首页 > 最新文献

Developmental Neuroscience最新文献

英文 中文
Effects of Light Exposure duration on Severity and Long-Term Neurodevelopment following Photothrombotic Stroke in a Neonate. 光照时间对新生儿光血栓性中风严重程度和长期神经发育的影响。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-03-04 DOI: 10.1159/000544994
Arya Jithoo, Tayla R Penny, Shu Wen Wen, Althea R Suthya, Yen Pham, Amy E Sutherland, Connie H Y Wong, Suzanne L Miller, Courtney A McDonald

Introduction: Perinatal stroke causes lasting neurological deficits and there are currently no effective treatment options. Established animal models of perinatal stroke do not always mimic the clinical presentation of neonatal injury or are technically challenging to perform. The photothrombotic (PT) stroke model is a minimally invasive method that replicates focal ischaemic injury. Few studies have applied the PT model in neonatal contexts, and none have examined both short- and long-term effects across varying injury severities. This study aimed to optimize a protocol to create a mild model of perinatal stroke and subsequently characterize injury progression, neuropathological impact, and motor deficits over time.

Methods: On postnatal day 10 we used the PT method to induce perinatal stroke in rat pups. Pups were exposed to various light exposure times (10, 20, or 30 min) to determine the optimal time needed to produce a mild and reproducible cortical stroke injury. Behavioural assessments were conducted on days 4, 10, 20, and 30 post-injury. Brains were collected for analysis on days 3 and 40 post-injury.

Results: Three days post-injury, the 20 and 30 min group had significant focal lesions and microbleeds were present in each of the PT groups. All PT groups showed significant neuron loss in the peri-infarct region and the thalamus, and microglia activation in multiple brain regions. As 30 min of light exposure showed extensive cortical tissue loss (>70%), we excluded the 30-min group from long-term assessment. 40 days post-injury, the 10 and 20 min groups demonstrated significant tissue loss and neuronal loss in the peri-infarct region and thalamus, but only the 20 min group showed neuron loss in the hippocampus. The 10 and 20 min groups both demonstrated ongoing motor deficits.

Conclusion: Our results demonstrate that increasing light exposure time in PT stroke results in a more severe stroke phenotype. 30 min of light exposure resulted in a severe injury at only 3 days post insult, therefore, was not further investigated. 10 and 20 min of light exposure had a similar effect at 3 days, however, after 40 days the 20 min exposure time created a moderate injury phenotype. From this study, we propose that 10 min of light exposure is optimal to create a mild stroke phenotype and is associated with motor deficits and altered neuropathology. This injury phenotype provides a focal and reproducible insult, while still being mild enough to feasibly test therapeutics.

围产期中风引起持久的神经功能缺损,目前没有有效的治疗方案。已建立的围产期中风动物模型并不总是模仿新生儿损伤的临床表现,或者在技术上具有挑战性。光血栓(PT)中风模型是一种微创方法,复制局灶性缺血性损伤。很少有研究将PT模型应用于新生儿环境,也没有研究过不同损伤严重程度的短期和长期影响。本研究旨在优化一种方案,创建一个轻度围产期中风模型,并随后描述损伤进展、神经病理影响和运动缺陷随时间的变化。方法在产后10天采用PT法诱导大鼠幼鼠围产期卒中。幼鼠暴露于不同的光照时间(10,20或30分钟),以确定产生轻度和可重复的皮质卒中损伤所需的最佳时间。在损伤后第4、10、20和30天进行行为评估。在损伤后第3天和第40天采集脑组织进行分析。结果损伤后3 d, 20和30分钟组均出现明显局灶性病变,且PT组均出现微出血。所有PT组均表现出半暗带和丘脑明显的神经元丢失,以及多个脑区小胶质细胞激活。由于光照30分钟显示大面积皮质组织损失(bbb70 %),我们将光照30分钟组排除在长期评估之外。损伤后40天,10分钟组和20分钟组在半暗带和丘脑中表现出明显的组织和神经元损失,但只有20分钟组在海马中表现出神经元损失。10分钟组和20分钟组都表现出持续的运动缺陷。结论PT卒中患者光照时间的增加会导致更严重的卒中表型。30分钟的光照仅在侮辱后3天就造成了严重的损伤,因此没有进一步的研究。10分钟和20分钟的光照在第3天有类似的效果,但在40天后,20分钟的光照时间产生了中度损伤表型。从这项研究中,我们提出10分钟的光照是产生轻度中风表型的最佳选择,并与运动缺陷和神经病理学改变有关。这种损伤表型提供了局灶性和可重复性损伤,同时仍然足够轻微,可以测试治疗方法。
{"title":"Effects of Light Exposure duration on Severity and Long-Term Neurodevelopment following Photothrombotic Stroke in a Neonate.","authors":"Arya Jithoo, Tayla R Penny, Shu Wen Wen, Althea R Suthya, Yen Pham, Amy E Sutherland, Connie H Y Wong, Suzanne L Miller, Courtney A McDonald","doi":"10.1159/000544994","DOIUrl":"10.1159/000544994","url":null,"abstract":"<p><strong>Introduction: </strong>Perinatal stroke causes lasting neurological deficits and there are currently no effective treatment options. Established animal models of perinatal stroke do not always mimic the clinical presentation of neonatal injury or are technically challenging to perform. The photothrombotic (PT) stroke model is a minimally invasive method that replicates focal ischaemic injury. Few studies have applied the PT model in neonatal contexts, and none have examined both short- and long-term effects across varying injury severities. This study aimed to optimize a protocol to create a mild model of perinatal stroke and subsequently characterize injury progression, neuropathological impact, and motor deficits over time.</p><p><strong>Methods: </strong>On postnatal day 10 we used the PT method to induce perinatal stroke in rat pups. Pups were exposed to various light exposure times (10, 20, or 30 min) to determine the optimal time needed to produce a mild and reproducible cortical stroke injury. Behavioural assessments were conducted on days 4, 10, 20, and 30 post-injury. Brains were collected for analysis on days 3 and 40 post-injury.</p><p><strong>Results: </strong>Three days post-injury, the 20 and 30 min group had significant focal lesions and microbleeds were present in each of the PT groups. All PT groups showed significant neuron loss in the peri-infarct region and the thalamus, and microglia activation in multiple brain regions. As 30 min of light exposure showed extensive cortical tissue loss (>70%), we excluded the 30-min group from long-term assessment. 40 days post-injury, the 10 and 20 min groups demonstrated significant tissue loss and neuronal loss in the peri-infarct region and thalamus, but only the 20 min group showed neuron loss in the hippocampus. The 10 and 20 min groups both demonstrated ongoing motor deficits.</p><p><strong>Conclusion: </strong>Our results demonstrate that increasing light exposure time in PT stroke results in a more severe stroke phenotype. 30 min of light exposure resulted in a severe injury at only 3 days post insult, therefore, was not further investigated. 10 and 20 min of light exposure had a similar effect at 3 days, however, after 40 days the 20 min exposure time created a moderate injury phenotype. From this study, we propose that 10 min of light exposure is optimal to create a mild stroke phenotype and is associated with motor deficits and altered neuropathology. This injury phenotype provides a focal and reproducible insult, while still being mild enough to feasibly test therapeutics.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-20"},"PeriodicalIF":2.3,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143558714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating Inhibitory Neuron Diversity through Morphogenic Patterning: From in vivo Studies to New in vitro Models. 通过形态发生模式产生抑制性神经元多样性:从体内研究到新型体外模型
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-03-03 DOI: 10.1159/000545031
Tanya Deutsch Guerrero, Chloé Borowski, Julien Ferent

Background: The proper functioning of the central nervous system depends on the cooperation of distinct neuronal subtypes generated during development.

