hypertonia, except for one timepoint during H-I. This study also highlights a balance between left-sided and right-sided alterations within the population.</p><p><strong>Conclusion: </strong>This study emphasizes the importance of investigating laterality and asymmetric hemispheric lesions for early diagnosis of brain injury, leading to CP. The technological limitations in obtaining a clear picture of the entire fetal brain for every fetus mirror the challenges encountered in human studies.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-13"},"PeriodicalIF":2.3,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538374/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Developmental Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1