首页 > 最新文献

Developmental Neuroscience最新文献

英文 中文
Heterochronic Development of the Perception of Different Types of Visual Illusions. 不同类型视错觉知觉的异时性发展。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-01-03 DOI: 10.1159/000543308
Vania Navarrete, Valeria Montiel, Miriam Alarcon, Rosa E Ulloa, Péter Szenczi, Marcos Rosetti, Oxána Bánszegi

Introduction: The underlying neural and/or perceptual mechanisms of different visual illusions are still unknown; thus, they continue to be the focus of many ongoing studies. Inconsistencies persist in the empirical findings for understanding how the perception of these illusions evolves over the course of development.

Methods: We assessed 513 participants between 6.5 and 18.9 years of age, with 103 pairs of illusory and control images spanning five illusion types (Ebbinghaus, Müller-Lyer, Contrast, Moving Snake, and Subjective Contour). Misleading and helpful contexts were added when possible.

Results: In general, we found that, except for the Ebbinghaus illusion, susceptibility changes with age: while for the Müller-Lyer it decreases, for the Contrast, Moving Snake, and Kanizsa, susceptibility increases. Across all illusory conditions, participants' decision time decreased with age. Context also influenced the performance and choice latency. We also found a gender difference: boys were less susceptible than girls to Contrast and Moving Snake illusions and were faster to answer in Müller-Lyer illusion trials.

Conclusion: The current study found that susceptibility to illusions changes in a manner that is age-specific and, in some cases, sex-specific. The different developmental trajectories of the perception of visual illusions support the idea of the lack of a common neural and/or perceptual process behind them. We can suggest that at least some of the cognitive processes and neural pathways involved develop heterochronically.

不同视错觉的潜在神经和/或知觉机制尚不清楚;因此,它们仍然是许多正在进行的研究的焦点。在理解这些错觉的感知如何在发展过程中演变的经验发现中,不一致性仍然存在。方法:我们评估了513名年龄在6.5至18.9岁之间的参与者,使用了103对错觉和对照图像,涵盖了五种错觉类型(艾宾浩斯、梅勒-莱尔、对比度、移动蛇和主观轮廓)。在可能的情况下,添加了误导和帮助的上下文。结果:总的来说,我们发现除了艾宾浩斯错觉敏感性随年龄而变化外, ller- lyer错觉敏感性随年龄而降低,而对比、移动蛇和Kanizsa错觉敏感性随年龄而增加。在所有幻觉条件下,参与者的决策时间随着年龄的增长而减少。上下文也会影响性能和选择延迟。我们还发现了性别差异:男孩比女孩更不容易受到对比和移动蛇错觉的影响,并且在勒-莱尔错觉试验中更快地做出回答。结论:目前的研究发现,对错觉的易感性以年龄和某些情况下的性别特定的方式变化。视觉错觉知觉的不同发展轨迹支持了在其背后缺乏共同的神经和/或知觉过程的观点。我们可以认为,至少有一些认知过程和神经通路是在异慢性中发展起来的。
{"title":"Heterochronic Development of the Perception of Different Types of Visual Illusions.","authors":"Vania Navarrete, Valeria Montiel, Miriam Alarcon, Rosa E Ulloa, Péter Szenczi, Marcos Rosetti, Oxána Bánszegi","doi":"10.1159/000543308","DOIUrl":"10.1159/000543308","url":null,"abstract":"<p><strong>Introduction: </strong>The underlying neural and/or perceptual mechanisms of different visual illusions are still unknown; thus, they continue to be the focus of many ongoing studies. Inconsistencies persist in the empirical findings for understanding how the perception of these illusions evolves over the course of development.</p><p><strong>Methods: </strong>We assessed 513 participants between 6.5 and 18.9 years of age, with 103 pairs of illusory and control images spanning five illusion types (Ebbinghaus, Müller-Lyer, Contrast, Moving Snake, and Subjective Contour). Misleading and helpful contexts were added when possible.</p><p><strong>Results: </strong>In general, we found that, except for the Ebbinghaus illusion, susceptibility changes with age: while for the Müller-Lyer it decreases, for the Contrast, Moving Snake, and Kanizsa, susceptibility increases. Across all illusory conditions, participants' decision time decreased with age. Context also influenced the performance and choice latency. We also found a gender difference: boys were less susceptible than girls to Contrast and Moving Snake illusions and were faster to answer in Müller-Lyer illusion trials.</p><p><strong>Conclusion: </strong>The current study found that susceptibility to illusions changes in a manner that is age-specific and, in some cases, sex-specific. The different developmental trajectories of the perception of visual illusions support the idea of the lack of a common neural and/or perceptual process behind them. We can suggest that at least some of the cognitive processes and neural pathways involved develop heterochronically.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-12"},"PeriodicalIF":2.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142933486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinguishing Laterality in Brain Injury in Rabbit Fetal Magnetic Resonance Imaging Using Novel Volume Rendering Techniques. 利用新型容积渲染技术区分兔胎儿核磁共振成像中脑损伤的侧向性
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-05-06 DOI: 10.1159/000539212
Gaurav Ambwani, Zhongjie Shi, Kehuan Luo, Jeong-Won Jeong, Sidhartha Tan
<p><strong>Introduction: </strong>Our laboratory has been exploring the MRI detection of fetal brain injury, which previously provided a prognostic biomarker for newborn hypertonia in an animal model of cerebral palsy (CP). The biomarker relies on distinct patterns of diffusion-weighted imaging-defined apparent diffusion coefficient (ADC) in fetal brains during uterine hypoxia-ischemia (H-I). Despite the challenges posed by small brains and tissue acquisition, our objective was to differentiate between left and right brain ADC changes.</p><p><strong>Methods: </strong>A novel aspect involved utilizing three-dimensional rendering techniques to refine ADC measurements within spheroids encompassing fetal brain tissue. 25-day gestation age of rabbit fetuses underwent global hypoxia due to maternal uterine ischemia.</p><p><strong>Results: </strong>Successful differentiation of left and right brain regions was achieved in 28% of the fetal brains. Ordinal analysis revealed predominantly higher ADC on the left side compared to the right at baseline and across the entire time series. During H-I and reperfusion-reoxygenation, the right side exhibited a favored percentage change. Among these fetal brains, 73% exhibited the ADC pattern predictive of hypertonia. No significant differences between left and right sides were observed in patterns predicting hypertonia, except for one timepoint during H-I. This study also highlights a balance between left-sided and right-sided alterations within the population.</p><p><strong>Conclusion: </strong>This study emphasizes the importance of investigating laterality and asymmetric hemispheric lesions for early diagnosis of brain injury, leading to CP. The technological limitations in obtaining a clear picture of the entire fetal brain for every fetus mirror the challenges encountered in human studies.</p><p><strong>Introduction: </strong>Our laboratory has been exploring the MRI detection of fetal brain injury, which previously provided a prognostic biomarker for newborn hypertonia in an animal model of cerebral palsy (CP). The biomarker relies on distinct patterns of diffusion-weighted imaging-defined apparent diffusion coefficient (ADC) in fetal brains during uterine hypoxia-ischemia (H-I). Despite the challenges posed by small brains and tissue acquisition, our objective was to differentiate between left and right brain ADC changes.</p><p><strong>Methods: </strong>A novel aspect involved utilizing three-dimensional rendering techniques to refine ADC measurements within spheroids encompassing fetal brain tissue. 25-day gestation age of rabbit fetuses underwent global hypoxia due to maternal uterine ischemia.</p><p><strong>Results: </strong>Successful differentiation of left and right brain regions was achieved in 28% of the fetal brains. Ordinal analysis revealed predominantly higher ADC on the left side compared to the right at baseline and across the entire time series. During H-I and reperfusion-reoxygenation, the ri
简介:我们的实验室一直在探索通过核磁共振成像检测胎儿脑损伤,该方法曾为脑瘫(CP)动物模型中新生儿张力过高症提供了预后生物标志物。该生物标志物依赖于胎儿大脑在子宫缺血(H-I)期间弥散加权成像定义的表观弥散系数(ADC)的不同模式。尽管小脑和组织采集带来了挑战,但我们的目标是区分左脑和右脑的 ADC 变化:方法:一个新颖的方面是利用三维渲染技术来完善胎儿脑组织球体内的 ADC 测量。妊娠 25 天的兔胎儿因母体子宫缺血而整体缺氧:结果:28%的胎儿大脑成功区分了左右脑区域。顺序分析显示,在基线和整个时间序列中,左侧的 ADC 主要高于右侧。在H-I和再灌注-再氧合过程中,右侧的百分比变化更大。在这些胎儿大脑中,73%的胎儿大脑表现出预示张力过高的 ADC 模式。除了缺氧缺血期间的一个时间点外,左右侧在预测张力亢进的模式上没有明显差异。本研究还强调了人群中左侧和右侧改变之间的平衡:本研究强调了调查侧位和不对称半球病变对于早期诊断脑损伤导致的 CP 的重要性。为每个胎儿获取清晰的整个胎儿大脑图像的技术限制反映了人类研究中遇到的挑战。
{"title":"Distinguishing Laterality in Brain Injury in Rabbit Fetal Magnetic Resonance Imaging Using Novel Volume Rendering Techniques.","authors":"Gaurav Ambwani, Zhongjie Shi, Kehuan Luo, Jeong-Won Jeong, Sidhartha Tan","doi":"10.1159/000539212","DOIUrl":"10.1159/000539212","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Introduction: &lt;/strong&gt;Our laboratory has been exploring the MRI detection of fetal brain injury, which previously provided a prognostic biomarker for newborn hypertonia in an animal model of cerebral palsy (CP). The biomarker relies on distinct patterns of diffusion-weighted imaging-defined apparent diffusion coefficient (ADC) in fetal brains during uterine hypoxia-ischemia (H-I). Despite the challenges posed by small brains and tissue acquisition, our objective was to differentiate between left and right brain ADC changes.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;A novel aspect involved utilizing three-dimensional rendering techniques to refine ADC measurements within spheroids encompassing fetal brain tissue. 25-day gestation age of rabbit fetuses underwent global hypoxia due to maternal uterine ischemia.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;Successful differentiation of left and right brain regions was achieved in 28% of the fetal brains. Ordinal analysis revealed predominantly higher ADC on the left side compared to the right at baseline and across the entire time series. During H-I and reperfusion-reoxygenation, the right side exhibited a favored percentage change. Among these fetal brains, 73% exhibited the ADC pattern predictive of hypertonia. No significant differences between left and right sides were observed in patterns predicting hypertonia, except for one timepoint during H-I. This study also highlights a balance between left-sided and right-sided alterations within the population.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusion: &lt;/strong&gt;This study emphasizes the importance of investigating laterality and asymmetric hemispheric lesions for early diagnosis of brain injury, leading to CP. The technological limitations in obtaining a clear picture of the entire fetal brain for every fetus mirror the challenges encountered in human studies.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Introduction: &lt;/strong&gt;Our laboratory has been exploring the MRI detection of fetal brain injury, which previously provided a prognostic biomarker for newborn hypertonia in an animal model of cerebral palsy (CP). The biomarker relies on distinct patterns of diffusion-weighted imaging-defined apparent diffusion coefficient (ADC) in fetal brains during uterine hypoxia-ischemia (H-I). Despite the challenges posed by small brains and tissue acquisition, our objective was to differentiate between left and right brain ADC changes.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;A novel aspect involved utilizing three-dimensional rendering techniques to refine ADC measurements within spheroids encompassing fetal brain tissue. 25-day gestation age of rabbit fetuses underwent global hypoxia due to maternal uterine ischemia.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;Successful differentiation of left and right brain regions was achieved in 28% of the fetal brains. Ordinal analysis revealed predominantly higher ADC on the left side compared to the right at baseline and across the entire time series. During H-I and reperfusion-reoxygenation, the ri","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"55-67"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538374/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upstream Stimulating Factor 2 Aggravates Spinal Nerve Ligation-Induced Neuropathic Pain in Mice via Regulating SNHG5/miR-181b-5p. 上游刺激因子2通过调节SNHG5/miR-181b-5p加重脊神经结扎诱导小鼠的神经病理性疼痛
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-03-12 DOI: 10.1159/000538178
Mi Chen, Yang Yang, Jiatian Cui, Li Qiu, Xiaohua Zou, Xianggang Zeng