Summary: Here, we review new insights provided by recent research and technological advances into the mechanisms underlying the generation of the remarkable diversity of inhibitory GABAergic neurons (INs). INs are generated in the ventral telencephalon or subpallium and migrate long distances to populate multiple brain regions. INs exhibit considerable morphological, molecular, and electrophysiological diversity. This diversity is mediated by intrinsic and extrinsic factors, including secreted molecules (such as sonic hedgehog).

Key messages: This review examines the role of extrinsic factors in the establishment of distinct subpallial domains and the subsequent emergence of IN diversity. We begin by summarizing the in vivo morphogenesis of this process and then highlight the new technologies that allow us to revisit the role of morphogens in subpallial development and IN specification.

中枢神经系统的正常功能依赖于发育过程中产生的不同神经元亚型的合作。在这里,我们回顾了最近的研究和技术进步对抑制性GABAergic神经元(INs)多样性产生机制的新见解。INs产生于端脑腹侧或皮层下,并远距离迁移到多个脑区。INs表现出相当大的形态、分子和电生理多样性。这种多样性是由内在和外在因素介导的,包括分泌分子(如Sonic Hedgehog)。这篇综述探讨了外在因素在建立不同的pallial下域和随后出现的in多样性中的作用。我们首先总结了这一过程的体内形态发生,然后强调了新技术,使我们能够重新审视形态发生在pallial下发育和in规范中的作用。
{"title":"Generating Inhibitory Neuron Diversity through Morphogenic Patterning: From in vivo Studies to New in vitro Models.","authors":"Tanya Deutsch Guerrero, Chloé Borowski, Julien Ferent","doi":"10.1159/000545031","DOIUrl":"10.1159/000545031","url":null,"abstract":"<p><strong>Background: </strong>The proper functioning of the central nervous system depends on the cooperation of distinct neuronal subtypes generated during development.</p><p><strong>Summary: </strong>Here, we review new insights provided by recent research and technological advances into the mechanisms underlying the generation of the remarkable diversity of inhibitory GABAergic neurons (INs). INs are generated in the ventral telencephalon or subpallium and migrate long distances to populate multiple brain regions. INs exhibit considerable morphological, molecular, and electrophysiological diversity. This diversity is mediated by intrinsic and extrinsic factors, including secreted molecules (such as sonic hedgehog).</p><p><strong>Key messages: </strong>This review examines the role of extrinsic factors in the establishment of distinct subpallial domains and the subsequent emergence of IN diversity. We begin by summarizing the in vivo morphogenesis of this process and then highlight the new technologies that allow us to revisit the role of morphogens in subpallial development and IN specification.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-9"},"PeriodicalIF":2.3,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143544390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural and Functional Effects of C5aR1 Antagonism in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy. 新生儿缺氧缺血性脑病大鼠模型中 C5aR1 拮抗剂的结构和功能影响
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-05-25 DOI: 10.1159/000539506
Angela Saadat, Haree Pallera, Frank Lattanzio, Daley Owens, Amy Gaines, Sai Susmitha Ravi, Tushar Shah
<p><strong>Introduction: </strong>The complement response activates upon reperfusion in neonatal hypoxic-ischemic encephalopathy (HIE) and contributes to excessive neuroinflammation and worse outcomes. C5a is a powerful anaphylatoxin central to each of the complement pathways, and its engagement with C5aR1 is directly tied to brain injury and neuronal death. Reasoning C5aR1 antagonism can decrease excessive neuroinflammation and thereby improve neurological and functional outcomes, we tested this hypothesis in a rat model of HIE with PMX205, a small molecule that inhibits C5a-C5aR1 interaction.</p><p><strong>Methods: </strong>Term-equivalent pups (P10-12) were subjected to mild-moderate HIE by Vannucci's method and treated with PMX205. We compared motor and cognitive outcomes with two behavioral tests each (food handling and accelerod; novel object recognition [NOR] and open field) to improve the accuracy of our conclusions.</p><p><strong>Results: </strong>Improvements were observed in fine motor function, balance, and exploratory behaviors, but little to no improvement in recognition memory and gross motor function. Lesion area and histological assessments showed robust cortical neuroprotection from treatment but persistent injury to the CA1 region of the hippocampus. Better structural and functional outcomes were seen within 1 day of treatment, suggesting C5aR1 antagonism beyond the latent injury phase may impair recovery. In a dose-response experiment, cerebral area loss from injury was improved only in female rats, suggesting underlying sexual dimorphisms in the complement response.</p><p><strong>Conclusion: </strong>These results demonstrate proof-of-concept for targeting C5aR1 signaling in neonatal HIE with PMX205 and underscore the role of sex in hypoxic-ischemic injury.</p><p><strong>Introduction: </strong>The complement response activates upon reperfusion in neonatal hypoxic-ischemic encephalopathy (HIE) and contributes to excessive neuroinflammation and worse outcomes. C5a is a powerful anaphylatoxin central to each of the complement pathways, and its engagement with C5aR1 is directly tied to brain injury and neuronal death. Reasoning C5aR1 antagonism can decrease excessive neuroinflammation and thereby improve neurological and functional outcomes, we tested this hypothesis in a rat model of HIE with PMX205, a small molecule that inhibits C5a-C5aR1 interaction.</p><p><strong>Methods: </strong>Term-equivalent pups (P10-12) were subjected to mild-moderate HIE by Vannucci's method and treated with PMX205. We compared motor and cognitive outcomes with two behavioral tests each (food handling and accelerod; novel object recognition [NOR] and open field) to improve the accuracy of our conclusions.</p><p><strong>Results: </strong>Improvements were observed in fine motor function, balance, and exploratory behaviors, but little to no improvement in recognition memory and gross motor function. Lesion area and histological assessments showed robus
引言 新生儿缺氧缺血性脑病(HIE)再灌注时会激活补体反应,导致过度神经炎症和预后恶化。C5a 是一种强大的苊毒素,是每种补体途径的核心,它与 C5aR1 的接触直接导致脑损伤和神经元死亡。我们认为 C5aR1 拮抗剂可减少过度的神经炎症,从而改善神经和功能预后,因此我们用 PMX205(一种抑制 C5a-C5aR1 相互作用的小分子)在 HIE 大鼠模型中测试了这一假设。方法 用范努奇法对等龄幼鼠(P10-12)进行轻度-中度 HIE,并用 PMX205 治疗。我们分别通过两种行为测试(食物处理和加速度;新物体识别(NOR)和空地)来比较运动和认知结果,以提高结论的准确性。结果 观察到精细运动功能、平衡能力和探索行为有所改善,但识别记忆和粗大运动功能几乎没有改善。病变区域和组织学评估显示,治疗对大脑皮层神经有很强的保护作用,但对海马CA1区的损伤仍持续存在。治疗1天后,患者的结构和功能均得到改善,这表明C5aR1拮抗超过潜伏损伤阶段可能会损害恢复。在剂量反应实验中,只有雌性大鼠的脑损伤面积损失有所改善,这表明补体反应存在潜在的性双态性。结论 这些结果证明了用 PMX205 靶向新生儿 HIE 中 C5aR1 信号的概念,并强调了性别在缺氧缺血性损伤中的作用。
{"title":"Structural and Functional Effects of C5aR1 Antagonism in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy.","authors":"Angela Saadat, Haree Pallera, Frank Lattanzio, Daley Owens, Amy Gaines, Sai Susmitha Ravi, Tushar Shah","doi":"10.1159/000539506","DOIUrl":"10.1159/000539506","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Introduction: &lt;/strong&gt;The complement response activates upon reperfusion in neonatal hypoxic-ischemic encephalopathy (HIE) and contributes to excessive neuroinflammation and worse outcomes. C5a is a powerful anaphylatoxin central to each of the complement pathways, and its engagement with C5aR1 is directly tied to brain injury and neuronal death. Reasoning C5aR1 antagonism can decrease excessive neuroinflammation and thereby improve neurological and functional outcomes, we tested this hypothesis in a rat model of HIE with PMX205, a small molecule that inhibits C5a-C5aR1 interaction.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;Term-equivalent pups (P10-12) were subjected to mild-moderate HIE by Vannucci's method and treated with PMX205. We compared motor and cognitive outcomes with two behavioral tests each (food handling and accelerod; novel object recognition [NOR] and open field) to improve the accuracy of our conclusions.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;Improvements were observed in fine motor function, balance, and exploratory behaviors, but little to no improvement in recognition memory and gross motor function. Lesion area and histological assessments showed robust cortical neuroprotection from treatment but persistent injury to the CA1 region of the hippocampus. Better structural and functional outcomes were seen within 1 day of treatment, suggesting C5aR1 antagonism beyond the latent injury phase may impair recovery. In a dose-response experiment, cerebral area loss from injury was improved only in female rats, suggesting underlying sexual dimorphisms in the complement response.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusion: &lt;/strong&gt;These results demonstrate proof-of-concept for targeting C5aR1 signaling in neonatal HIE with PMX205 and underscore the role of sex in hypoxic-ischemic injury.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Introduction: &lt;/strong&gt;The complement response activates upon reperfusion in neonatal hypoxic-ischemic encephalopathy (HIE) and contributes to excessive neuroinflammation and worse outcomes. C5a is a powerful anaphylatoxin central to each of the complement pathways, and its engagement with C5aR1 is directly tied to brain injury and neuronal death. Reasoning C5aR1 antagonism can decrease excessive neuroinflammation and thereby improve neurological and functional outcomes, we tested this hypothesis in a rat model of HIE with PMX205, a small molecule that inhibits C5a-C5aR1 interaction.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;Term-equivalent pups (P10-12) were subjected to mild-moderate HIE by Vannucci's method and treated with PMX205. We compared motor and cognitive outcomes with two behavioral tests each (food handling and accelerod; novel object recognition [NOR] and open field) to improve the accuracy of our conclusions.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;Improvements were observed in fine motor function, balance, and exploratory behaviors, but little to no improvement in recognition memory and gross motor function. Lesion area and histological assessments showed robus","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"112-126"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965858/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beta Spectral Power during Passive Listening in Preschool Children with Specific Language Impairment. 有特殊语言障碍的学龄前儿童被动聆听时的β频谱功率
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-05-09 DOI: 10.1159/000539135
Saška Fatić, Nina Stanojević, Ljiljana Jeličić, Ružica Bilibajkić, Maša Marisavljević, Slavica Maksimović, Aleksandar Gavrilović, Miško Subotić

