首页 > 最新文献

Developmental Neuroscience最新文献

英文 中文
Pediatric Glioma Models Provide Insights into Tumor Development and Future Therapeutic Strategies. 小儿胶质瘤模型提供肿瘤发展和未来治疗策略的见解。
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-05-12 DOI: 10.1159/000531040
Amelia Foss, Manav Pathania

In depth study of pediatric gliomas has been hampered due to difficulties in accessing patient tissue and a lack of clinically representative tumor models. Over the last decade, however, profiling of carefully curated cohorts of pediatric tumors has identified genetic drivers that molecularly segregate pediatric gliomas from adult gliomas. This information has inspired the development of a new set of powerful in vitro and in vivo tumor models that can aid in identifying pediatric-specific oncogenic mechanisms and tumor microenvironment interactions. Single-cell analyses of both human tumors and these newly developed models have revealed that pediatric gliomas arise from spatiotemporally discrete neural progenitor populations in which developmental programs have become dysregulated. Pediatric high-grade gliomas also harbor distinct sets of co-segregating genetic and epigenetic alterations, often accompanied by unique features within the tumor microenvironment. The development of these novel tools and data resources has led to insights into the biology and heterogeneity of these tumors, including identification of distinctive sets of driver mutations, developmentally restricted cells of origin, recognizable patterns of tumor progression, characteristic immune environments, and tumor hijacking of normal microenvironmental and neural programs. As concerted efforts have broadened our understanding of these tumors, new therapeutic vulnerabilities have been identified, and for the first time, promising new strategies are being evaluated in the preclinical and clinical settings. Even so, dedicated and sustained collaborative efforts are necessary to refine our knowledge and bring these new strategies into general clinical use. In this review, we will discuss the range of currently available glioma models, the way in which they have each contributed to recent developments in the field, their benefits and drawbacks for addressing specific research questions, and their future utility in advancing biological understanding and treatment of pediatric glioma.

由于难以获得患者组织和缺乏具有临床代表性的肿瘤模型,对儿童胶质瘤的深入研究受到阻碍。然而,在过去的十年里,对精心策划的儿童肿瘤队列的分析已经确定了将儿童胶质瘤与成人胶质瘤分子分离的基因驱动因素。这些信息激发了一套新的强大的体外和体内肿瘤模型的开发,这些模型可以帮助确定儿科特异性致癌机制和肿瘤微环境的相互作用。对人类肿瘤和这些新开发的模型的单细胞分析表明,儿童胶质瘤源于时空离散的神经祖细胞群体,在这些群体中,发育程序变得失调。pHGGs还具有不同的共分离遗传和表观遗传学改变,通常伴随着肿瘤微环境中的独特特征。这些新工具和数据资源的开发使人们深入了解了这些肿瘤的生物学和异质性,包括识别不同的驱动突变集、发育受限的起源细胞、可识别的肿瘤进展模式、特征免疫环境以及正常微环境和神经程序的肿瘤劫持。随着共同努力扩大了我们对这些肿瘤的理解,新的治疗漏洞已经被发现,并且首次在临床前和临床环境中评估了有前景的新策略。即便如此,为了完善我们的知识并将这些新策略应用于临床,仍有必要进行专门和持续的合作。在这篇综述中,我们将讨论目前可用的神经胶质瘤模型的范围,它们各自对该领域最新发展的贡献方式,它们在解决特定研究问题方面的优缺点,以及它们在促进儿童神经胶质瘤的生物学理解和治疗方面的未来用途。
{"title":"Pediatric Glioma Models Provide Insights into Tumor Development and Future Therapeutic Strategies.","authors":"Amelia Foss, Manav Pathania","doi":"10.1159/000531040","DOIUrl":"10.1159/000531040","url":null,"abstract":"<p><p>In depth study of pediatric gliomas has been hampered due to difficulties in accessing patient tissue and a lack of clinically representative tumor models. Over the last decade, however, profiling of carefully curated cohorts of pediatric tumors has identified genetic drivers that molecularly segregate pediatric gliomas from adult gliomas. This information has inspired the development of a new set of powerful in vitro and in vivo tumor models that can aid in identifying pediatric-specific oncogenic mechanisms and tumor microenvironment interactions. Single-cell analyses of both human tumors and these newly developed models have revealed that pediatric gliomas arise from spatiotemporally discrete neural progenitor populations in which developmental programs have become dysregulated. Pediatric high-grade gliomas also harbor distinct sets of co-segregating genetic and epigenetic alterations, often accompanied by unique features within the tumor microenvironment. The development of these novel tools and data resources has led to insights into the biology and heterogeneity of these tumors, including identification of distinctive sets of driver mutations, developmentally restricted cells of origin, recognizable patterns of tumor progression, characteristic immune environments, and tumor hijacking of normal microenvironmental and neural programs. As concerted efforts have broadened our understanding of these tumors, new therapeutic vulnerabilities have been identified, and for the first time, promising new strategies are being evaluated in the preclinical and clinical settings. Even so, dedicated and sustained collaborative efforts are necessary to refine our knowledge and bring these new strategies into general clinical use. In this review, we will discuss the range of currently available glioma models, the way in which they have each contributed to recent developments in the field, their benefits and drawbacks for addressing specific research questions, and their future utility in advancing biological understanding and treatment of pediatric glioma.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"22-43"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9527225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SRSF3 Alleviates Ischemic Cerebral Infarction Damage by Activating the PI3K/AKT Pathway. SRSF3通过激活PI3K/Akt通路减轻缺血性脑梗死损伤。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-12-06 DOI: 10.1159/000535690
Liangliang Cui, Shuying Zhao, Hong Liu

Background: Ischemic cerebral infarction is one of cerebrovascular diseases with high incidence, disability rate, and mortality globally, and neuronal cell apoptosis is a crucial cause of brain injury during cerebral infarction.