Introduction: Upstream stimulating factor 2 (USF2) belongs to basic Helix-Loop-Helix-Leucine zipper transcription factor family, regulating expression of genes involved in immune response or energy metabolism network. Role of USF2 in neuropathic pain was evaluated.

Methods: Mice were intraspinally injected with adenovirus for knockdown of USF2 (Ad-shUSF2) and then subjected to spinal nerve ligation (SNL) to induce neuropathic pain. Distribution and expression of USF2 were detected by western blot and immunofluorescence. Mechanical and thermal pain sensitivity were examined by paw withdrawal thresholds (PWT) and paw withdrawal latency (PWL). Chromatin immunoprecipitation (ChIP) and luciferase activity assays were performed to detect binding ability between USF2 and SNHG5.

Results: The expression of USF2 was elevated and colocalized with astrocytes and microglia in L5 dorsal root ganglion (DRG) of SNL-induced mice. Injection of Ad-shUSF2 attenuated SNL-induced decrease of PWT and PWL in mice. Knockdown of USF2 increased the level of IL-10 but decreased TNF-α, IL-1β, and IL-6 in SNL-induced mice. Silence of USF2 enhanced protein expression of CD206 while reducing expression of CD16 and CD32 in SNL-induced mice. USF2 binds to promoter of SNHG5 and weakens SNL-induced up-regulation of SNHG5. SNHG5 binds to miR-181b-5p, and miR-181b-5p to interact with CXCL5.

Conclusion: Silence of USF2 ameliorated neuropathic pain, suppressed activation of M1 microglia, and inhibited inflammation in SNL-induced mice through regulation of SNHG5/miR-181b-5p/CXCL5 axis. Therefore, USF2/SNHG5/miR-181b-5p/CXCL5 might be a promising target for neuropathic pain. However, the effect of USF2/SNHG5/miR-181b-5p/CXCL5 on neuropathic pain should also be investigated in further research.