Introduction: Children with specific language impairment (SLI) have difficulties in different speech and language domains. Electrophysiological studies have documented that auditory processing in children with SLI is atypical and probably caused by delayed and abnormal auditory maturation. During the resting state, or different auditory tasks, children with SLI show low or high beta spectral power, which could be a clinical correlate for investigating brain rhythms.

Methods: The aim of this study was to examine the electrophysiological cortical activity of the beta rhythm while listening to words and nonwords in children with SLI in comparison to typical development (TD) children. The participants were 50 children with SLI, aged 4 and 5 years, and 50 age matched TD children. The children were divided into two subgroups according to age: (1) children 4 years of age; (2) children 5 years of age.

Results: The older group differed from the younger group in beta auditory processing, with increased values of beta spectral power in the right frontal, temporal, and parietal regions. In addition, children with SLI have higher beta spectral power than TD children in the bilateral temporal regions.

Conclusion: Complex beta auditory activation in TD and SLI children indicates the presence of early changes in functional brain connectivity.

Introduction: Children with specific language impairment (SLI) have difficulties in different speech and language domains. Electrophysiological studies have documented that auditory processing in children with SLI is atypical and probably caused by delayed and abnormal auditory maturation. During the resting state, or different auditory tasks, children with SLI show low or high beta spectral power, which could be a clinical correlate for investigating brain rhythms.

Methods: The aim of this study was to examine the electrophysiological cortical activity of the beta rhythm while listening to words and nonwords in children with SLI in comparison to typical development (TD) children. The participants were 50 children with SLI, aged 4 and 5 years, and 50 age matched TD children. The children were divided into two subgroups according to age: (1) children 4 years of age; (2) children 5 years of age.

Results: The older group differed from the younger group in beta auditory processing, with increased values of beta spectral power in the right frontal, temporal, and parietal regions. In addition, children with SLI have higher beta spectral power than TD children in the bilateral temporal regions.

Conclusion: Complex beta auditory activation in TD and SLI children indicates the presence of early changes in functional brain connectivity.

