首页 > 最新文献

Developmental Neuroscience最新文献

英文 中文
Region-Specific Brain Volume Changes Emerge in Adolescence in the Valproic Acid Model of Autism and Parallel Human Findings. 丙戊酸自闭症模型在青春期出现的特定区域脑容量变化与人类研究结果相似。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-04-26 DOI: 10.1159/000538932
Cole King, Ivina Mali, Hunter Strating, Elizabeth Fangman, Jenna Neyhard, Macy Payne, Stefan H Bossmann, Bethany Plakke

Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits, cognitive dysfunction, and stereotyped repetitive behaviors. Regional volume changes are commonly observed in individuals with ASD. To examine volumetric dysregulation across adolescence, the valproic acid (VPA) model was used to induce ASD-like phenotypes in rats.

Method: Regional volumes were obtained via magnetic resonance imaging at either postnatal day 28 or postnatal day 40 (P40), which correspond to early and late adolescence, respectively.

Results: Consistent with prior research, VPA animals had reduced total brain volume compared to control animals. A novel outcome was that VPA animals had overgrown right hippocampi at P40. Differences in the pattern of development of the anterior cingulate cortex were also observed in VPA animals. Differences for the posterior cingulate were only observed in males, but not females.

Conclusion: These results demonstrate differences in region-specific developmental trajectories between control and VPA animals and suggest that the VPA model may capture regional volume changes consistent with human ASD.

自闭症谱系障碍(ASD)是一种神经发育障碍,以社交和沟通障碍、认知功能障碍和刻板重复行为为特征。自闭症谱系障碍患者通常会出现区域体积变化。为了研究整个青春期的体积失调,研究人员使用丙戊酸(VPA)模型诱导大鼠出现类似 ASD 的表型。在出生后第28天(P28)或出生后第40天(P40)(分别对应青春期早期和晚期),通过磁共振成像(MRI)获得区域体积。与之前的研究结果一致,与对照组动物相比,VPA动物的大脑总体积有所减少。一个新的结果是,VPA动物在P40时右侧海马过度生长。在VPA动物身上还观察到前扣带回皮层发育模式的差异。仅在雄性动物中观察到扣带回后部的差异,而在雌性动物中则没有观察到。这些结果表明,对照组和 VPA 动物的特定区域发育轨迹存在差异,并表明 VPA 模型可能捕捉到与人类 ASD 一致的区域体积变化。
{"title":"Region-Specific Brain Volume Changes Emerge in Adolescence in the Valproic Acid Model of Autism and Parallel Human Findings.","authors":"Cole King, Ivina Mali, Hunter Strating, Elizabeth Fangman, Jenna Neyhard, Macy Payne, Stefan H Bossmann, Bethany Plakke","doi":"10.1159/000538932","DOIUrl":"10.1159/000538932","url":null,"abstract":"<p><strong>Introduction: </strong>Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits, cognitive dysfunction, and stereotyped repetitive behaviors. Regional volume changes are commonly observed in individuals with ASD. To examine volumetric dysregulation across adolescence, the valproic acid (VPA) model was used to induce ASD-like phenotypes in rats.</p><p><strong>Method: </strong>Regional volumes were obtained via magnetic resonance imaging at either postnatal day 28 or postnatal day 40 (P40), which correspond to early and late adolescence, respectively.</p><p><strong>Results: </strong>Consistent with prior research, VPA animals had reduced total brain volume compared to control animals. A novel outcome was that VPA animals had overgrown right hippocampi at P40. Differences in the pattern of development of the anterior cingulate cortex were also observed in VPA animals. Differences for the posterior cingulate were only observed in males, but not females.</p><p><strong>Conclusion: </strong>These results demonstrate differences in region-specific developmental trajectories between control and VPA animals and suggest that the VPA model may capture regional volume changes consistent with human ASD.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-12"},"PeriodicalIF":2.3,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511791/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140858865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Timing of methamphetamine exposure during adolescence differentially influences parvalbumin and perineuronal net immunoreactivity in the medial prefrontal cortex of female, but not male, rats. 青春期接触甲基苯丙胺的时间会对雌性大鼠内侧前额叶皮层的副视蛋白和神经元周围网免疫反应产生不同影响,而对雄性大鼠则无影响。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-03-28 DOI: 10.1159/000538608
Amara S Brinks, Lauren K Carrica, Dominic J Tagler, Joshua M Gulley, Janice M Juraska

Introduction: Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission that may be mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which can result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity and could influence the activity-dependent maturational process of these neurons.

Methods: In the present study, we used male and female Sprague Dawley rats to test the hypothesis that METH exposure influences PV and PNN expression in a sex- and age-specific manner. Rats were injected daily with saline or 3.0 mg/kg METH from early adolescence (EA; 30-38 days old), late adolescence (LA; 40-48 days old), or young adulthood (60-68 days old). One day following exposure, effects of METH on PV cell and PNN expression were assessed using immunofluorescent labeling within the mPFC.

Results: METH exposure did not alter male PV neurons or PNNs. Females exposed in early adolescence or adulthood had more PV expressing neurons while those exposed in later adolescence had fewer, suggesting distinct windows of vulnerability to changes induced by METH exposure. In addition, females exposed to METH had more PNNs and more intense PV neuron staining, further suggesting that METH exposure in adolescence uniquely influences development of inhibitory circuits in the female mPFC.