背景:上游刺激因子2(USF2)属于碱性-髓质-环状-髓质-亮氨酸拉链转录因子家族,调节参与免疫反应或能量代谢网络的基因表达。本研究评估了 USF2 在神经病理性疼痛中的作用:方法:给小鼠鞘内注射腺病毒以敲除 USF2(Ad-shUSF2),然后进行脊神经结扎(SNL)以诱导神经病理性疼痛。通过Western印迹和免疫荧光检测USF2的分布和表达。通过爪退缩阈值(PWT)和爪退缩潜伏期(PWL)检测机械痛和热痛的敏感性。进行了染色质免疫沉淀(ChIP)和荧光素酶活性测定,以检测USF2和SNHG5之间的结合能力:结果:在SNL诱导的小鼠L5背根神经节(DRG)中,USF2的表达升高,并与星形胶质细胞和小胶质细胞共定位。注射 Ad-shUSF2 可减轻 SNL 诱导的小鼠脉搏波速度和脉搏波速度的下降。在SNL诱导的小鼠中,敲除USF2会增加IL-10的水平,但会降低TNF-α、IL-1β和IL-6的水平。在SNL诱导的小鼠中,沉默USF2可提高CD206的蛋白表达,同时降低CD16和CD32的表达。USF2 与 SNHG5 启动子结合,削弱了 SNL 诱导的 SNHG5 上调。SNHG5与miR-181b-5p结合,miR-181b-5p与CXCL5相互作用:结论:通过调节 SNHG5/miR-181b-5p/CXCL5 轴,沉默 USF2 可改善 SNL 诱导小鼠的神经病理性疼痛、抑制 M1 小胶质细胞的活化并抑制炎症。因此,USF2/SNHG5/miR-181b-5p/CXCL5可能是治疗神经病理性疼痛的一个有前景的靶点。不过,USF2/SNHG5/miR-181b-5p/CXCL5 对神经病理性疼痛的影响还需要进一步研究。
{"title":"Upstream Stimulating Factor 2 Aggravates Spinal Nerve Ligation-Induced Neuropathic Pain in Mice via Regulating SNHG5/miR-181b-5p.","authors":"Mi Chen, Yang Yang, Jiatian Cui, Li Qiu, Xiaohua Zou, Xianggang Zeng","doi":"10.1159/000538178","DOIUrl":"10.1159/000538178","url":null,"abstract":"<p><strong>Introduction: </strong>Upstream stimulating factor 2 (USF2) belongs to basic Helix-Loop-Helix-Leucine zipper transcription factor family, regulating expression of genes involved in immune response or energy metabolism network. Role of USF2 in neuropathic pain was evaluated.</p><p><strong>Methods: </strong>Mice were intraspinally injected with adenovirus for knockdown of USF2 (Ad-shUSF2) and then subjected to spinal nerve ligation (SNL) to induce neuropathic pain. Distribution and expression of USF2 were detected by western blot and immunofluorescence. Mechanical and thermal pain sensitivity were examined by paw withdrawal thresholds (PWT) and paw withdrawal latency (PWL). Chromatin immunoprecipitation (ChIP) and luciferase activity assays were performed to detect binding ability between USF2 and SNHG5.</p><p><strong>Results: </strong>The expression of USF2 was elevated and colocalized with astrocytes and microglia in L5 dorsal root ganglion (DRG) of SNL-induced mice. Injection of Ad-shUSF2 attenuated SNL-induced decrease of PWT and PWL in mice. Knockdown of USF2 increased the level of IL-10 but decreased TNF-α, IL-1β, and IL-6 in SNL-induced mice. Silence of USF2 enhanced protein expression of CD206 while reducing expression of CD16 and CD32 in SNL-induced mice. USF2 binds to promoter of SNHG5 and weakens SNL-induced up-regulation of SNHG5. SNHG5 binds to miR-181b-5p, and miR-181b-5p to interact with CXCL5.</p><p><strong>Conclusion: </strong>Silence of USF2 ameliorated neuropathic pain, suppressed activation of M1 microglia, and inhibited inflammation in SNL-induced mice through regulation of SNHG5/miR-181b-5p/CXCL5 axis. Therefore, USF2/SNHG5/miR-181b-5p/CXCL5 might be a promising target for neuropathic pain. However, the effect of USF2/SNHG5/miR-181b-5p/CXCL5 on neuropathic pain should also be investigated in further research.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-11"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140112098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Timing of Methamphetamine Exposure during Adolescence Differentially Influences Parvalbumin and Perineuronal Net Immunoreactivity in the Medial Prefrontal Cortex of Female, but Not Male, Rats. 青春期接触甲基苯丙胺的时间会对雌性大鼠内侧前额叶皮层的副视蛋白和神经元周围网免疫反应产生不同影响,而对雄性大鼠则无影响。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-03-28 DOI: 10.1159/000538608
Amara S Brinks, Lauren K Carrica, Dominic J Tagler, Joshua M Gulley, Janice M Juraska
<p><strong>Introduction: </strong>Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission that may be mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which can result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity, and could influence the activity-dependent maturational process of these neurons.</p><p><strong>Methods: </strong>In the present study, we used male and female Sprague-Dawley rats to test the hypothesis that METH exposure influences PV and PNN expression in a sex- and age-specific manner. Rats were injected daily with saline or 3.0 mg/kg METH from early adolescence (30-38 days old), late adolescence (40-48 days old), or young adulthood (60-68 days old). One day following exposure, the effects of METH on PV cells and PNN expression were assessed using immunofluorescent labeling within the mPFC.</p><p><strong>Results: </strong>METH exposure did not alter male PV neurons or PNNs. Females exposed in early adolescence or adulthood had more PV-expressing neurons while those exposed in later adolescence had fewer, suggesting distinct windows of vulnerability to changes induced by METH exposure. In addition, females exposed to METH had more PNNs and more intense PV neuron staining, further suggesting that METH exposure in adolescence uniquely influences the development of inhibitory circuits in the female mPFC.</p><p><strong>Conclusions: </strong>This study indicates that the timing of METH exposure, even within adolescence, influences its neural effects in females.</p><p><strong>Introduction: </strong>Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission that may be mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which can result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity, and could influence the activity-dependent maturational process of these neurons.</p><p><strong>Methods: </strong>In the present study, we used male and female Sprague-Dawley rats to test the hypothesis that METH exposure influences PV and PNN expression in a sex- and age-specific manner. Rats were injected daily with saline or 3.0 mg/kg METH from early adolescence (30-38 days old), late adolescence (40-48 days old), or young adulthood (60-68 days old). One day following exposure, the effects of METH on PV cells and PNN expression were assessed
简介青春期涉及内侧前额叶皮层(mPFC)的重大重组,包括抑制性神经递质的改变,这种改变可能是通过valuebumin(PV)中间神经元及其周围的神经元周围网(PNN)介导的。这些发育变化会导致副视神经元的活动在成年后增加,而吸毒可能会破坏这些变化,从而导致 mPFC 功能和行为的持久变化。甲基苯丙胺(METH)是一些青少年经常使用的一种毒品,它能增加PV神经元的活动,并可能影响这些神经元依赖活动的成熟过程:在本研究中,我们使用雄性和雌性 Sprague Dawley 大鼠来验证 METH 暴露以性别和年龄特异性的方式影响 PV 和 PNN 表达的假设。从青春早期(EA;30-38 天大)、青春晚期(LA;40-48 天大)或青年期(60-68 天大)开始,每天给大鼠注射生理盐水或 3.0 mg/kg METH。暴露一天后,在 mPFC 中使用免疫荧光标记评估 METH 对 PV 细胞和 PNN 表达的影响:结果:暴露于 METH 不会改变雄性 PV 神经元或 PNN。暴露于早期青春期或成年期的女性有更多的 PV 表达神经元,而暴露于晚期青春期的女性有更少的 PV 表达神经元,这表明暴露于 METH 引起的变化有不同的易感窗口期。此外,暴露于 METH 的女性有更多的 PNN 和更强烈的 PV 神经元染色,这进一步表明,青春期暴露于 METH 会独特地影响女性 mPFC 抑制回路的发育:这项研究表明,暴露于 METH 的时间,即使是在青春期,也会影响其对女性神经的影响。
{"title":"Timing of Methamphetamine Exposure during Adolescence Differentially Influences Parvalbumin and Perineuronal Net Immunoreactivity in the Medial Prefrontal Cortex of Female, but Not Male, Rats.","authors":"Amara S Brinks, Lauren K Carrica, Dominic J Tagler, Joshua M Gulley, Janice M Juraska","doi":"10.1159/000538608","DOIUrl":"10.1159/000538608","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Introduction: &lt;/strong&gt;Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission that may be mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which can result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity, and could influence the activity-dependent maturational process of these neurons.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;In the present study, we used male and female Sprague-Dawley rats to test the hypothesis that METH exposure influences PV and PNN expression in a sex- and age-specific manner. Rats were injected daily with saline or 3.0 mg/kg METH from early adolescence (30-38 days old), late adolescence (40-48 days old), or young adulthood (60-68 days old). One day following exposure, the effects of METH on PV cells and PNN expression were assessed using immunofluorescent labeling within the mPFC.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;METH exposure did not alter male PV neurons or PNNs. Females exposed in early adolescence or adulthood had more PV-expressing neurons while those exposed in later adolescence had fewer, suggesting distinct windows of vulnerability to changes induced by METH exposure. In addition, females exposed to METH had more PNNs and more intense PV neuron staining, further suggesting that METH exposure in adolescence uniquely influences the development of inhibitory circuits in the female mPFC.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusions: &lt;/strong&gt;This study indicates that the timing of METH exposure, even within adolescence, influences its neural effects in females.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Introduction: &lt;/strong&gt;Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission that may be mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which can result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity, and could influence the activity-dependent maturational process of these neurons.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;In the present study, we used male and female Sprague-Dawley rats to test the hypothesis that METH exposure influences PV and PNN expression in a sex- and age-specific manner. Rats were injected daily with saline or 3.0 mg/kg METH from early adolescence (30-38 days old), late adolescence (40-48 days old), or young adulthood (60-68 days old). One day following exposure, the effects of METH on PV cells and PNN expression were assessed","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"27-39"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a New Scoring System in Higher Animals for Testing Cognitive Function in the Newborn Period: Effect of Prenatal Hypoxia-Ischemia. 在高等动物中开发测试新生儿期认知功能的新评分系统:产前缺氧缺血的影响。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-03-28 DOI: 10.1159/000538607