简介特殊语言障碍(SLI)儿童在不同的言语和语言领域都存在困难。电生理学研究表明,SLI 儿童的听觉处理能力不典型,可能是由于听觉成熟延迟和异常造成的。在静息状态或不同的听觉任务中,SLI 儿童表现出低或高β频谱功率,这可能是研究大脑节奏的临床相关因素:本研究旨在研究 SLI 儿童与典型发育(TD)儿童在听单词和非单词时的β节奏的电生理皮层活动。研究对象包括 50 名 4 至 5 岁的 SLI 儿童和 50 名年龄相仿的 TD 儿童。根据年龄将儿童分为两组:1)4 岁儿童;2)5 岁儿童:结果显示:大龄组与小龄组在贝塔听觉处理方面存在差异,右侧额叶、颞叶和顶叶区域的贝塔频谱功率值增加。此外,在双侧颞叶区域,SLI 儿童的 beta 频谱功率高于 TD 儿童:结论:TD 和 SLI 儿童复杂的 beta 听觉激活表明大脑功能连接存在早期变化。
{"title":"Beta Spectral Power during Passive Listening in Preschool Children with Specific Language Impairment.","authors":"Saška Fatić, Nina Stanojević, Ljiljana Jeličić, Ružica Bilibajkić, Maša Marisavljević, Slavica Maksimović, Aleksandar Gavrilović, Miško Subotić","doi":"10.1159/000539135","DOIUrl":"10.1159/000539135","url":null,"abstract":"<p><strong>Introduction: </strong>Children with specific language impairment (SLI) have difficulties in different speech and language domains. Electrophysiological studies have documented that auditory processing in children with SLI is atypical and probably caused by delayed and abnormal auditory maturation. During the resting state, or different auditory tasks, children with SLI show low or high beta spectral power, which could be a clinical correlate for investigating brain rhythms.</p><p><strong>Methods: </strong>The aim of this study was to examine the electrophysiological cortical activity of the beta rhythm while listening to words and nonwords in children with SLI in comparison to typical development (TD) children. The participants were 50 children with SLI, aged 4 and 5 years, and 50 age matched TD children. The children were divided into two subgroups according to age: (1) children 4 years of age; (2) children 5 years of age.</p><p><strong>Results: </strong>The older group differed from the younger group in beta auditory processing, with increased values of beta spectral power in the right frontal, temporal, and parietal regions. In addition, children with SLI have higher beta spectral power than TD children in the bilateral temporal regions.</p><p><strong>Conclusion: </strong>Complex beta auditory activation in TD and SLI children indicates the presence of early changes in functional brain connectivity.</p><p><strong>Introduction: </strong>Children with specific language impairment (SLI) have difficulties in different speech and language domains. Electrophysiological studies have documented that auditory processing in children with SLI is atypical and probably caused by delayed and abnormal auditory maturation. During the resting state, or different auditory tasks, children with SLI show low or high beta spectral power, which could be a clinical correlate for investigating brain rhythms.</p><p><strong>Methods: </strong>The aim of this study was to examine the electrophysiological cortical activity of the beta rhythm while listening to words and nonwords in children with SLI in comparison to typical development (TD) children. The participants were 50 children with SLI, aged 4 and 5 years, and 50 age matched TD children. The children were divided into two subgroups according to age: (1) children 4 years of age; (2) children 5 years of age.</p><p><strong>Results: </strong>The older group differed from the younger group in beta auditory processing, with increased values of beta spectral power in the right frontal, temporal, and parietal regions. In addition, children with SLI have higher beta spectral power than TD children in the bilateral temporal regions.</p><p><strong>Conclusion: </strong>Complex beta auditory activation in TD and SLI children indicates the presence of early changes in functional brain connectivity.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"98-111"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965842/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140899631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinguishing Laterality in Brain Injury in Rabbit Fetal Magnetic Resonance Imaging Using Novel Volume Rendering Techniques. 利用新型容积渲染技术区分兔胎儿核磁共振成像中脑损伤的侧向性
IF 2 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-05-06 DOI: 10.1159/000539212
Gaurav Ambwani, Zhongjie Shi, Kehuan Luo, Jeong-Won Jeong, Sidhartha Tan
<p><strong>Introduction: </strong>Our laboratory has been exploring the MRI detection of fetal brain injury, which previously provided a prognostic biomarker for newborn hypertonia in an animal model of cerebral palsy (CP). The biomarker relies on distinct patterns of diffusion-weighted imaging-defined apparent diffusion coefficient (ADC) in fetal brains during uterine hypoxia-ischemia (H-I). Despite the challenges posed by small brains and tissue acquisition, our objective was to differentiate between left and right brain ADC changes.</p><p><strong>Methods: </strong>A novel aspect involved utilizing three-dimensional rendering techniques to refine ADC measurements within spheroids encompassing fetal brain tissue. 25-day gestation age of rabbit fetuses underwent global hypoxia due to maternal uterine ischemia.</p><p><strong>Results: </strong>Successful differentiation of left and right brain regions was achieved in 28% of the fetal brains. Ordinal analysis revealed predominantly higher ADC on the left side compared to the right at baseline and across the entire time series. During H-I and reperfusion-reoxygenation, the right side exhibited a favored percentage change. Among these fetal brains, 73% exhibited the ADC pattern predictive of hypertonia. No significant differences between left and right sides were observed in patterns predicting hypertonia, except for one timepoint during H-I. This study also highlights a balance between left-sided and right-sided alterations within the population.</p><p><strong>Conclusion: </strong>This study emphasizes the importance of investigating laterality and asymmetric hemispheric lesions for early diagnosis of brain injury, leading to CP. The technological limitations in obtaining a clear picture of the entire fetal brain for every fetus mirror the challenges encountered in human studies.</p><p><strong>Introduction: </strong>Our laboratory has been exploring the MRI detection of fetal brain injury, which previously provided a prognostic biomarker for newborn hypertonia in an animal model of cerebral palsy (CP). The biomarker relies on distinct patterns of diffusion-weighted imaging-defined apparent diffusion coefficient (ADC) in fetal brains during uterine hypoxia-ischemia (H-I). Despite the challenges posed by small brains and tissue acquisition, our objective was to differentiate between left and right brain ADC changes.</p><p><strong>Methods: </strong>A novel aspect involved utilizing three-dimensional rendering techniques to refine ADC measurements within spheroids encompassing fetal brain tissue. 25-day gestation age of rabbit fetuses underwent global hypoxia due to maternal uterine ischemia.</p><p><strong>Results: </strong>Successful differentiation of left and right brain regions was achieved in 28% of the fetal brains. Ordinal analysis revealed predominantly higher ADC on the left side compared to the right at baseline and across the entire time series. During H-I and reperfusion-reoxygenation, the ri
简介:我们的实验室一直在探索通过核磁共振成像检测胎儿脑损伤,该方法曾为脑瘫(CP)动物模型中新生儿张力过高症提供了预后生物标志物。该生物标志物依赖于胎儿大脑在子宫缺血(H-I)期间弥散加权成像定义的表观弥散系数(ADC)的不同模式。尽管小脑和组织采集带来了挑战,但我们的目标是区分左脑和右脑的 ADC 变化:方法:一个新颖的方面是利用三维渲染技术来完善胎儿脑组织球体内的 ADC 测量。妊娠 25 天的兔胎儿因母体子宫缺血而整体缺氧:结果:28%的胎儿大脑成功区分了左右脑区域。顺序分析显示,在基线和整个时间序列中,左侧的 ADC 主要高于右侧。在H-I和再灌注-再氧合过程中,右侧的百分比变化更大。在这些胎儿大脑中,73%的胎儿大脑表现出预示张力过高的 ADC 模式。除了缺氧缺血期间的一个时间点外,左右侧在预测张力亢进的模式上没有明显差异。本研究还强调了人群中左侧和右侧改变之间的平衡:本研究强调了调查侧位和不对称半球病变对于早期诊断脑损伤导致的 CP 的重要性。为每个胎儿获取清晰的整个胎儿大脑图像的技术限制反映了人类研究中遇到的挑战。
{"title":"Distinguishing Laterality in Brain Injury in Rabbit Fetal Magnetic Resonance Imaging Using Novel Volume Rendering Techniques.","authors":"Gaurav Ambwani, Zhongjie Shi, Kehuan Luo, Jeong-Won Jeong, Sidhartha Tan","doi":"10.1159/000539212","DOIUrl":"10.1159/000539212","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Introduction: &lt;/strong&gt;Our laboratory has been exploring the MRI detection of fetal brain injury, which previously provided a prognostic biomarker for newborn hypertonia in an animal model of cerebral palsy (CP). The biomarker relies on distinct patterns of diffusion-weighted imaging-defined apparent diffusion coefficient (ADC) in fetal brains during uterine hypoxia-ischemia (H-I). Despite the challenges posed by small brains and tissue acquisition, our objective was to differentiate between left and right brain ADC changes.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;A novel aspect involved utilizing three-dimensional rendering techniques to refine ADC measurements within spheroids encompassing fetal brain tissue. 25-day gestation age of rabbit fetuses underwent global hypoxia due to maternal uterine ischemia.