Methods: A middle cerebral artery occlusion (MCAO) model was built in Sprague-Dawley rats to simulate ischemic cerebral infarction. An in vitro model of ischemic cerebral infarction was constructed in BV2 cells with the treatment of oxygen-glucose deprivation (OGD). The role and mechanism of serine/arginine-rich splicing factor 3 (SRSF3) in ischemic cerebral infarction were investigated both in animal and cell models.

Results: The expression of SRSF3 was downregulated in MCAO-treated rats. Overexpression of SRSF3 reduced the neurological scores, brain water content, and infarct volume in MCAO-induced rats. Increased apoptosis in neurons accompanied with the abnormal expressions of apoptosis-related proteins in MCAO-induced rats were revised with the upregulation of SRSF3. Also, a diminished cell viability and elevated apoptosis rate were indicated in OGD-induced BV2 cells, which were reversed with the overexpression of SRSF3. Besides, OGD induced an enhancement in the relative protein expression of programmed cell death protein 4 (PDCD4) and a reduction in the relative expression of p-PI3K/PI3K and p-AKT/AKT, which were inverted with the upregulation of SRSF3 in BV2 cells. Overexpression of PDCD4 abolished the role of SRSF3 in cell viability, apoptosis rate, and the level of the PI3K/AKT pathway in OGD-induced BV2 cells.

Conclusion: SRSF3 improved ischemic cerebral infarction via PDCD4 in vivo and in vitro, which was closely associated with the PI3K/AKT signaling pathway.

缺血性脑梗死是全球发病率、致残率和死亡率较高的脑血管疾病之一,而神经元细胞凋亡是脑梗死过程中脑损伤的重要原因。建立SD大鼠大脑中动脉闭塞(MCAO)模型,模拟缺血性脑梗死。采用氧糖剥夺(OGD)方法,建立脑v2细胞体外缺血性脑梗死模型。通过动物和细胞模型研究了富丝氨酸/精氨酸剪接因子3 (SRSF3)在缺血性脑梗死中的作用和机制。在mcao处理的大鼠中,SRSF3表达下调。SRSF3过表达降低了mcao诱导大鼠的神经学评分、脑含水量和梗死体积。mcao诱导大鼠细胞凋亡神经元增加,凋亡相关蛋白表达异常,这一现象随着SRSF3的上调而改变。此外,ogd诱导的BV2细胞活力降低,凋亡率升高,这与SRSF3的过表达相反。此外,OGD诱导程序性细胞死亡蛋白4 (PDCD4)的相对蛋白表达增强,p-PI3K/PI3K和p-AKT/AKT的相对蛋白表达降低,这与BV2细胞中SRSF3的上调相反。在ogd诱导的BV2细胞中,过表达PDCD4可消除SRSF3对细胞活力、凋亡率和PI3K/AKT通路水平的影响。SRSF3在体内外通过PDCD4改善缺血性脑梗死,与PI3K/AKT信号通路密切相关。
{"title":"SRSF3 Alleviates Ischemic Cerebral Infarction Damage by Activating the PI3K/AKT Pathway.","authors":"Liangliang Cui, Shuying Zhao, Hong Liu","doi":"10.1159/000535690","DOIUrl":"10.1159/000535690","url":null,"abstract":"<p><strong>Background: </strong>Ischemic cerebral infarction is one of cerebrovascular diseases with high incidence, disability rate, and mortality globally, and neuronal cell apoptosis is a crucial cause of brain injury during cerebral infarction.</p><p><strong>Methods: </strong>A middle cerebral artery occlusion (MCAO) model was built in Sprague-Dawley rats to simulate ischemic cerebral infarction. An in vitro model of ischemic cerebral infarction was constructed in BV2 cells with the treatment of oxygen-glucose deprivation (OGD). The role and mechanism of serine/arginine-rich splicing factor 3 (SRSF3) in ischemic cerebral infarction were investigated both in animal and cell models.</p><p><strong>Results: </strong>The expression of SRSF3 was downregulated in MCAO-treated rats. Overexpression of SRSF3 reduced the neurological scores, brain water content, and infarct volume in MCAO-induced rats. Increased apoptosis in neurons accompanied with the abnormal expressions of apoptosis-related proteins in MCAO-induced rats were revised with the upregulation of SRSF3. Also, a diminished cell viability and elevated apoptosis rate were indicated in OGD-induced BV2 cells, which were reversed with the overexpression of SRSF3. Besides, OGD induced an enhancement in the relative protein expression of programmed cell death protein 4 (PDCD4) and a reduction in the relative expression of p-PI3K/PI3K and p-AKT/AKT, which were inverted with the upregulation of SRSF3 in BV2 cells. Overexpression of PDCD4 abolished the role of SRSF3 in cell viability, apoptosis rate, and the level of the PI3K/AKT pathway in OGD-induced BV2 cells.</p><p><strong>Conclusion: </strong>SRSF3 improved ischemic cerebral infarction via PDCD4 in vivo and in vitro, which was closely associated with the PI3K/AKT signaling pathway.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"308-318"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457968/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138500005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Septotemporal Variation of Information Processing in the Hippocampus of Fmr1 KO Rat. Fmr1 KO大鼠海马信息处理的节时变异
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-02-16 DOI: 10.1159/000537879
Leonidas J Leontiadis, Panagiotis Felemegkas, George Trompoukis, Giota Tsotsokou, Athina Miliou, Evangelia Karagianni, Pavlos Rigas, Costas Papatheodoropoulos

Introduction: Fragile X messenger ribonucleoprotein (FMRP) is a protein involved in many neuronal processes in the nervous system including the modulation of synaptic transmission. The loss of FMRP produces the fragile X syndrome (FXS), a neurodevelopmental disorder affecting synaptic and neuronal function and producing cognitive impairments. However, the effects of FXS on short-term processing of synaptic inputs and neuronal outputs in the hippocampus have not yet been sufficiently clarified. Furthermore, it is not known whether dorsal and ventral hippocampi are affected similarly or not in FXS.