Zhongjie Shi, Nadiya Sharif, Kehuan Luo, Sidhartha Tan
<p><strong>Introduction: </strong>Enhanced models for assessing cognitive function in the neonatal period are imperative in higher animals. Postnatal motor deficits, characteristic of cerebral palsy, emerge in newborn kits within our prenatal rabbit model of hypoxia-ischemia (HI). In humans, prenatal HI leads to intellectual disability and cerebral palsy. In a study examining cognitive function in newborn rabbits, we explored several questions. Is there a distinction between conditioned and unconditioned kits? Can the kits discern the human face or the laboratory coat? Do motorically normal kits, born after prenatal HI, exhibit cognitive deficits?</p><p><strong>Methods: </strong>The conditioning protocol was randomly assigned to kits from each litter. For conditioning, the same human, wearing a laboratory coat, fed the rabbit kits for 9 days before the cognitive test. The 6-arm radial maze was chosen for its simplicity and ease of use. Normally appearing kits, born after uterine ischemia at 79% or 92% term in New Zealand White rabbits, were compared to naïve kits. On postpartum day 22/23 or 29/30, the 6-arm maze helped determine if the kits recognized the original feeder from bystander (test 1) or the laboratory coat on bystander (test 2). The use of masks of feeder/bystander (test 3) assessed confounding cues. A weighted score was devised to address variability in entry to maze arms, time, and repeated-trial learning.</p><p><strong>Results: </strong>In conditioned kits, both naïve and HI kits exhibited a significant preference for the face of the feeder but not the laboratory coat. Cognitive deficits were minimal in normal-appearing HI kits.</p><p><strong>Conclusion: </strong>The weighted score was amenable to statistical manipulation.</p><p><strong>Introduction: </strong>Enhanced models for assessing cognitive function in the neonatal period are imperative in higher animals. Postnatal motor deficits, characteristic of cerebral palsy, emerge in newborn kits within our prenatal rabbit model of hypoxia-ischemia (HI). In humans, prenatal HI leads to intellectual disability and cerebral palsy. In a study examining cognitive function in newborn rabbits, we explored several questions. Is there a distinction between conditioned and unconditioned kits? Can the kits discern the human face or the laboratory coat? Do motorically normal kits, born after prenatal HI, exhibit cognitive deficits?</p><p><strong>Methods: </strong>The conditioning protocol was randomly assigned to kits from each litter. For conditioning, the same human, wearing a laboratory coat, fed the rabbit kits for 9 days before the cognitive test. The 6-arm radial maze was chosen for its simplicity and ease of use. Normally appearing kits, born after uterine ischemia at 79% or 92% term in New Zealand White rabbits, were compared to naïve kits. On postpartum day 22/23 or 29/30, the 6-arm maze helped determine if the kits recognized the original feeder from bystander (test 1) or the laborator
引言 在高等动物中,加强新生儿期认知功能的评估模型势在必行。在缺氧缺血(HI)的产前兔模型中,新生小鼠在出生后出现运动障碍,这是脑瘫的特征。在人类中,产前缺氧缺血会导致智力障碍和脑瘫。在一项检测新生兔认知功能的研究中,我们探讨了几个问题。条件试剂盒和非条件试剂盒之间有区别吗?幼兔能分辨人脸或白大褂吗?产前 HI 后出生的运动正常的幼兔是否会表现出认知障碍?方法 将条件反射方案随机分配给每窝的幼仔。在认知测试前的9天,由同一人类穿着白大褂喂养兔仔进行条件反射。选择6臂径向迷宫是因为它简单易用。新西兰白兔在子宫缺血79%或92%足月后出生的正常兔仔与天真兔仔进行了比较。在产后第 22/23 天或 29/30 天,6 臂迷宫有助于确定试剂盒是否能识别旁观者的原始喂养者(测试-1)或旁观者身上的白大褂(测试-2)。使用喂食者/旁观者的面具(测试-3)可评估混淆线索。针对进入迷宫臂、时间和重复试验学习的可变性设计了加权评分。结果 在条件试剂盒中,Naïve 和 HI 试剂盒均表现出对喂食者面部的明显偏好,但对白大褂的偏好不明显。在外观正常的 HI 试剂盒中,认知障碍极小。结论 加权评分系统可以进行统计处理。
{"title":"Development of a New Scoring System in Higher Animals for Testing Cognitive Function in the Newborn Period: Effect of Prenatal Hypoxia-Ischemia.","authors":"Zhongjie Shi, Nadiya Sharif, Kehuan Luo, Sidhartha Tan","doi":"10.1159/000538607","DOIUrl":"10.1159/000538607","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Introduction: &lt;/strong&gt;Enhanced models for assessing cognitive function in the neonatal period are imperative in higher animals. Postnatal motor deficits, characteristic of cerebral palsy, emerge in newborn kits within our prenatal rabbit model of hypoxia-ischemia (HI). In humans, prenatal HI leads to intellectual disability and cerebral palsy. In a study examining cognitive function in newborn rabbits, we explored several questions. Is there a distinction between conditioned and unconditioned kits? Can the kits discern the human face or the laboratory coat? Do motorically normal kits, born after prenatal HI, exhibit cognitive deficits?&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;The conditioning protocol was randomly assigned to kits from each litter. For conditioning, the same human, wearing a laboratory coat, fed the rabbit kits for 9 days before the cognitive test. The 6-arm radial maze was chosen for its simplicity and ease of use. Normally appearing kits, born after uterine ischemia at 79% or 92% term in New Zealand White rabbits, were compared to naïve kits. On postpartum day 22/23 or 29/30, the 6-arm maze helped determine if the kits recognized the original feeder from bystander (test 1) or the laboratory coat on bystander (test 2). The use of masks of feeder/bystander (test 3) assessed confounding cues. A weighted score was devised to address variability in entry to maze arms, time, and repeated-trial learning.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;In conditioned kits, both naïve and HI kits exhibited a significant preference for the face of the feeder but not the laboratory coat. Cognitive deficits were minimal in normal-appearing HI kits.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusion: &lt;/strong&gt;The weighted score was amenable to statistical manipulation.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Introduction: &lt;/strong&gt;Enhanced models for assessing cognitive function in the neonatal period are imperative in higher animals. Postnatal motor deficits, characteristic of cerebral palsy, emerge in newborn kits within our prenatal rabbit model of hypoxia-ischemia (HI). In humans, prenatal HI leads to intellectual disability and cerebral palsy. In a study examining cognitive function in newborn rabbits, we explored several questions. Is there a distinction between conditioned and unconditioned kits? Can the kits discern the human face or the laboratory coat? Do motorically normal kits, born after prenatal HI, exhibit cognitive deficits?&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;The conditioning protocol was randomly assigned to kits from each litter. For conditioning, the same human, wearing a laboratory coat, fed the rabbit kits for 9 days before the cognitive test. The 6-arm radial maze was chosen for its simplicity and ease of use. Normally appearing kits, born after uterine ischemia at 79% or 92% term in New Zealand White rabbits, were compared to naïve kits. On postpartum day 22/23 or 29/30, the 6-arm maze helped determine if the kits recognized the original feeder from bystander (test 1) or the laborator","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"12-26"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436483/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Region-Specific Brain Volume Changes Emerge in Adolescence in the Valproic Acid Model of Autism and Parallel Human Findings. 丙戊酸自闭症模型在青春期出现的特定区域脑容量变化与人类研究结果相似。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-04-26 DOI: 10.1159/000538932
Cole King, Ivina Mali, Hunter Strating, Elizabeth Fangman, Jenna Neyhard, Macy Payne, Stefan H Bossmann, Bethany Plakke

Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits, cognitive dysfunction, and stereotyped repetitive behaviors. Regional volume changes are commonly observed in individuals with ASD. To examine volumetric dysregulation across adolescence, the valproic acid (VPA) model was used to induce ASD-like phenotypes in rats.

Method: Regional volumes were obtained via magnetic resonance imaging at either postnatal day 28 or postnatal day 40 (P40), which correspond to early and late adolescence, respectively.

Results: Consistent with prior research, VPA animals had reduced total brain volume compared to control animals. A novel outcome was that VPA animals had overgrown right hippocampi at P40. Differences in the pattern of development of the anterior cingulate cortex were also observed in VPA animals. Differences for the posterior cingulate were only observed in males, but not females.

Conclusion: These results demonstrate differences in region-specific developmental trajectories between control and VPA animals and suggest that the VPA model may capture regional volume changes consistent with human ASD.

Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits, cognitive dysfunction, and stereotyped repetitive behaviors. Regional volume changes are commonly observed in individuals with ASD. To examine volumetric dysregulation across adolescence, the valproic acid (VPA) model was used to induce ASD-like phenotypes in rats.

Method: Regional volumes were obtained via magnetic resonance imaging at either postnatal day 28 or postnatal day 40 (P40), which correspond to early and late adolescence, respectively.

Results: Consistent with prior research, VPA animals had reduced total brain volume compared to control animals. A novel outcome was that VPA animals had overgrown right hippocampi at P40. Differences in the pattern of development of the anterior cingulate cortex were also observed in VPA animals. Differences for the posterior cingulate were only observed in males, but not females.

Conclusion: These results demonstrate differences in region-specific developmental trajectories between control and VPA animals and suggest that the VPA model may capture regional volume changes consistent with human ASD.

自闭症谱系障碍(ASD)是一种神经发育障碍,以社交和沟通障碍、认知功能障碍和刻板重复行为为特征。自闭症谱系障碍患者通常会出现区域体积变化。为了研究整个青春期的体积失调,研究人员使用丙戊酸(VPA)模型诱导大鼠出现类似 ASD 的表型。在出生后第28天(P28)或出生后第40天(P40)(分别对应青春期早期和晚期),通过磁共振成像(MRI)获得区域体积。与之前的研究结果一致,与对照组动物相比,VPA动物的大脑总体积有所减少。一个新的结果是,VPA动物在P40时右侧海马过度生长。在VPA动物身上还观察到前扣带回皮层发育模式的差异。仅在雄性动物中观察到扣带回后部的差异,而在雌性动物中则没有观察到。这些结果表明,对照组和 VPA 动物的特定区域发育轨迹存在差异,并表明 VPA 模型可能捕捉到与人类 ASD 一致的区域体积变化。
{"title":"Region-Specific Brain Volume Changes Emerge in Adolescence in the Valproic Acid Model of Autism and Parallel Human Findings.","authors":"Cole King, Ivina Mali, Hunter Strating, Elizabeth Fangman, Jenna Neyhard, Macy Payne, Stefan H Bossmann, Bethany Plakke","doi":"10.1159/000538932","DOIUrl":"10.1159/000538932","url":null,"abstract":"<p><strong>Introduction: </strong>Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits, cognitive dysfunction, and stereotyped repetitive behaviors. Regional volume changes are commonly observed in individuals with ASD. To examine volumetric dysregulation across adolescence, the valproic acid (VPA) model was used to induce ASD-like phenotypes in rats.</p><p><strong>Method: </strong>Regional volumes were obtained via magnetic resonance imaging at either postnatal day 28 or postnatal day 40 (P40), which correspond to early and late adolescence, respectively.</p><p><strong>Results: </strong>Consistent with prior research, VPA animals had reduced total brain volume compared to control animals. A novel outcome was that VPA animals had overgrown right hippocampi at P40. Differences in the pattern of development of the anterior cingulate cortex were also observed in VPA animals. Differences for the posterior cingulate were only observed in males, but not females.</p><p><strong>Conclusion: </strong>These results demonstrate differences in region-specific developmental trajectories between control and VPA animals and suggest that the VPA model may capture regional volume changes consistent with human ASD.</p><p><strong>Introduction: </strong>Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits, cognitive dysfunction, and stereotyped repetitive behaviors. Regional volume changes are commonly observed in individuals with ASD. To examine volumetric dysregulation across adolescence, the valproic acid (VPA) model was used to induce ASD-like phenotypes in rats.</p><p><strong>Method: </strong>Regional volumes were obtained via magnetic resonance imaging at either postnatal day 28 or postnatal day 40 (P40), which correspond to early and late adolescence, respectively.</p><p><strong>Results: </strong>Consistent with prior research, VPA animals had reduced total brain volume compared to control animals. A novel outcome was that VPA animals had overgrown right hippocampi at P40. Differences in the pattern of development of the anterior cingulate cortex were also observed in VPA animals. Differences for the posterior cingulate were only observed in males, but not females.</p><p><strong>Conclusion: </strong>These results demonstrate differences in region-specific developmental trajectories between control and VPA animals and suggest that the VPA model may capture regional volume changes consistent with human ASD.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"68-80"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511791/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140858865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dysregulation of Brain Cholesterol Biosynthetic Pathway following Hypoxia Ischemia in Neonatal Mice. 新生小鼠缺氧缺血后脑胆固醇生物合成途径的失调。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-12-20 DOI: 10.1159/000543254
Fuxin Lu, Celeste Yen, Chase D Corley, Jeffrey G McDonald, Tiina Manninen, Nicholas R Stewart, Christina M Zhu, Donna M Ferriero, Xiangning Jiang

Introduction: Brain cholesterol relies on de novo biosynthesis and is crucial for brain development. Cholesterol synthesis is a complex series of reactions that involves more than twenty enzymes to reach the final product and generates a large number of intermediate sterols along two alternate pathways. This is a highly regulated and oxygen-dependent process and thus sensitive to hypoxia.

Methods: Using the modified Vannucci procedure, a clinically relevant animal model of neonatal hypoxia ischemia (HI), we characterized the profile of cholesterol and its sterol intermediates, along with the key enzymes on the cholesterol synthetic pathway over a time course of 5 days after HI in the postnatal day 10 mouse brain.