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;Successful differentiation of left and right brain regions was achieved in 28% of the fetal brains. Ordinal analysis revealed predominantly higher ADC on the left side compared to the right at baseline and across the entire time series. During H-I and reperfusion-reoxygenation, the right side exhibited a favored percentage change. Among these fetal brains, 73% exhibited the ADC pattern predictive of hypertonia. No significant differences between left and right sides were observed in patterns predicting hypertonia, except for one timepoint during H-I. This study also highlights a balance between left-sided and right-sided alterations within the population.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusion: &lt;/strong&gt;This study emphasizes the importance of investigating laterality and asymmetric hemispheric lesions for early diagnosis of brain injury, leading to CP. The technological limitations in obtaining a clear picture of the entire fetal brain for every fetus mirror the challenges encountered in human studies.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Introduction: &lt;/strong&gt;Our laboratory has been exploring the MRI detection of fetal brain injury, which previously provided a prognostic biomarker for newborn hypertonia in an animal model of cerebral palsy (CP). The biomarker relies on distinct patterns of diffusion-weighted imaging-defined apparent diffusion coefficient (ADC) in fetal brains during uterine hypoxia-ischemia (H-I). Despite the challenges posed by small brains and tissue acquisition, our objective was to differentiate between left and right brain ADC changes.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;A novel aspect involved utilizing three-dimensional rendering techniques to refine ADC measurements within spheroids encompassing fetal brain tissue. 25-day gestation age of rabbit fetuses underwent global hypoxia due to maternal uterine ischemia.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;Successful differentiation of left and right brain regions was achieved in 28% of the fetal brains. Ordinal analysis revealed predominantly higher ADC on the left side compared to the right at baseline and across the entire time series. During H-I and reperfusion-reoxygenation, the ri","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"55-67"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538374/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Timing of Methamphetamine Exposure during Adolescence Differentially Influences Parvalbumin and Perineuronal Net Immunoreactivity in the Medial Prefrontal Cortex of Female, but Not Male, Rats. 青春期接触甲基苯丙胺的时间会对雌性大鼠内侧前额叶皮层的副视蛋白和神经元周围网免疫反应产生不同影响,而对雄性大鼠则无影响。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-03-28 DOI: 10.1159/000538608
Amara S Brinks, Lauren K Carrica, Dominic J Tagler, Joshua M Gulley, Janice M Juraska
<p><strong>Introduction: </strong>Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission that may be mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which can result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity, and could influence the activity-dependent maturational process of these neurons.</p><p><strong>Methods: </strong>In the present study, we used male and female Sprague-Dawley rats to test the hypothesis that METH exposure influences PV and PNN expression in a sex- and age-specific manner. Rats were injected daily with saline or 3.0 mg/kg METH from early adolescence (30-38 days old), late adolescence (40-48 days old), or young adulthood (60-68 days old). One day following exposure, the effects of METH on PV cells and PNN expression were assessed using immunofluorescent labeling within the mPFC.</p><p><strong>Results: </strong>METH exposure did not alter male PV neurons or PNNs. Females exposed in early adolescence or adulthood had more PV-expressing neurons while those exposed in later adolescence had fewer, suggesting distinct windows of vulnerability to changes induced by METH exposure. In addition, females exposed to METH had more PNNs and more intense PV neuron staining, further suggesting that METH exposure in adolescence uniquely influences the development of inhibitory circuits in the female mPFC.</p><p><strong>Conclusions: </strong>This study indicates that the timing of METH exposure, even within adolescence, influences its neural effects in females.</p><p><strong>Introduction: </strong>Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission that may be mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which can result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity, and could influence the activity-dependent maturational process of these neurons.</p><p><strong>Methods: </strong>In the present study, we used male and female Sprague-Dawley rats to test the hypothesis that METH exposure influences PV and PNN expression in a sex- and age-specific manner. Rats were injected daily with saline or 3.0 mg/kg METH from early adolescence (30-38 days old), late adolescence (40-48 days old), or young adulthood (60-68 days old). One day following exposure, the effects of METH on PV cells and PNN expression were assessed
简介青春期涉及内侧前额叶皮层(mPFC)的重大重组,包括抑制性神经递质的改变,这种改变可能是通过valuebumin(PV)中间神经元及其周围的神经元周围网(PNN)介导的。这些发育变化会导致副视神经元的活动在成年后增加,而吸毒可能会破坏这些变化,从而导致 mPFC 功能和行为的持久变化。甲基苯丙胺(METH)是一些青少年经常使用的一种毒品,它能增加PV神经元的活动,并可能影响这些神经元依赖活动的成熟过程:在本研究中,我们使用雄性和雌性 Sprague Dawley 大鼠来验证 METH 暴露以性别和年龄特异性的方式影响 PV 和 PNN 表达的假设。从青春早期(EA;30-38 天大)、青春晚期(LA;40-48 天大)或青年期(60-68 天大)开始,每天给大鼠注射生理盐水或 3.0 mg/kg METH。暴露一天后,在 mPFC 中使用免疫荧光标记评估 METH 对 PV 细胞和 PNN 表达的影响:结果:暴露于 METH 不会改变雄性 PV 神经元或 PNN。暴露于早期青春期或成年期的女性有更多的 PV 表达神经元,而暴露于晚期青春期的女性有更少的 PV 表达神经元,这表明暴露于 METH 引起的变化有不同的易感窗口期。此外,暴露于 METH 的女性有更多的 PNN 和更强烈的 PV 神经元染色,这进一步表明,青春期暴露于 METH 会独特地影响女性 mPFC 抑制回路的发育:这项研究表明,暴露于 METH 的时间,即使是在青春期,也会影响其对女性神经的影响。
{"title":"Timing of Methamphetamine Exposure during Adolescence Differentially Influences Parvalbumin and Perineuronal Net Immunoreactivity in the Medial Prefrontal Cortex of Female, but Not Male, Rats.","authors":"Amara S Brinks, Lauren K Carrica, Dominic J Tagler, Joshua M Gulley, Janice M Juraska","doi":"10.1159/000538608","DOIUrl":"10.1159/000538608","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Introduction: &lt;/strong&gt;Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission that may be mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which can result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity, and could influence the activity-dependent maturational process of these neurons.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;In the present study, we used male and female Sprague-Dawley rats to test the hypothesis that METH exposure influences PV and PNN expression in a sex- and age-specific manner. Rats were injected daily with saline or 3.0 mg/kg METH from early adolescence (30-38 days old), late adolescence (40-48 days old), or young adulthood (60-68 days old). One day following exposure, the effects of METH on PV cells and PNN expression were assessed using immunofluorescent labeling within the mPFC.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;METH exposure did not alter male PV neurons or PNNs. Females exposed in early adolescence or adulthood had more PV-expressing neurons while those exposed in later adolescence had fewer, suggesting distinct windows of vulnerability to changes induced by METH exposure. In addition, females exposed to METH had more PNNs and more intense PV neuron staining, further suggesting that METH exposure in adolescence uniquely influences the development of inhibitory circuits in the female mPFC.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusions: &lt;/strong&gt;This study indicates that the timing of METH exposure, even within adolescence, influences its neural effects in females.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Introduction: &lt;/strong&gt;Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission that may be mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which can result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity, and could influence the activity-dependent maturational process of these neurons.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;In the present study, we used male and female Sprague-Dawley rats to test the hypothesis that METH exposure influences PV and PNN expression in a sex- and age-specific manner. Rats were injected daily with saline or 3.0 mg/kg METH from early adolescence (30-38 days old), late adolescence (40-48 days old), or young adulthood (60-68 days old). One day following exposure, the effects of METH on PV cells and PNN expression were assessed","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"27-39"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upstream Stimulating Factor 2 Aggravates Spinal Nerve Ligation-Induced Neuropathic Pain in Mice via Regulating SNHG5/miR-181b-5p. 上游刺激因子2通过调节SNHG5/miR-181b-5p加重脊神经结扎诱导小鼠的神经病理性疼痛
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-03-12 DOI: 10.1159/000538178
Mi Chen, Yang Yang, Jiatian Cui, Li Qiu, Xiaohua Zou, Xianggang Zeng