Method: We used an Fmr1 knockout (KO) rat model of FXS and recordings of evoked field potentials from the CA1 field of transverse slices from both the dorsal and the ventral hippocampi of adult rats.

Results: Following application of a frequency stimulation protocol consisting of a ten-pulse train and recordings of fEPSP, we found that the dorsal but not ventral KO hippocampus shows altered short-term synaptic plasticity. Furthermore, applying the frequency stimulation protocol and recordings of population spikes, both segments of the KO hippocampus display altered short-term neuronal dynamics.

Conclusions: These data suggest that short-term processing of synaptic inputs is affected in the dorsal, not ventral, FXS hippocampus, while short-term processing of neuronal output is affected in both segments of the FXS hippocampus in a similar way. These FXS-associated changes may have significant impact on the functions of the dorsal and ventral hippocampi in individuals with FXS.

导言脆性 X 信使核糖核蛋白(FMRP)是一种参与神经系统中许多神经元过程(包括突触传递调节)的蛋白质。脆性 X 综合征(FXS)是一种影响突触和神经元功能并导致认知障碍的神经发育疾病。然而,FXS 对海马突触输入和神经元输出的短期处理的影响尚未得到充分阐明。此外,FXS患者的海马背侧和腹侧是否受到类似的影响也不得而知。方法 我们使用了 Fmr1 基因敲除(KO)的 FXS 大鼠模型,并记录了成年大鼠海马背侧和腹侧横向切片 CA1 场的诱发电位。结果 在应用由十个脉冲串组成的频率刺激方案和记录 fEPSP 之后,我们发现 KO 海马背侧而非腹侧的短期突触可塑性发生了改变。此外,应用频率刺激方案和群体尖峰记录,KO 海马的两个区段都显示出短期神经元动态的改变。结论 这些数据表明,突触输入的短期处理在 FXS 海马的背侧而非腹侧受到影响,而神经元输出的短期处理在 FXS 海马的两个区段受到类似的影响。这些与 FXS 相关的变化可能会对 FXS 患者海马背侧和腹侧的功能产生重大影响。
{"title":"Septotemporal Variation of Information Processing in the Hippocampus of Fmr1 KO Rat.","authors":"Leonidas J Leontiadis, Panagiotis Felemegkas, George Trompoukis, Giota Tsotsokou, Athina Miliou, Evangelia Karagianni, Pavlos Rigas, Costas Papatheodoropoulos","doi":"10.1159/000537879","DOIUrl":"10.1159/000537879","url":null,"abstract":"<p><strong>Introduction: </strong>Fragile X messenger ribonucleoprotein (FMRP) is a protein involved in many neuronal processes in the nervous system including the modulation of synaptic transmission. The loss of FMRP produces the fragile X syndrome (FXS), a neurodevelopmental disorder affecting synaptic and neuronal function and producing cognitive impairments. However, the effects of FXS on short-term processing of synaptic inputs and neuronal outputs in the hippocampus have not yet been sufficiently clarified. Furthermore, it is not known whether dorsal and ventral hippocampi are affected similarly or not in FXS.</p><p><strong>Method: </strong>We used an Fmr1 knockout (KO) rat model of FXS and recordings of evoked field potentials from the CA1 field of transverse slices from both the dorsal and the ventral hippocampi of adult rats.</p><p><strong>Results: </strong>Following application of a frequency stimulation protocol consisting of a ten-pulse train and recordings of fEPSP, we found that the dorsal but not ventral KO hippocampus shows altered short-term synaptic plasticity. Furthermore, applying the frequency stimulation protocol and recordings of population spikes, both segments of the KO hippocampus display altered short-term neuronal dynamics.</p><p><strong>Conclusions: </strong>These data suggest that short-term processing of synaptic inputs is affected in the dorsal, not ventral, FXS hippocampus, while short-term processing of neuronal output is affected in both segments of the FXS hippocampus in a similar way. These FXS-associated changes may have significant impact on the functions of the dorsal and ventral hippocampi in individuals with FXS.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"353-364"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614420/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating Injury Severity in Neonatal Encephalopathy Using Automated Quantitative Electroencephalography Analysis: A Pilot Study. 利用自动定量脑电图分析评估新生儿脑病的损伤严重程度:试点研究。
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-07-19 DOI: 10.1159/000530299
Eva Catenaccio, Rachel J Smith, Raul Chavez-Valdez, Vera J Burton, Ernest Graham, Charlamaine Parkinson, Dhananjay Vaidya, Aylin Tekes, Frances J Northington, Allen D Everett, Carl E Stafstrom, Eva K Ritzl

Quantitative analysis of electroencephalography (qEEG) is a potential source of biomarkers for neonatal encephalopathy (NE). However, prior studies using qEEG in NE were limited in their generalizability due to individualized techniques for calculating qEEG features or labor-intensive pre-selection of EEG data. We piloted a fully automated method using commercially available software to calculate the suppression ratio (SR), absolute delta power, and relative delta, theta, alpha, and beta power from EEG of neonates undergoing 72 h of therapeutic hypothermia (TH) for NE between April 20, 2018, and November 4, 2019. We investigated the association of qEEG with degree of encephalopathy (modified Sarnat score), severity of neuroimaging abnormalities following TH (National Institutes of Child Health and Development Neonatal Research Network [NICHD-NRN] score), and presence of seizures. Thirty out of 38 patients met inclusion criteria. A more severe modified Sarnat score was associated with higher SR during all phases of TH, lower absolute delta power during all phases except rewarming, and lower relative delta power during the last 24 h of TH. In 21 patients with neuroimaging data, a worse NICHD-NRN score was associated with higher SR, lower absolute delta power, and higher relative beta power during all phases. QEEG features were not significantly associated with the presence of seizures after correction for multiple comparisons. Our results are consistent with those of prior studies using qEEG in NE and support automated qEEG analysis as an accessible, generalizable method for generating biomarkers of NE and response to TH. Additionally, we found evidence of an immature relative frequency composition in neonates with more severe brain injury, suggesting that automated qEEG analysis may have a use in the assessment of brain maturity.