Results: Although the total cholesterol levels in the injured cortices appeared to be minimally attenuated at 5 days following HI, there was an overall repression of brain cholesterol biosynthesis. Lanosterol and the downstream sterols in both the Bloch and Kandutsch-Russell (K-R) pathways were consistently reduced for up to 3 days except for desmosterol, which was elevated. Correspondingly, protein expression of the controlling transcription factors sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1 was decreased at early time points (within 6 h), in parallel with the downregulation of several substrate enzymes for up to 5 days post-HI. HMG-CoA reductase (HMGCR), the first rate-limiting enzyme, was upregulated in the first 24 h after HI. The expression of 24-dehydrocholesterol reductase (DHCR24) that catalyzes the last step to produce cholesterol on the Bloch pathway and bridges the Bloch to K-R pathway was also augmented.

Conclusions: Our data suggest perturbed brain cholesterol biosynthesis following neonatal HI. As some sterol intermediates and enzymes have diverse functions in brain development and stress responses other than producing cholesterol, assessment of their dynamic changes after HI is important to understand the lipid responses in rodent HI models and to identify lipid-based targeted therapies in future studies.

脑胆固醇依赖于新生生物合成,对大脑发育至关重要。胆固醇的合成是一系列复杂的反应,涉及20多种酶来达到最终产物,并沿着两条可选的途径产生大量的中间甾醇。这是一个高度调控和依赖氧的过程,因此对缺氧很敏感。方法:采用改良的Vannucci程序,一种临床相关的新生儿缺氧缺血(HI)动物模型,我们在出生后第10天的小鼠大脑中对HI后5天的胆固醇及其甾醇中间体以及胆固醇合成途径上的关键酶进行了表征。结果:尽管在HI后5天,受损皮质的总胆固醇水平似乎有轻微的降低,但脑胆固醇生物合成总体上受到抑制。羊毛甾醇和Bloch和Kandutsch-Russell (K-R)通路中的下游甾醇在长达3天的时间内持续降低,但去氨甾醇升高。相应地,控制转录因子甾醇调节元件结合蛋白2 (SREBP-2)和SREBP-1的蛋白表达在早期时间点(6小时内)下降,与此同时,一些底物酶在hi后5天内下调。HMG-CoA还原酶(HMGCR)是第一个限速酶,在HI后的前24小时上调。24-脱氢胆固醇还原酶(DHCR24)的表达也增加,DHCR24在Bloch通路上催化最后一步产生胆固醇,并在Bloch和K-R通路之间建立桥梁。结论:我们的数据表明新生儿HI后脑胆固醇生物合成紊乱。由于一些甾醇中间体和酶除了产生胆固醇外,在大脑发育和应激反应中具有多种功能,因此评估它们在HI后的动态变化对于了解啮齿动物HI模型中的脂质反应以及在未来的研究中确定基于脂质的靶向治疗方法具有重要意义。
{"title":"Dysregulation of Brain Cholesterol Biosynthetic Pathway following Hypoxia Ischemia in Neonatal Mice.","authors":"Fuxin Lu, Celeste Yen, Chase D Corley, Jeffrey G McDonald, Tiina Manninen, Nicholas R Stewart, Christina M Zhu, Donna M Ferriero, Xiangning Jiang","doi":"10.1159/000543254","DOIUrl":"10.1159/000543254","url":null,"abstract":"<p><strong>Introduction: </strong>Brain cholesterol relies on de novo biosynthesis and is crucial for brain development. Cholesterol synthesis is a complex series of reactions that involves more than twenty enzymes to reach the final product and generates a large number of intermediate sterols along two alternate pathways. This is a highly regulated and oxygen-dependent process and thus sensitive to hypoxia.</p><p><strong>Methods: </strong>Using the modified Vannucci procedure, a clinically relevant animal model of neonatal hypoxia ischemia (HI), we characterized the profile of cholesterol and its sterol intermediates, along with the key enzymes on the cholesterol synthetic pathway over a time course of 5 days after HI in the postnatal day 10 mouse brain.</p><p><strong>Results: </strong>Although the total cholesterol levels in the injured cortices appeared to be minimally attenuated at 5 days following HI, there was an overall repression of brain cholesterol biosynthesis. Lanosterol and the downstream sterols in both the Bloch and Kandutsch-Russell (K-R) pathways were consistently reduced for up to 3 days except for desmosterol, which was elevated. Correspondingly, protein expression of the controlling transcription factors sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1 was decreased at early time points (within 6 h), in parallel with the downregulation of several substrate enzymes for up to 5 days post-HI. HMG-CoA reductase (HMGCR), the first rate-limiting enzyme, was upregulated in the first 24 h after HI. The expression of 24-dehydrocholesterol reductase (DHCR24) that catalyzes the last step to produce cholesterol on the Bloch pathway and bridges the Bloch to K-R pathway was also augmented.</p><p><strong>Conclusions: </strong>Our data suggest perturbed brain cholesterol biosynthesis following neonatal HI. As some sterol intermediates and enzymes have diverse functions in brain development and stress responses other than producing cholesterol, assessment of their dynamic changes after HI is important to understand the lipid responses in rodent HI models and to identify lipid-based targeted therapies in future studies.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-17"},"PeriodicalIF":2.3,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142878360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scutellariae radix Ameliorates Prenatal Stress-Induced Anxiety-Like and Depression-Like Behavior in the Offspring via Reversing HPA Axis Hyperfunction and Ameliorating Neurodevelopmental Dysfunction. 黄芩通过逆转HPA轴功能亢进和改善神经发育功能障碍,改善产前压力诱发的后代焦虑样和抑郁样行为
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-12-19 DOI: 10.1159/000543152
Lixia Li, Wenying Zhang, Congying Sun, Zhiqiang Chai, Kaiyue Wang, Qian Zhou, Xiaoying Wang

Introduction: This study aimed to explore the impact and mechanism of Scutellariae radix (SR), dried root of Scutellaria baicalensis Georgi of Labiatae, on prenatal stress (PS)-induced anxiety-like and depression-like behavior in the offspring in a mouse prenatal stress model.

Methods: The open field test (OFT), tail suspension test (TST), and forced swimming test (FST) were utilized to assess the behavior of the offspring. Histological changes were evaluated using HE staining and Nissl staining. ELISA was employed to detect the levels of related factors in the serum and fetal brains of offspring mice. Immunohistochemistry was used to determine the expressions of doublecortin and neurotrophic factors in the hippocampus, and RT-PCR reflected the expression of factors in the hippocampus and placenta of offspring mice. These various techniques collectively provided insight into the neurodevelopmental status by detecting indicators related to neurodevelopmental status. LC-MS/MS and molecular docking were used to clarify the chemical constituents and the pharmacodynamic components in S. radix.

Results: S. radix ameliorated prenatal stress-induced anxiety-like and depression-like behavior in the offspring. It also alleviated hippocampal neurogenesis impairment caused by prenatal stress and restored abnormal expression of hippocampal glutamate (Glu) and brain-derived neurotrophic factor in the offspring. Additionally, S. radix maintained normal 11β-HSD1 expression in the placenta of prenatal stress mice, ensuring a normal level of glucocorticoids (GCs) and glucocorticoid receptors (GRs) in the fetus. Furthermore, S. radix increased the mRNA expression of GR and 11β-HSD2 while decreasing the mRNA expression of 11β-HSD1, thereby normalizing levels of serum CRH, ACTH, and GC in the offspring. Finally, docking results indicated that baicalein, wogonin, wogonoside, and baicalin exhibited stronger binding ability with the target.