Introduction: Upstream stimulating factor 2 (USF2) belongs to basic Helix-Loop-Helix-Leucine zipper transcription factor family, regulating expression of genes involved in immune response or energy metabolism network. Role of USF2 in neuropathic pain was evaluated.

Methods: Mice were intraspinally injected with adenovirus for knockdown of USF2 (Ad-shUSF2) and then subjected to spinal nerve ligation (SNL) to induce neuropathic pain. Distribution and expression of USF2 were detected by western blot and immunofluorescence. Mechanical and thermal pain sensitivity were examined by paw withdrawal thresholds (PWT) and paw withdrawal latency (PWL). Chromatin immunoprecipitation (ChIP) and luciferase activity assays were performed to detect binding ability between USF2 and SNHG5.

Results: The expression of USF2 was elevated and colocalized with astrocytes and microglia in L5 dorsal root ganglion (DRG) of SNL-induced mice. Injection of Ad-shUSF2 attenuated SNL-induced decrease of PWT and PWL in mice. Knockdown of USF2 increased the level of IL-10 but decreased TNF-α, IL-1β, and IL-6 in SNL-induced mice. Silence of USF2 enhanced protein expression of CD206 while reducing expression of CD16 and CD32 in SNL-induced mice. USF2 binds to promoter of SNHG5 and weakens SNL-induced up-regulation of SNHG5. SNHG5 binds to miR-181b-5p, and miR-181b-5p to interact with CXCL5.

Conclusion: Silence of USF2 ameliorated neuropathic pain, suppressed activation of M1 microglia, and inhibited inflammation in SNL-induced mice through regulation of SNHG5/miR-181b-5p/CXCL5 axis. Therefore, USF2/SNHG5/miR-181b-5p/CXCL5 might be a promising target for neuropathic pain. However, the effect of USF2/SNHG5/miR-181b-5p/CXCL5 on neuropathic pain should also be investigated in further research.

背景:上游刺激因子2(USF2)属于碱性-髓质-环状-髓质-亮氨酸拉链转录因子家族,调节参与免疫反应或能量代谢网络的基因表达。本研究评估了 USF2 在神经病理性疼痛中的作用:方法:给小鼠鞘内注射腺病毒以敲除 USF2(Ad-shUSF2),然后进行脊神经结扎(SNL)以诱导神经病理性疼痛。通过Western印迹和免疫荧光检测USF2的分布和表达。通过爪退缩阈值(PWT)和爪退缩潜伏期(PWL)检测机械痛和热痛的敏感性。进行了染色质免疫沉淀(ChIP)和荧光素酶活性测定,以检测USF2和SNHG5之间的结合能力:结果:在SNL诱导的小鼠L5背根神经节(DRG)中,USF2的表达升高,并与星形胶质细胞和小胶质细胞共定位。注射 Ad-shUSF2 可减轻 SNL 诱导的小鼠脉搏波速度和脉搏波速度的下降。在SNL诱导的小鼠中,敲除USF2会增加IL-10的水平,但会降低TNF-α、IL-1β和IL-6的水平。在SNL诱导的小鼠中,沉默USF2可提高CD206的蛋白表达,同时降低CD16和CD32的表达。USF2 与 SNHG5 启动子结合,削弱了 SNL 诱导的 SNHG5 上调。SNHG5与miR-181b-5p结合,miR-181b-5p与CXCL5相互作用:结论:通过调节 SNHG5/miR-181b-5p/CXCL5 轴,沉默 USF2 可改善 SNL 诱导小鼠的神经病理性疼痛、抑制 M1 小胶质细胞的活化并抑制炎症。因此,USF2/SNHG5/miR-181b-5p/CXCL5可能是治疗神经病理性疼痛的一个有前景的靶点。不过,USF2/SNHG5/miR-181b-5p/CXCL5 对神经病理性疼痛的影响还需要进一步研究。
{"title":"Upstream Stimulating Factor 2 Aggravates Spinal Nerve Ligation-Induced Neuropathic Pain in Mice via Regulating SNHG5/miR-181b-5p.","authors":"Mi Chen, Yang Yang, Jiatian Cui, Li Qiu, Xiaohua Zou, Xianggang Zeng","doi":"10.1159/000538178","DOIUrl":"10.1159/000538178","url":null,"abstract":"<p><strong>Introduction: </strong>Upstream stimulating factor 2 (USF2) belongs to basic Helix-Loop-Helix-Leucine zipper transcription factor family, regulating expression of genes involved in immune response or energy metabolism network. Role of USF2 in neuropathic pain was evaluated.</p><p><strong>Methods: </strong>Mice were intraspinally injected with adenovirus for knockdown of USF2 (Ad-shUSF2) and then subjected to spinal nerve ligation (SNL) to induce neuropathic pain. Distribution and expression of USF2 were detected by western blot and immunofluorescence. Mechanical and thermal pain sensitivity were examined by paw withdrawal thresholds (PWT) and paw withdrawal latency (PWL). Chromatin immunoprecipitation (ChIP) and luciferase activity assays were performed to detect binding ability between USF2 and SNHG5.</p><p><strong>Results: </strong>The expression of USF2 was elevated and colocalized with astrocytes and microglia in L5 dorsal root ganglion (DRG) of SNL-induced mice. Injection of Ad-shUSF2 attenuated SNL-induced decrease of PWT and PWL in mice. Knockdown of USF2 increased the level of IL-10 but decreased TNF-α, IL-1β, and IL-6 in SNL-induced mice. Silence of USF2 enhanced protein expression of CD206 while reducing expression of CD16 and CD32 in SNL-induced mice. USF2 binds to promoter of SNHG5 and weakens SNL-induced up-regulation of SNHG5. SNHG5 binds to miR-181b-5p, and miR-181b-5p to interact with CXCL5.</p><p><strong>Conclusion: </strong>Silence of USF2 ameliorated neuropathic pain, suppressed activation of M1 microglia, and inhibited inflammation in SNL-induced mice through regulation of SNHG5/miR-181b-5p/CXCL5 axis. Therefore, USF2/SNHG5/miR-181b-5p/CXCL5 might be a promising target for neuropathic pain. However, the effect of USF2/SNHG5/miR-181b-5p/CXCL5 on neuropathic pain should also be investigated in further research.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-11"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140112098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ex vivo Magnetic Resonance Imaging of the Human Fetal Brain. 人类胎儿大脑的体外磁共振成像。
IF 2 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-10-28 DOI: 10.1159/000542276
Jing Zhang, Ruike Chen, Chen Tian, Keqing Zhu, Guoliang Ren, Aimin Bao, Yi Shen, Xiao Li, Yaoyao Zhang, Wenying Qiu, Chao Ma, Jing Zhang, Dan Wu

Background: The fetal brain undergoes a dynamic process of development during gestation, marked by well-orchestrated events such as neuronal proliferation, migration, axonal outgrowth, and dendritic arborization, mainly elucidated through histological studies. Ex vivo magnetic resonance imaging (MRI) has emerged as a useful tool for 3D visualization of the developing fetal brain, serving as a complementary tool to traditional histology.