脑电图(qEEG)定量分析是新生儿脑病(NE)生物标志物的潜在来源。然而,由于采用了个性化的 qEEG 特征计算技术或对脑电图数据进行了劳动密集型的预选,因此之前使用 qEEG 对 NE 进行的研究在推广性方面受到了限制。我们试用了一种全自动方法,使用市售软件计算 2018 年 4 月 20 日至 2019 年 11 月 4 日期间因 NE 而接受 72 小时治疗性低温(TH)的新生儿脑电图中的抑制比(SR)、绝对 delta 功率以及相对 delta、θ、α 和 beta 功率。我们研究了 qEEG 与脑病程度(改良 Sarnat 评分)、治疗性低温后神经影像异常的严重程度(美国国立儿童健康与发展研究所新生儿研究网络 [NICHD-NRN] 评分)和癫痫发作的相关性。38 名患者中有 30 名符合纳入标准。更严重的改良萨纳特评分与TH所有阶段的SR较高、除复温外所有阶段的绝对delta功率较低以及TH最后24小时的相对delta功率较低有关。在 21 名有神经影像学数据的患者中,NICHD-NRN 评分越低,SR 越高,绝对 delta 功率越低,所有阶段的相对 beta 功率越高。经多重比较校正后,QEEG 特征与癫痫发作无明显相关性。我们的研究结果与之前使用 qEEG 对 NE 进行研究的结果一致,并支持将自动 qEEG 分析作为生成 NE 和对 TH 反应的生物标志物的一种方便、可推广的方法。此外,我们还发现了脑损伤较严重的新生儿相对频率组成不成熟的证据,这表明自动 qEEG 分析可用于评估大脑成熟度。
{"title":"Evaluating Injury Severity in Neonatal Encephalopathy Using Automated Quantitative Electroencephalography Analysis: A Pilot Study.","authors":"Eva Catenaccio, Rachel J Smith, Raul Chavez-Valdez, Vera J Burton, Ernest Graham, Charlamaine Parkinson, Dhananjay Vaidya, Aylin Tekes, Frances J Northington, Allen D Everett, Carl E Stafstrom, Eva K Ritzl","doi":"10.1159/000530299","DOIUrl":"10.1159/000530299","url":null,"abstract":"<p><p>Quantitative analysis of electroencephalography (qEEG) is a potential source of biomarkers for neonatal encephalopathy (NE). However, prior studies using qEEG in NE were limited in their generalizability due to individualized techniques for calculating qEEG features or labor-intensive pre-selection of EEG data. We piloted a fully automated method using commercially available software to calculate the suppression ratio (SR), absolute delta power, and relative delta, theta, alpha, and beta power from EEG of neonates undergoing 72 h of therapeutic hypothermia (TH) for NE between April 20, 2018, and November 4, 2019. We investigated the association of qEEG with degree of encephalopathy (modified Sarnat score), severity of neuroimaging abnormalities following TH (National Institutes of Child Health and Development Neonatal Research Network [NICHD-NRN] score), and presence of seizures. Thirty out of 38 patients met inclusion criteria. A more severe modified Sarnat score was associated with higher SR during all phases of TH, lower absolute delta power during all phases except rewarming, and lower relative delta power during the last 24 h of TH. In 21 patients with neuroimaging data, a worse NICHD-NRN score was associated with higher SR, lower absolute delta power, and higher relative beta power during all phases. QEEG features were not significantly associated with the presence of seizures after correction for multiple comparisons. Our results are consistent with those of prior studies using qEEG in NE and support automated qEEG analysis as an accessible, generalizable method for generating biomarkers of NE and response to TH. Additionally, we found evidence of an immature relative frequency composition in neonates with more severe brain injury, suggesting that automated qEEG analysis may have a use in the assessment of brain maturity.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"136-144"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11181340/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9828245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ABCF1/CXCL12/CXCR4 Enhances Glioblastoma Cell Proliferation, Migration, and Invasion by Activating the PI3K/AKT Signal Pathway. ABCF1/CXCL12/CXCR4通过激活PI3K/AKT信号通路增强胶质母细胞瘤细胞的增殖、迁移和侵袭。
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-09-27 DOI: 10.1159/000533130
Xiaohong Yin, Keshun Xia, Song Peng, Bo Tan, Yaohui Huang, Mao Wang, Mingfang He