Conclusion: The results of our study indicate that S. radix may have the potential to alleviate prenatal stress-induced anxiety-like and depression-like behaviors in offspring, at least partially through protecting placental barrier function, reversing HPA axis hyperfunction, and ameliorating neurodevelopmental dysfunction.

摘要:本研究旨在探讨黄芩干根(Scutellaria baicalensis Georgi)对小鼠产前应激(PS)诱导的子代焦虑样和抑郁样行为的影响及其机制。方法:采用开阔场试验(OFT)、悬尾试验(TST)和强迫游泳试验(FST)对子代进行行为学评价。采用HE染色和尼氏染色评价组织学变化。采用ELISA法检测子代小鼠血清及胎脑中相关因子水平。免疫组化法检测海马双皮质素和神经营养因子的表达,RT-PCR反应子代小鼠海马和胎盘中因子的表达。这些不同的技术通过检测与神经发育状态相关的指标,共同提供了对神经发育状态的洞察。采用LC-MS/MS和分子对接等方法对黄芩的化学成分和药效学成分进行了研究。结果:黄芩能改善胎儿产前应激诱导的焦虑样和抑郁样行为。它还能减轻产前应激引起的海马神经发生损伤,恢复后代海马谷氨酸(Glu)和脑源性神经营养因子的异常表达。此外,黄芩还能维持产前应激小鼠胎盘中11β-HSD1的正常表达,从而保证胎儿体内糖皮质激素(GC)和糖皮质激素受体(GR)的正常水平。黄芩提高了GR和11β-HSD2 mRNA的表达,降低了11β-HSD1 mRNA的表达,从而使子代血清CRH、ACTH和GC水平正常化。最后,对接结果表明黄芩苷、枸杞苷、枸杞苷、黄芩苷与靶标的结合能力较强。结论:黄芩可能通过保护胎盘屏障功能、逆转HPA轴功能亢进、改善神经发育障碍等途径,缓解产前应激诱导的子代焦虑和抑郁样行为。
{"title":"Scutellariae radix Ameliorates Prenatal Stress-Induced Anxiety-Like and Depression-Like Behavior in the Offspring via Reversing HPA Axis Hyperfunction and Ameliorating Neurodevelopmental Dysfunction.","authors":"Lixia Li, Wenying Zhang, Congying Sun, Zhiqiang Chai, Kaiyue Wang, Qian Zhou, Xiaoying Wang","doi":"10.1159/000543152","DOIUrl":"10.1159/000543152","url":null,"abstract":"<p><strong>Introduction: </strong>This study aimed to explore the impact and mechanism of Scutellariae radix (SR), dried root of Scutellaria baicalensis Georgi of Labiatae, on prenatal stress (PS)-induced anxiety-like and depression-like behavior in the offspring in a mouse prenatal stress model.</p><p><strong>Methods: </strong>The open field test (OFT), tail suspension test (TST), and forced swimming test (FST) were utilized to assess the behavior of the offspring. Histological changes were evaluated using HE staining and Nissl staining. ELISA was employed to detect the levels of related factors in the serum and fetal brains of offspring mice. Immunohistochemistry was used to determine the expressions of doublecortin and neurotrophic factors in the hippocampus, and RT-PCR reflected the expression of factors in the hippocampus and placenta of offspring mice. These various techniques collectively provided insight into the neurodevelopmental status by detecting indicators related to neurodevelopmental status. LC-MS/MS and molecular docking were used to clarify the chemical constituents and the pharmacodynamic components in S. radix.</p><p><strong>Results: </strong>S. radix ameliorated prenatal stress-induced anxiety-like and depression-like behavior in the offspring. It also alleviated hippocampal neurogenesis impairment caused by prenatal stress and restored abnormal expression of hippocampal glutamate (Glu) and brain-derived neurotrophic factor in the offspring. Additionally, S. radix maintained normal 11β-HSD1 expression in the placenta of prenatal stress mice, ensuring a normal level of glucocorticoids (GCs) and glucocorticoid receptors (GRs) in the fetus. Furthermore, S. radix increased the mRNA expression of GR and 11β-HSD2 while decreasing the mRNA expression of 11β-HSD1, thereby normalizing levels of serum CRH, ACTH, and GC in the offspring. Finally, docking results indicated that baicalein, wogonin, wogonoside, and baicalin exhibited stronger binding ability with the target.</p><p><strong>Conclusion: </strong>The results of our study indicate that S. radix may have the potential to alleviate prenatal stress-induced anxiety-like and depression-like behaviors in offspring, at least partially through protecting placental barrier function, reversing HPA axis hyperfunction, and ameliorating neurodevelopmental dysfunction.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-19"},"PeriodicalIF":2.3,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ex vivo Magnetic Resonance Imaging of the Human Fetal Brain. 人类胎儿大脑的体外磁共振成像。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-10-28 DOI: 10.1159/000542276
Ruike Chen, Chen Tian, Keqing Zhu, Guoliang Ren, Aimin Bao, Yi Shen, Xiao Li, Yaoyao Zhang, Wenying Qiu, Chao Ma, Jing Zhang, Dan Wu

Background: The fetal brain undergoes a dynamic process of development during gestation, marked by well-orchestrated events such as neuronal proliferation, migration, axonal outgrowth, and dendritic arborization, mainly elucidated through histological studies. Ex vivo magnetic resonance imaging (MRI) has emerged as a useful tool for 3D visualization of the developing fetal brain, serving as a complementary tool to traditional histology.

Summary: In this review, we summarized the commonly employed ex vivo MRI techniques and their advances in fetal brain imaging, and proposed a standard protocol for postmortem fetal brain specimen collection and fixation. We then provided an overview of ex vivo MRI-based studies on the fetal brain.

Key messages: According to our review, ex vivo T1- or T2-weighted structural MRI has contributed to the characterization of the anatomy of transient neuronal proliferative zones, the basal ganglia, and the cortex. Diffusion MRI-related techniques, such as diffusion tensor imaging and tractography, have helped investigate the microstructural patterns of fetal brain tissue, as well as the early emergence and development of neuronal migration pathways and white matter bundles. Ex vivo MRI findings have shown strong histological correlations, supporting the potential of MRI in evaluating the developmental events in the fetal brain. Postmortem MRI examinations have also demonstrated comparable, and in certain cases, superior performance to traditional autopsy in revealing fetal brain abnormalities. In conclusion, ex vivo fetal brain MRI is an invaluable tool that provides unique insights into the early stages of brain development.