Summary: In this review, we summarized the commonly employed ex vivo MRI techniques and their advances in fetal brain imaging, and proposed a standard protocol for postmortem fetal brain specimen collection and fixation. We then provided an overview of ex vivo MRI-based studies on the fetal brain.

Key messages: According to our review, ex vivo T1- or T2-weighted structural MRI has contributed to the characterization of the anatomy of transient neuronal proliferative zones, the basal ganglia, and the cortex. Diffusion MRI-related techniques, such as diffusion tensor imaging and tractography, have helped investigate the microstructural patterns of fetal brain tissue, as well as the early emergence and development of neuronal migration pathways and white matter bundles. Ex vivo MRI findings have shown strong histological correlations, supporting the potential of MRI in evaluating the developmental events in the fetal brain. Postmortem MRI examinations have also demonstrated comparable, and in certain cases, superior performance to traditional autopsy in revealing fetal brain abnormalities. In conclusion, ex vivo fetal brain MRI is an invaluable tool that provides unique insights into the early stages of brain development.

背景:胎儿大脑在妊娠期间经历了一个动态的发育过程,以神经元增殖、迁移、轴突生长和树突分枝等精心安排的事件为标志,主要通过组织学研究加以阐明。摘要:在这篇综述中,我们总结了胎儿脑成像中常用的体外磁共振成像技术及其进展,以及胎儿死后脑标本采集和固定的标准方案。然后,我们概述了基于体外磁共振成像的胎儿脑部研究:根据我们的综述,体外 T1 或 T2 加权结构磁共振成像有助于描述瞬时神经元增殖区、基底节和皮层的解剖特征。弥散磁共振成像相关技术,如弥散张量成像和束成像,有助于研究胎儿脑组织的微观结构模式,以及神经元迁移路径和白质束的早期出现和发育。体内核磁共振成像结果显示与组织学有很强的相关性,支持了核磁共振成像在评估胎儿大脑发育过程中的潜力。死后核磁共振成像检查在揭示胎儿脑部异常方面的表现与传统尸检相当,在某些情况下甚至优于传统尸检。总之,体外胎儿脑部核磁共振成像是一种宝贵的工具,能为早期脑部发育提供独特的见解。
{"title":"Ex vivo Magnetic Resonance Imaging of the Human Fetal Brain.","authors":"Jing Zhang, Ruike Chen, Chen Tian, Keqing Zhu, Guoliang Ren, Aimin Bao, Yi Shen, Xiao Li, Yaoyao Zhang, Wenying Qiu, Chao Ma, Jing Zhang, Dan Wu","doi":"10.1159/000542276","DOIUrl":"10.1159/000542276","url":null,"abstract":"<p><strong>Background: </strong>The fetal brain undergoes a dynamic process of development during gestation, marked by well-orchestrated events such as neuronal proliferation, migration, axonal outgrowth, and dendritic arborization, mainly elucidated through histological studies. Ex vivo magnetic resonance imaging (MRI) has emerged as a useful tool for 3D visualization of the developing fetal brain, serving as a complementary tool to traditional histology.</p><p><strong>Summary: </strong>In this review, we summarized the commonly employed ex vivo MRI techniques and their advances in fetal brain imaging, and proposed a standard protocol for postmortem fetal brain specimen collection and fixation. We then provided an overview of ex vivo MRI-based studies on the fetal brain.</p><p><strong>Key messages: </strong>According to our review, ex vivo T1- or T2-weighted structural MRI has contributed to the characterization of the anatomy of transient neuronal proliferative zones, the basal ganglia, and the cortex. Diffusion MRI-related techniques, such as diffusion tensor imaging and tractography, have helped investigate the microstructural patterns of fetal brain tissue, as well as the early emergence and development of neuronal migration pathways and white matter bundles. Ex vivo MRI findings have shown strong histological correlations, supporting the potential of MRI in evaluating the developmental events in the fetal brain. Postmortem MRI examinations have also demonstrated comparable, and in certain cases, superior performance to traditional autopsy in revealing fetal brain abnormalities. In conclusion, ex vivo fetal brain MRI is an invaluable tool that provides unique insights into the early stages of brain development.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"400-417"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12500268/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterochronic Development of the Perception of Different Types of Visual Illusions. 不同类型视错觉知觉的异时性发展。
IF 2 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2025-01-03 DOI: 10.1159/000543308
Marcos Rosetti, Vania Navarrete, Valeria Montiel, Miriam Alarcon, Rosa E Ulloa, Péter Szenczi, Marcos Rosetti, Oxána Bánszegi

Introduction: The underlying neural and/or perceptual mechanisms of different visual illusions are still unknown; thus, they continue to be the focus of many ongoing studies. Inconsistencies persist in the empirical findings for understanding how the perception of these illusions evolves over the course of development.

Methods: We assessed 513 participants between 6.5 and 18.9 years of age, with 103 pairs of illusory and control images spanning five illusion types (Ebbinghaus, Müller-Lyer, Contrast, Moving Snake, and Subjective Contour). Misleading and helpful contexts were added when possible.

Results: In general, we found that, except for the Ebbinghaus illusion, susceptibility changes with age: while for the Müller-Lyer it decreases, for the Contrast, Moving Snake, and Kanizsa, susceptibility increases. Across all illusory conditions, participants' decision time decreased with age. Context also influenced the performance and choice latency. We also found a gender difference: boys were less susceptible than girls to Contrast and Moving Snake illusions and were faster to answer in Müller-Lyer illusion trials.

Conclusion: The current study found that susceptibility to illusions changes in a manner that is age-specific and, in some cases, sex-specific. The different developmental trajectories of the perception of visual illusions support the idea of the lack of a common neural and/or perceptual process behind them. We can suggest that at least some of the cognitive processes and neural pathways involved develop heterochronically.