Glioblastoma (GBM) is the most prevalent and fatal form of brain tumor, which is associated with a poor prognosis. ATP-binding cassette subfamily F member 1 (ABCF1) is an E2 ubiquitin-conjugating enzyme, which is implicated in regulating immune responses and tumorigenesis. Aberrant E3 ubiquitylation has been evidenced in GBM. However, the role of ABCF1 in GBM needs to be further explored. The expression of ABCF1, CXC chemokine ligand 12 (CXCL12), and CXC chemokine receptor 4 (CXCR4) in GBM tissues was examined by the GEPIA tool, real-time PCR and Western blotting. HMC3, U251MG, and LN-229 cells were cultured and transfected with shRNA targeting ABCF1 and ABCF1 plasmids. The proliferative, migrative, and invasive ability of cells was detected. Western blotting was used to detect the levels of phosphorylated phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (AKT). We observed that GBM tissues had higher ABCF1, CXCL12, and CXCR4 expression levels. The expression levels of CXCL12 and CXCR4 were enhanced by ABCF1 overexpression, which were significantly reversed by silence of ABCF1 in GBM cells. Silencing ABCF1 or CXCR4 inhibition weakened the capacity of GBM cell growth, migration, and invasion, while ectopic ABCF1 expression or CXCL12 treatment enhanced the cellular function of GBM cells. Furthermore, p-PI3K and p-AKT protein levels were downregulated by ABCF1 knockdown or CXCR4 blockade, which were prompted by ABCF1 overexpression or CXCL12 supplement. The ABCF1-CXCL12-CXCR4 axis was identified as a key player in GBM cell survival and metastasis by activating the PI3K/AKT signaling pathway in GBM cells.

胶质母细胞瘤(GBM)是最常见和最致命的脑肿瘤,与预后不良有关。ATP结合盒亚家族F成员1(ABCF1)是一种E2泛素偶联酶,参与调节免疫反应和肿瘤发生。异常E3泛素化已在GBM中得到证实。然而,ABCF1在GBM中的作用还有待进一步探索。通过GEPIA工具、实时PCR和Western印迹检测ABCF1、CXC趋化因子配体12(CXCL12)和CXC趋化因子受体4(CXCR4)在GBM组织中的表达。培养HMC3、U251MG和LN-229细胞,并用靶向ABCF1和ABCF1质粒的shRNA转染。检测细胞的增殖、迁移和侵袭能力。采用蛋白质印迹法检测磷酸化磷脂酰肌醇3-激酶(PI3K)和磷酸化蛋白激酶B(AKT)的水平。我们观察到GBM组织具有较高的ABCF1、CXCL12和CXCR4表达水平。ABCF1过表达增强了CXCL12和CXCR4的表达水平,而ABCF1在GBM细胞中的沉默显著逆转了这一表达水平。沉默ABCF1或CXCR4抑制减弱了GBM细胞的生长、迁移和侵袭能力,而异位ABCF1表达或CXCL12处理增强了GBM的细胞功能。此外,p-PI3K和p-AKT蛋白水平被ABCF1敲低或CXCR4阻断下调,这是由ABCF1过表达或CXCL12补充引起的。ABCF1-CXCL12-CXCR4轴通过激活GBM细胞中的PI3K/AKT信号通路而被确定为GBM细胞存活和转移的关键参与者。
{"title":"ABCF1/CXCL12/CXCR4 Enhances Glioblastoma Cell Proliferation, Migration, and Invasion by Activating the PI3K/AKT Signal Pathway.","authors":"Xiaohong Yin, Keshun Xia, Song Peng, Bo Tan, Yaohui Huang, Mao Wang, Mingfang He","doi":"10.1159/000533130","DOIUrl":"10.1159/000533130","url":null,"abstract":"<p><p>Glioblastoma (GBM) is the most prevalent and fatal form of brain tumor, which is associated with a poor prognosis. ATP-binding cassette subfamily F member 1 (ABCF1) is an E2 ubiquitin-conjugating enzyme, which is implicated in regulating immune responses and tumorigenesis. Aberrant E3 ubiquitylation has been evidenced in GBM. However, the role of ABCF1 in GBM needs to be further explored. The expression of ABCF1, CXC chemokine ligand 12 (CXCL12), and CXC chemokine receptor 4 (CXCR4) in GBM tissues was examined by the GEPIA tool, real-time PCR and Western blotting. HMC3, U251MG, and LN-229 cells were cultured and transfected with shRNA targeting ABCF1 and ABCF1 plasmids. The proliferative, migrative, and invasive ability of cells was detected. Western blotting was used to detect the levels of phosphorylated phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (AKT). We observed that GBM tissues had higher ABCF1, CXCL12, and CXCR4 expression levels. The expression levels of CXCL12 and CXCR4 were enhanced by ABCF1 overexpression, which were significantly reversed by silence of ABCF1 in GBM cells. Silencing ABCF1 or CXCR4 inhibition weakened the capacity of GBM cell growth, migration, and invasion, while ectopic ABCF1 expression or CXCL12 treatment enhanced the cellular function of GBM cells. Furthermore, p-PI3K and p-AKT protein levels were downregulated by ABCF1 knockdown or CXCR4 blockade, which were prompted by ABCF1 overexpression or CXCL12 supplement. The ABCF1-CXCL12-CXCR4 axis was identified as a key player in GBM cell survival and metastasis by activating the PI3K/AKT signaling pathway in GBM cells.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"210-220"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41150863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic Hypothermia Is Limited in Preventing Developmental Impairments after Neonatal Hypoxia-Ischemia. 治疗性低温在预防新生儿缺氧缺血后的发育障碍方面是有限的。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-10-31 DOI: 10.1159/000534919
Ricardo Ribeiro Nunes, Isadora D'Ávila Tassinari, Janaína Zang, Mirella Kielek Galvan Andrade, Anna Clara Machado Colucci, Mariana Leivas Müller Hoff, Maikel Rosa de Oliveira, Ana Helena Paz, Luciano Stürmer de Fraga

The only current treatment for neonatal hypoxia-ischemia (HI) is therapeutic hypothermia (TH), which still shows some limitations. Specific effects of TH in the several processes involved in brain injury progression remain unclear. In this study, the effects of TH treatment on developmental parameters, behavioral outcomes, and peripheral leukocytes were evaluated in neonatal male and female rats. In P7, animals were submitted to right common carotid artery occlusion followed by hypoxia (8% oxygen). TH was performed by reducing the animal scalp temperature to 32°C for 5 h. Behavioral parameters and developmental landmarks were evaluated. Animals were euthanized at P9 or P21, and cerebral hemispheres, spleen, and thymus were weighed. White blood cells (WBCs) were counted in blood smears. There was a reduction in the weight of the brain hemisphere ipsilateral to the carotid occlusion in HI and TH groups, as well as a reduction in body weight gain and a delay in the opening of the ipsilateral eye. Latency in negative geotaxis was increased by HI at P12. TH did not prevent brain weight loss, developmental impairments, or WBC number changes but prevented negative geotaxis impairment and spleen weight reduction. These data reinforce that a better understanding of the events that occur after HI and TH in both males and females is necessary and would allow the development of more adequate and sex-specific therapeutic approaches.