背景:胎儿大脑在妊娠期间经历了一个动态的发育过程,以神经元增殖、迁移、轴突生长和树突分枝等精心安排的事件为标志,主要通过组织学研究加以阐明。摘要:在这篇综述中,我们总结了胎儿脑成像中常用的体外磁共振成像技术及其进展,以及胎儿死后脑标本采集和固定的标准方案。然后,我们概述了基于体外磁共振成像的胎儿脑部研究:根据我们的综述,体外 T1 或 T2 加权结构磁共振成像有助于描述瞬时神经元增殖区、基底节和皮层的解剖特征。弥散磁共振成像相关技术,如弥散张量成像和束成像,有助于研究胎儿脑组织的微观结构模式,以及神经元迁移路径和白质束的早期出现和发育。体内核磁共振成像结果显示与组织学有很强的相关性,支持了核磁共振成像在评估胎儿大脑发育过程中的潜力。死后核磁共振成像检查在揭示胎儿脑部异常方面的表现与传统尸检相当,在某些情况下甚至优于传统尸检。总之,体外胎儿脑部核磁共振成像是一种宝贵的工具,能为早期脑部发育提供独特的见解。
{"title":"Ex vivo Magnetic Resonance Imaging of the Human Fetal Brain.","authors":"Ruike Chen, Chen Tian, Keqing Zhu, Guoliang Ren, Aimin Bao, Yi Shen, Xiao Li, Yaoyao Zhang, Wenying Qiu, Chao Ma, Jing Zhang, Dan Wu","doi":"10.1159/000542276","DOIUrl":"10.1159/000542276","url":null,"abstract":"<p><strong>Background: </strong>The fetal brain undergoes a dynamic process of development during gestation, marked by well-orchestrated events such as neuronal proliferation, migration, axonal outgrowth, and dendritic arborization, mainly elucidated through histological studies. Ex vivo magnetic resonance imaging (MRI) has emerged as a useful tool for 3D visualization of the developing fetal brain, serving as a complementary tool to traditional histology.</p><p><strong>Summary: </strong>In this review, we summarized the commonly employed ex vivo MRI techniques and their advances in fetal brain imaging, and proposed a standard protocol for postmortem fetal brain specimen collection and fixation. We then provided an overview of ex vivo MRI-based studies on the fetal brain.</p><p><strong>Key messages: </strong>According to our review, ex vivo T1- or T2-weighted structural MRI has contributed to the characterization of the anatomy of transient neuronal proliferative zones, the basal ganglia, and the cortex. Diffusion MRI-related techniques, such as diffusion tensor imaging and tractography, have helped investigate the microstructural patterns of fetal brain tissue, as well as the early emergence and development of neuronal migration pathways and white matter bundles. Ex vivo MRI findings have shown strong histological correlations, supporting the potential of MRI in evaluating the developmental events in the fetal brain. Postmortem MRI examinations have also demonstrated comparable, and in certain cases, superior performance to traditional autopsy in revealing fetal brain abnormalities. In conclusion, ex vivo fetal brain MRI is an invaluable tool that provides unique insights into the early stages of brain development.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-18"},"PeriodicalIF":2.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pubertal- and Stress-Dependent Changes in Cellular Activation and Expression of Excitatory Amino Acid Receptor Subunits in the Paraventricular Nucleus of the Hypothalamus in Male and Female Rats. 雌雄大鼠下丘脑室旁核兴奋性氨基酸受体亚基的细胞活化和表达与青春期和应激有关的变化
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-10-28 DOI: 10.1159/000542277
Catherine Parkin, Juliet Ortiz, Sofia Cruz, Kevin G Bath, Russell D Romeo

Introduction: Pubertal maturation is marked by significant changes in stress-induced hormonal responses mediated by the hypothalamic-pituitary-adrenal (HPA) axis, with prepubertal male and female rats often exhibiting greater HPA reactivity compared to adult males and females. Though the implications of these changes are unclear, elevated stress responsiveness might contribute to the stress-related vulnerabilities often associated with puberty.

Methods: The current experiments sought to determine whether differences in cellular activation, as measured by FOS immunohistochemistry, or excitatory ionotropic glutamate receptor subunit expression, as measured by qRT-PCR, in the paraventricular nucleus (PVN) were associated with these noted pubertal shifts in stress reactivity in male and female rats. As the PVN is the key nucleus responsible for activating the hormonal stress response, we predicted greater cellular activation and higher expression levels of glutamate receptor subunits in the PVN of prepubertal males and females compared to their adult counterparts.

Results: Our FOS data revealed that while prepubertal males showed greater stress-induced activation in the PVN than adult males, prepubertal females showed less activation than adult females. Moreover, many of the NMDA, AMPA, and kainate receptor subunits measured, including Grin1, Grin2b, Gria1, Gria2, Grik1, and Grik2, had higher expression levels in adults, particularly in males.

Conclusions: Though not supporting our initial predictions, these data do indicate that age and stress influence the activation of the PVN and the expression of glutamate receptor subunits important in its function. These data also suggest that the effects of age and stress are different in males and females. Though still far from a clear understanding of what mechanism(s) mediate pubertal shift in stress reactivity, these data add to our growing understanding of how age, stress, and sex influence HPA function.

简介青春期成熟的标志是由下丘脑-垂体-肾上腺(HPA)轴介导的应激诱导激素反应的显著变化,与成年雄性和雌性大鼠相比,青春期前的雄性和雌性大鼠往往表现出更高的HPA反应性。虽然这些变化的影响尚不清楚,但压力反应性的升高可能会导致与青春期相关的压力相关脆弱性:目前的实验试图确定室旁核(PVN)中细胞活化(通过 FOS 免疫组化法测量)或兴奋性离子型谷氨酸受体亚单位表达(通过 qRT-PCR 法测量)的差异是否与雌雄大鼠应激反应性的青春期变化有关。由于室旁核是激活荷尔蒙应激反应的关键核团,我们预测青春期前雄性和雌性大鼠室旁核的细胞激活程度和谷氨酸受体亚基的表达水平要高于成年大鼠:结果:我们的FOS数据显示,与成年男性相比,青春期前的男性在PVN中表现出更大的应激诱导激活,而青春期前的女性则表现出比成年女性更小的激活。此外,所测量的许多 NMDA、AMPA 和 kainate 受体亚基,包括 Grin1、Grin2b、Gria1、Gria2、Grik1 和 Grik2,在成人中的表达水平更高,尤其是在男性中:这些数据虽然不支持我们最初的预测,但确实表明年龄和压力会影响 PVN 的激活及其功能中重要的谷氨酸受体亚基的表达。这些数据还表明,年龄和压力对男性和女性的影响是不同的。尽管我们还不能清楚地了解是什么机制介导了青春期应激反应的转变,但这些数据加深了我们对年龄、应激和性别如何影响 HPA 功能的理解。
{"title":"Pubertal- and Stress-Dependent Changes in Cellular Activation and Expression of Excitatory Amino Acid Receptor Subunits in the Paraventricular Nucleus of the Hypothalamus in Male and Female Rats.","authors":"Catherine Parkin, Juliet Ortiz, Sofia Cruz, Kevin G Bath, Russell D Romeo","doi":"10.1159/000542277","DOIUrl":"10.1159/000542277","url":null,"abstract":"<p><strong>Introduction: </strong>Pubertal maturation is marked by significant changes in stress-induced hormonal responses mediated by the hypothalamic-pituitary-adrenal (HPA) axis, with prepubertal male and female rats often exhibiting greater HPA reactivity compared to adult males and females. Though the implications of these changes are unclear, elevated stress responsiveness might contribute to the stress-related vulnerabilities often associated with puberty.</p><p><strong>Methods: </strong>The current experiments sought to determine whether differences in cellular activation, as measured by FOS immunohistochemistry, or excitatory ionotropic glutamate receptor subunit expression, as measured by qRT-PCR, in the paraventricular nucleus (PVN) were associated with these noted pubertal shifts in stress reactivity in male and female rats. As the PVN is the key nucleus responsible for activating the hormonal stress response, we predicted greater cellular activation and higher expression levels of glutamate receptor subunits in the PVN of prepubertal males and females compared to their adult counterparts.</p><p><strong>Results: </strong>Our FOS data revealed that while prepubertal males showed greater stress-induced activation in the PVN than adult males, prepubertal females showed less activation than adult females. Moreover, many of the NMDA, AMPA, and kainate receptor subunits measured, including Grin1, Grin2b, Gria1, Gria2, Grik1, and Grik2, had higher expression levels in adults, particularly in males.</p><p><strong>Conclusions: </strong>Though not supporting our initial predictions, these data do indicate that age and stress influence the activation of the PVN and the expression of glutamate receptor subunits important in its function. These data also suggest that the effects of age and stress are different in males and females. Though still far from a clear understanding of what mechanism(s) mediate pubertal shift in stress reactivity, these data add to our growing understanding of how age, stress, and sex influence HPA function.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-11"},"PeriodicalIF":2.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Developmental Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1