不同视错觉的潜在神经和/或知觉机制尚不清楚;因此,它们仍然是许多正在进行的研究的焦点。在理解这些错觉的感知如何在发展过程中演变的经验发现中,不一致性仍然存在。方法:我们评估了513名年龄在6.5至18.9岁之间的参与者,使用了103对错觉和对照图像,涵盖了五种错觉类型(艾宾浩斯、梅勒-莱尔、对比度、移动蛇和主观轮廓)。在可能的情况下,添加了误导和帮助的上下文。结果:总的来说,我们发现除了艾宾浩斯错觉敏感性随年龄而变化外, ller- lyer错觉敏感性随年龄而降低,而对比、移动蛇和Kanizsa错觉敏感性随年龄而增加。在所有幻觉条件下,参与者的决策时间随着年龄的增长而减少。上下文也会影响性能和选择延迟。我们还发现了性别差异:男孩比女孩更不容易受到对比和移动蛇错觉的影响,并且在勒-莱尔错觉试验中更快地做出回答。结论:目前的研究发现,对错觉的易感性以年龄和某些情况下的性别特定的方式变化。视觉错觉知觉的不同发展轨迹支持了在其背后缺乏共同的神经和/或知觉过程的观点。我们可以认为,至少有一些认知过程和神经通路是在异慢性中发展起来的。
{"title":"Heterochronic Development of the Perception of Different Types of Visual Illusions.","authors":"Marcos Rosetti, Vania Navarrete, Valeria Montiel, Miriam Alarcon, Rosa E Ulloa, Péter Szenczi, Marcos Rosetti, Oxána Bánszegi","doi":"10.1159/000543308","DOIUrl":"10.1159/000543308","url":null,"abstract":"<p><strong>Introduction: </strong>The underlying neural and/or perceptual mechanisms of different visual illusions are still unknown; thus, they continue to be the focus of many ongoing studies. Inconsistencies persist in the empirical findings for understanding how the perception of these illusions evolves over the course of development.</p><p><strong>Methods: </strong>We assessed 513 participants between 6.5 and 18.9 years of age, with 103 pairs of illusory and control images spanning five illusion types (Ebbinghaus, Müller-Lyer, Contrast, Moving Snake, and Subjective Contour). Misleading and helpful contexts were added when possible.</p><p><strong>Results: </strong>In general, we found that, except for the Ebbinghaus illusion, susceptibility changes with age: while for the Müller-Lyer it decreases, for the Contrast, Moving Snake, and Kanizsa, susceptibility increases. Across all illusory conditions, participants' decision time decreased with age. Context also influenced the performance and choice latency. We also found a gender difference: boys were less susceptible than girls to Contrast and Moving Snake illusions and were faster to answer in Müller-Lyer illusion trials.</p><p><strong>Conclusion: </strong>The current study found that susceptibility to illusions changes in a manner that is age-specific and, in some cases, sex-specific. The different developmental trajectories of the perception of visual illusions support the idea of the lack of a common neural and/or perceptual process behind them. We can suggest that at least some of the cognitive processes and neural pathways involved develop heterochronically.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"350-361"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142933486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pubertal- and Stress-Dependent Changes in Cellular Activation and Expression of Excitatory Amino Acid Receptor Subunits in the Paraventricular Nucleus of the Hypothalamus in Male and Female Rats. 雌雄大鼠下丘脑室旁核兴奋性氨基酸受体亚基的细胞活化和表达与青春期和应激有关的变化
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-10-28 DOI: 10.1159/000542277
Catherine Parkin, Juliet Ortiz, Sofia Cruz, Kevin G Bath, Russell D Romeo

Introduction: Pubertal maturation is marked by significant changes in stress-induced hormonal responses mediated by the hypothalamic-pituitary-adrenal (HPA) axis, with prepubertal male and female rats often exhibiting greater HPA reactivity compared to adult males and females. Though the implications of these changes are unclear, elevated stress responsiveness might contribute to the stress-related vulnerabilities often associated with puberty.

Methods: The current experiments sought to determine whether differences in cellular activation, as measured by FOS immunohistochemistry, or excitatory ionotropic glutamate receptor subunit expression, as measured by qRT-PCR, in the paraventricular nucleus (PVN) were associated with these noted pubertal shifts in stress reactivity in male and female rats. As the PVN is the key nucleus responsible for activating the hormonal stress response, we predicted greater cellular activation and higher expression levels of glutamate receptor subunits in the PVN of prepubertal males and females compared to their adult counterparts.

Results: Our FOS data revealed that while prepubertal males showed greater stress-induced activation in the PVN than adult males, prepubertal females showed less activation than adult females. Moreover, many of the NMDA, AMPA, and kainate receptor subunits measured, including Grin1, Grin2b, Gria1, Gria2, Grik1, and Grik2, had higher expression levels in adults, particularly in males.

Conclusions: Though not supporting our initial predictions, these data do indicate that age and stress influence the activation of the PVN and the expression of glutamate receptor subunits important in its function. These data also suggest that the effects of age and stress are different in males and females. Though still far from a clear understanding of what mechanism(s) mediate pubertal shift in stress reactivity, these data add to our growing understanding of how age, stress, and sex influence HPA function.

简介青春期成熟的标志是由下丘脑-垂体-肾上腺(HPA)轴介导的应激诱导激素反应的显著变化,与成年雄性和雌性大鼠相比,青春期前的雄性和雌性大鼠往往表现出更高的HPA反应性。虽然这些变化的影响尚不清楚,但压力反应性的升高可能会导致与青春期相关的压力相关脆弱性:目前的实验试图确定室旁核(PVN)中细胞活化(通过 FOS 免疫组化法测量)或兴奋性离子型谷氨酸受体亚单位表达(通过 qRT-PCR 法测量)的差异是否与雌雄大鼠应激反应性的青春期变化有关。由于室旁核是激活荷尔蒙应激反应的关键核团,我们预测青春期前雄性和雌性大鼠室旁核的细胞激活程度和谷氨酸受体亚基的表达水平要高于成年大鼠:结果:我们的FOS数据显示,与成年男性相比,青春期前的男性在PVN中表现出更大的应激诱导激活,而青春期前的女性则表现出比成年女性更小的激活。此外,所测量的许多 NMDA、AMPA 和 kainate 受体亚基,包括 Grin1、Grin2b、Gria1、Gria2、Grik1 和 Grik2,在成人中的表达水平更高,尤其是在男性中:这些数据虽然不支持我们最初的预测,但确实表明年龄和压力会影响 PVN 的激活及其功能中重要的谷氨酸受体亚基的表达。这些数据还表明,年龄和压力对男性和女性的影响是不同的。尽管我们还不能清楚地了解是什么机制介导了青春期应激反应的转变,但这些数据加深了我们对年龄、应激和性别如何影响 HPA 功能的理解。
{"title":"Pubertal- and Stress-Dependent Changes in Cellular Activation and Expression of Excitatory Amino Acid Receptor Subunits in the Paraventricular Nucleus of the Hypothalamus in Male and Female Rats.","authors":"Catherine Parkin, Juliet Ortiz, Sofia Cruz, Kevin G Bath, Russell D Romeo","doi":"10.1159/000542277","DOIUrl":"10.1159/000542277","url":null,"abstract":"<p><strong>Introduction: </strong>Pubertal maturation is marked by significant changes in stress-induced hormonal responses mediated by the hypothalamic-pituitary-adrenal (HPA) axis, with prepubertal male and female rats often exhibiting greater HPA reactivity compared to adult males and females. Though the implications of these changes are unclear, elevated stress responsiveness might contribute to the stress-related vulnerabilities often associated with puberty.</p><p><strong>Methods: </strong>The current experiments sought to determine whether differences in cellular activation, as measured by FOS immunohistochemistry, or excitatory ionotropic glutamate receptor subunit expression, as measured by qRT-PCR, in the paraventricular nucleus (PVN) were associated with these noted pubertal shifts in stress reactivity in male and female rats. As the PVN is the key nucleus responsible for activating the hormonal stress response, we predicted greater cellular activation and higher expression levels of glutamate receptor subunits in the PVN of prepubertal males and females compared to their adult counterparts.</p><p><strong>Results: </strong>Our FOS data revealed that while prepubertal males showed greater stress-induced activation in the PVN than adult males, prepubertal females showed less activation than adult females. Moreover, many of the NMDA, AMPA, and kainate receptor subunits measured, including Grin1, Grin2b, Gria1, Gria2, Grik1, and Grik2, had higher expression levels in adults, particularly in males.</p><p><strong>Conclusions: </strong>Though not supporting our initial predictions, these data do indicate that age and stress influence the activation of the PVN and the expression of glutamate receptor subunits important in its function. These data also suggest that the effects of age and stress are different in males and females. Though still far from a clear understanding of what mechanism(s) mediate pubertal shift in stress reactivity, these data add to our growing understanding of how age, stress, and sex influence HPA function.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"206-216"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12034827/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Developmental Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1