目前唯一治疗新生儿缺氧缺血(HI)的方法是治疗性低温(TH),但仍有一些局限性。TH在脑损伤进展的几个过程中的具体作用尚不清楚。在本研究中,评估了TH治疗对新生雄性和雌性大鼠发育参数、行为结果和外周白细胞的影响。在P7,动物接受右颈总动脉闭塞,然后缺氧(8%氧气)。通过将动物头皮温度降至32°C持续5小时进行TH。评估行为参数和发育标志。在P9或P21对动物实施安乐死,并称重大脑半球、脾脏和胸腺。在血液涂片中计数白细胞(WBC)。HI组和TH组颈动脉闭塞同侧大脑半球的重量减轻,体重增加减少,同侧眼睁开延迟。在P12时HI增加了负地轴的潜伏期。TH不能防止大脑重量减轻、发育障碍或WBC数变化,但可以防止负性地轴损伤和脾脏重量减轻。这些数据加强了对男性和女性HI和TH后发生的事件的更好理解是必要的,并将有助于开发更充分和针对性别的治疗方法。
{"title":"Therapeutic Hypothermia Is Limited in Preventing Developmental Impairments after Neonatal Hypoxia-Ischemia.","authors":"Ricardo Ribeiro Nunes, Isadora D'Ávila Tassinari, Janaína Zang, Mirella Kielek Galvan Andrade, Anna Clara Machado Colucci, Mariana Leivas Müller Hoff, Maikel Rosa de Oliveira, Ana Helena Paz, Luciano Stürmer de Fraga","doi":"10.1159/000534919","DOIUrl":"10.1159/000534919","url":null,"abstract":"<p><p>The only current treatment for neonatal hypoxia-ischemia (HI) is therapeutic hypothermia (TH), which still shows some limitations. Specific effects of TH in the several processes involved in brain injury progression remain unclear. In this study, the effects of TH treatment on developmental parameters, behavioral outcomes, and peripheral leukocytes were evaluated in neonatal male and female rats. In P7, animals were submitted to right common carotid artery occlusion followed by hypoxia (8% oxygen). TH was performed by reducing the animal scalp temperature to 32°C for 5 h. Behavioral parameters and developmental landmarks were evaluated. Animals were euthanized at P9 or P21, and cerebral hemispheres, spleen, and thymus were weighed. White blood cells (WBCs) were counted in blood smears. There was a reduction in the weight of the brain hemisphere ipsilateral to the carotid occlusion in HI and TH groups, as well as a reduction in body weight gain and a delay in the opening of the ipsilateral eye. Latency in negative geotaxis was increased by HI at P12. TH did not prevent brain weight loss, developmental impairments, or WBC number changes but prevented negative geotaxis impairment and spleen weight reduction. These data reinforce that a better understanding of the events that occur after HI and TH in both males and females is necessary and would allow the development of more adequate and sex-specific therapeutic approaches.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"273-284"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71428704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Out of Line or Altered States? Neural Progenitors as a Target in a Polygenic Neurodevelopmental Disorder. 脱节还是状态改变?作为多基因神经发育障碍目标的神经祖细胞。
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-05-10 DOI: 10.1159/000530898
Shah Rukh, Daniel W Meechan, Thomas M Maynard, Anthony-Samuel Lamantia

The genesis of a mature complement of neurons is thought to require, at least in part, precursor cell lineages in which neural progenitors have distinct identities recognized by exclusive expression of one or a few molecular markers. Nevertheless, limited progenitor types distinguished by specific markers and lineal progression through such subclasses cannot easily yield the magnitude of neuronal diversity in most regions of the nervous system. The late Verne Caviness, to whom this edition of Developmental Neuroscience is dedicated, recognized this mismatch. In his pioneering work on the histogenesis of the cerebral cortex, he acknowledged the additional flexibility required to generate multiple classes of cortical projection and interneurons. This flexibility may be accomplished by establishing cell states in which levels rather than binary expression or repression of individual genes vary across each progenitor's shared transcriptome. Such states may reflect local, stochastic signaling via soluble factors or coincidence of cell surface ligand/receptor pairs in subsets of neighboring progenitors. This probabilistic, rather than determined, signaling could modify transcription levels via multiple pathways within an apparently uniform population of progenitors. Progenitor states, therefore, rather than lineal relationships between types may underlie the generation of neuronal diversity in most regions of the nervous system. Moreover, mechanisms that influence variation required for flexible progenitor states may be targets for pathological changes in a broad range of neurodevelopmental disorders, especially those with polygenic origins.

人们认为,神经元成熟补体的形成至少部分需要前体细胞系,其中神经祖细胞具有不同的特征,可通过一种或几种分子标记物的独家表达来识别。然而,由特定标记物区分的有限祖细胞类型,以及通过这些亚类进行的品系进展,并不能轻易产生神经系统大多数区域的神经元多样性。已故的维恩-卡维尼(Verne Caviness)认识到了这一不匹配现象,本版《发育神经科学》正是为纪念他而出版的。在他关于大脑皮层组织发生的开创性工作中,他承认了产生多类皮层投射和中间神经元所需的额外灵活性。这种灵活性可以通过建立细胞状态来实现,在这种状态下,各个基因的水平而不是二元表达或抑制在每个祖细胞的共享转录组中各不相同。这种状态可能反映了通过可溶性因子或相邻祖细胞子集的细胞表面配体/受体对的巧合而产生的局部随机信号。这种概率而非确定的信号传递可能会通过多种途径改变表面上一致的祖细胞群体的转录水平。因此,在神经系统的大多数区域,神经元多样性的产生可能是祖细胞状态而非类型之间的线性关系所决定的。此外,影响灵活祖细胞状态所需的变异的机制可能是多种神经发育疾病(尤其是多基因疾病)病理变化的目标。
{"title":"Out of Line or Altered States? Neural Progenitors as a Target in a Polygenic Neurodevelopmental Disorder.","authors":"Shah Rukh, Daniel W Meechan, Thomas M Maynard, Anthony-Samuel Lamantia","doi":"10.1159/000530898","DOIUrl":"10.1159/000530898","url":null,"abstract":"<p><p>The genesis of a mature complement of neurons is thought to require, at least in part, precursor cell lineages in which neural progenitors have distinct identities recognized by exclusive expression of one or a few molecular markers. Nevertheless, limited progenitor types distinguished by specific markers and lineal progression through such subclasses cannot easily yield the magnitude of neuronal diversity in most regions of the nervous system. The late Verne Caviness, to whom this edition of Developmental Neuroscience is dedicated, recognized this mismatch. In his pioneering work on the histogenesis of the cerebral cortex, he acknowledged the additional flexibility required to generate multiple classes of cortical projection and interneurons. This flexibility may be accomplished by establishing cell states in which levels rather than binary expression or repression of individual genes vary across each progenitor's shared transcriptome. Such states may reflect local, stochastic signaling via soluble factors or coincidence of cell surface ligand/receptor pairs in subsets of neighboring progenitors. This probabilistic, rather than determined, signaling could modify transcription levels via multiple pathways within an apparently uniform population of progenitors. Progenitor states, therefore, rather than lineal relationships between types may underlie the generation of neuronal diversity in most regions of the nervous system. Moreover, mechanisms that influence variation required for flexible progenitor states may be targets for pathological changes in a broad range of neurodevelopmental disorders, especially those with polygenic origins.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-21"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9876672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypothermia Treatment after Hypoxia-Ischemia in Glutathione Peroxidase-1 Overexpressing Mice. 谷胱甘肽过氧化物酶-1过表达小鼠缺氧缺血后的低温治疗。
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-05-24 DOI: 10.1159/000531204
R Ann Sheldon, Christine Windsor, Fuxin Lu, Nicholas R Stewart, Xiangning Jiang, Donna M Ferriero

The developing brain is uniquely susceptible to oxidative stress, and endogenous antioxidant mechanisms are not sufficient to prevent injury from a hypoxic-ischemic challenge. Glutathione peroxidase (GPX1) activity reduces hypoxic-ischemic injury. Therapeutic hypothermia (HT) also reduces hypoxic-ischemic injury, in the rodent and the human brain, but the benefit is limited. Here, we combined GPX1 overexpression with HT in a P9 mouse model of hypoxia-ischemia (HI) to test the effectiveness of both treatments together. Histological analysis showed that wild-type (WT) mice with HT were less injured than WT with normothermia. In the GPX1-tg mice, however, despite a lower median score in the HT-treated mice, there was no significant difference between HT and normothermia. GPX1 protein expression was higher in the cortex of all transgenic groups at 30 min and 24 h, as well as in WT 30 min after HI, with and without HT. GPX1 was higher in the hippocampus of all transgenic groups and WT with HI and normothermia, at 24 h, but not at 30 min. Spectrin 150 was higher in all groups with HI, while spectrin 120 was higher in HI groups only at 24 h. There was reduced ERK1/2 activation in both WT and GPX1-tg HI at 30 min. Thus, with a relatively moderate insult, we see a benefit with cooling in the WT but not the GPX1-tg mouse brain. The fact that we see no benefit with increased GPx1 here in the P9 model (unlike in the P7 model) may indicate that oxidative stress in these older mice is elevated to an extent that increased GPx1 is insufficient for reducing injury. The lack of benefit of overexpressing GPX1 in conjunction with HT after HI indicates that pathways triggered by GPX1 overexpression may interfere with the neuroprotective mechanisms provided by HT.

发育中的大脑对氧化应激非常敏感,内源性抗氧化机制不足以防止缺氧缺血性损伤。谷胱甘肽过氧化物酶(GPX1)活性降低缺氧缺血性损伤。治疗性低温也能减少啮齿动物和人类大脑的缺氧缺血性损伤,但效果有限。在这里,我们将GPX1过表达与低温结合在缺氧缺血(HI)的P9小鼠模型中,以测试两种治疗方法的有效性。组织学分析显示,低温组小鼠损伤程度小于常温组小鼠。然而,在GPX1-tg小鼠中,尽管低温处理小鼠的中位数得分较低,但低温和常温之间没有显着差异。无论有无低温,所有转基因组在HI后30 min和24 h以及WT后30 min的皮质GPX1蛋白表达均较高。GPX1在所有转基因组和患有HI和正常体温的WT的海马中在24小时较高,而在30分钟时则没有。Spectrin 150在所有HI组中较高,而Spectrin 120仅在24小时时在HI组中较高。在30分钟时,WT和GPX1-tg HI中的ERK1/2激活均减少。因此,在相对适度的损伤下,我们看到WT冷却的好处,而GPX1-tg小鼠大脑中没有。事实上,我们在P9模型中没有看到GPx1增加的好处(与P7模型不同),这可能表明这些老年小鼠的氧化应激升高到一定程度,增加的GPx1不足以减少损伤。GPX1过表达与HI后体温过低缺乏益处,这表明GPX1过表达引发的通路可能干扰HT提供的神经保护机制。
{"title":"Hypothermia Treatment after Hypoxia-Ischemia in Glutathione Peroxidase-1 Overexpressing Mice.","authors":"R Ann Sheldon, Christine Windsor, Fuxin Lu, Nicholas R Stewart, Xiangning Jiang, Donna M Ferriero","doi":"10.1159/000531204","DOIUrl":"10.1159/000531204","url":null,"abstract":"<p><p>The developing brain is uniquely susceptible to oxidative stress, and endogenous antioxidant mechanisms are not sufficient to prevent injury from a hypoxic-ischemic challenge. Glutathione peroxidase (GPX1) activity reduces hypoxic-ischemic injury. Therapeutic hypothermia (HT) also reduces hypoxic-ischemic injury, in the rodent and the human brain, but the benefit is limited. Here, we combined GPX1 overexpression with HT in a P9 mouse model of hypoxia-ischemia (HI) to test the effectiveness of both treatments together. Histological analysis showed that wild-type (WT) mice with HT were less injured than WT with normothermia. In the GPX1-tg mice, however, despite a lower median score in the HT-treated mice, there was no significant difference between HT and normothermia. GPX1 protein expression was higher in the cortex of all transgenic groups at 30 min and 24 h, as well as in WT 30 min after HI, with and without HT. GPX1 was higher in the hippocampus of all transgenic groups and WT with HI and normothermia, at 24 h, but not at 30 min. Spectrin 150 was higher in all groups with HI, while spectrin 120 was higher in HI groups only at 24 h. There was reduced ERK1/2 activation in both WT and GPX1-tg HI at 30 min. Thus, with a relatively moderate insult, we see a benefit with cooling in the WT but not the GPX1-tg mouse brain. The fact that we see no benefit with increased GPx1 here in the P9 model (unlike in the P7 model) may indicate that oxidative stress in these older mice is elevated to an extent that increased GPx1 is insufficient for reducing injury. The lack of benefit of overexpressing GPX1 in conjunction with HT after HI indicates that pathways triggered by GPX1 overexpression may interfere with the neuroprotective mechanisms provided by HT.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"98-111"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667569/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10156194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Early Motor Ability to Global Cognitive Development 7 Years after Neonatal Arterial Ischemic Stroke. 新生儿动脉缺血性中风 7 年后,从早期运动能力到整体认知能力的发展。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-08-30 DOI: 10.1159/000533816
Antoine Giraud, Pauline Garel, Brian H Walsh, Stéphane Chabrier

The developmental condition of children after neonatal arterial ischemic stroke (NAIS) is characterized by cognitive and motor impairments. We hypothesized that independent walking age would be a predictor of later global cognitive functioning in this population. Sixty-one children with an available independent walking age and full-scale intelligence quotient (IQ) score 7 years after NAIS were included in this study. Full-scale IQ was assessed using the fourth edition of the Wechsler Intelligence Scale for Children (WISC-IV). Independent walking age was negatively correlated with full-scale IQ score at 7 years of age (Pearson correlation coefficient of -0.27; 95% confidence interval from -0.48 to -0.01; p < 0.05). Early motor function is correlated with later global cognitive functioning in children after NAIS. Assessing and promoting early motor ability is essential in this population.

新生儿动脉缺血性中风(NAIS)后儿童的发育状况以认知和运动障碍为特征。我们假设独立行走年龄可预测该人群日后的整体认知功能。本研究共纳入了 61 名有独立行走年龄和 NAIS 7 年后全面智商 (IQ) 得分的儿童。全面智商采用第四版韦氏儿童智力量表(WISC-IV)进行评估。独立行走年龄与 7 岁时的全面智商得分呈负相关(皮尔逊相关系数为-0.27;95% 置信区间为-0.48 至-0.01;p <0.05)。非智力障碍儿童的早期运动功能与日后的整体认知功能相关。评估和促进早期运动能力对这一人群至关重要。
{"title":"From Early Motor Ability to Global Cognitive Development 7 Years after Neonatal Arterial Ischemic Stroke.","authors":"Antoine Giraud, Pauline Garel, Brian H Walsh, Stéphane Chabrier","doi":"10.1159/000533816","DOIUrl":"10.1159/000533816","url":null,"abstract":"<p><p>The developmental condition of children after neonatal arterial ischemic stroke (NAIS) is characterized by cognitive and motor impairments. We hypothesized that independent walking age would be a predictor of later global cognitive functioning in this population. Sixty-one children with an available independent walking age and full-scale intelligence quotient (IQ) score 7 years after NAIS were included in this study. Full-scale IQ was assessed using the fourth edition of the Wechsler Intelligence Scale for Children (WISC-IV). Independent walking age was negatively correlated with full-scale IQ score at 7 years of age (Pearson correlation coefficient of -0.27; 95% confidence interval from -0.48 to -0.01; p &lt; 0.05). Early motor function is correlated with later global cognitive functioning in children after NAIS. Assessing and promoting early motor ability is essential in this population.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"149-152"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10476395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prelims 预赛
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2023-12-01 DOI: 10.1159/000535086
Dr. Amy Malik
{"title":"Prelims","authors":"Dr. Amy Malik","doi":"10.1159/000535086","DOIUrl":"https://doi.org/10.1159/000535086","url":null,"abstract":"","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"81 4","pages":"309 - 312"},"PeriodicalIF":2.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138986363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Developmental Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1