Conclusions: This study indicates that the timing of METH exposure, even within adolescence, influences its neural effects in females.

简介青春期涉及内侧前额叶皮层(mPFC)的重大重组,包括抑制性神经递质的改变,这种改变可能是通过valuebumin(PV)中间神经元及其周围的神经元周围网(PNN)介导的。这些发育变化会导致副视神经元的活动在成年后增加,而吸毒可能会破坏这些变化,从而导致 mPFC 功能和行为的持久变化。甲基苯丙胺(METH)是一些青少年经常使用的一种毒品,它能增加PV神经元的活动,并可能影响这些神经元依赖活动的成熟过程:在本研究中,我们使用雄性和雌性 Sprague Dawley 大鼠来验证 METH 暴露以性别和年龄特异性的方式影响 PV 和 PNN 表达的假设。从青春早期(EA;30-38 天大)、青春晚期(LA;40-48 天大)或青年期(60-68 天大)开始,每天给大鼠注射生理盐水或 3.0 mg/kg METH。暴露一天后,在 mPFC 中使用免疫荧光标记评估 METH 对 PV 细胞和 PNN 表达的影响:结果:暴露于 METH 不会改变雄性 PV 神经元或 PNN。暴露于早期青春期或成年期的女性有更多的 PV 表达神经元,而暴露于晚期青春期的女性有更少的 PV 表达神经元,这表明暴露于 METH 引起的变化有不同的易感窗口期。此外,暴露于 METH 的女性有更多的 PNN 和更强烈的 PV 神经元染色,这进一步表明,青春期暴露于 METH 会独特地影响女性 mPFC 抑制回路的发育:这项研究表明,暴露于 METH 的时间,即使是在青春期,也会影响其对女性神经的影响。
{"title":"Timing of methamphetamine exposure during adolescence differentially influences parvalbumin and perineuronal net immunoreactivity in the medial prefrontal cortex of female, but not male, rats.","authors":"Amara S Brinks, Lauren K Carrica, Dominic J Tagler, Joshua M Gulley, Janice M Juraska","doi":"10.1159/000538608","DOIUrl":"10.1159/000538608","url":null,"abstract":"<p><strong>Introduction: </strong>Adolescence involves significant reorganization within the medial prefrontal cortex (mPFC), including modifications to inhibitory neurotransmission that may be mediated through parvalbumin (PV) interneurons and their surrounding perineuronal nets (PNNs). These developmental changes, which can result in increased PV neuron activity in adulthood, may be disrupted by drug use resulting in lasting changes in mPFC function and behavior. Methamphetamine (METH), which is a readily available drug used by some adolescents, increases PV neuron activity and could influence the activity-dependent maturational process of these neurons.</p><p><strong>Methods: </strong>In the present study, we used male and female Sprague Dawley rats to test the hypothesis that METH exposure influences PV and PNN expression in a sex- and age-specific manner. Rats were injected daily with saline or 3.0 mg/kg METH from early adolescence (EA; 30-38 days old), late adolescence (LA; 40-48 days old), or young adulthood (60-68 days old). One day following exposure, effects of METH on PV cell and PNN expression were assessed using immunofluorescent labeling within the mPFC.</p><p><strong>Results: </strong>METH exposure did not alter male PV neurons or PNNs. Females exposed in early adolescence or adulthood had more PV expressing neurons while those exposed in later adolescence had fewer, suggesting distinct windows of vulnerability to changes induced by METH exposure. In addition, females exposed to METH had more PNNs and more intense PV neuron staining, further suggesting that METH exposure in adolescence uniquely influences development of inhibitory circuits in the female mPFC.</p><p><strong>Conclusions: </strong>This study indicates that the timing of METH exposure, even within adolescence, influences its neural effects in females.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of A New Scoring System in Higher Animals for Testing Cognitive Function in the Newborn Period: Effect of Prenatal Hypoxia-Ischemia. 在高等动物中开发测试新生儿期认知功能的新评分系统:产前缺氧缺血的影响。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-03-28 DOI: 10.1159/000538607
Zhongjie Shi, Nadiya Sharif, Kehuan Luo, Sidhartha Tan

Introduction Enhanced models for assessing cognitive function in the neonatal period are imperative in higher animals. Postnatal motor deficits, characteristic of cerebral palsy, emerge in newborn kits within our prenatal-rabbit model of hypoxia-ischemia (HI). In humans, prenatal HI leads to intellectual disability and cerebral palsy. In a study examining cognitive function in newborn rabbits, we explored several questions. Is there a distinction between conditioned and unconditioned kits? Can the kits discern the human face or the lab coat? Do motorically-normal kits, born after prenatal HI, exhibit cognitive deficits? Methods The conditioning protocol was randomly assigned to kits from each litter. For conditioning, the same human, wearing a lab coat, fed the rabbit kits for 9 days before the cognitive test. The 6-arm radial maze was chosen for its simplicity and ease of use. Normally appearing kits, born after uterine ischemia at 79% or 92% term in New Zealand White rabbits, were compared to Naïve kits. On postpartum day 22/23 or 29/30, the 6-arm maze helped determine if the kits recognized the original feeder from bystander (Test-1) or the lab coat on bystander (Test-2). The use of masks of feeder/bystander (Test-3) assessed confounding cues. A weighted score was devised to address variability in entry to maze arms, time, and repeated-trial learning. Results In conditioned kits, both Naïve and HI kits exhibited a significant preference for the face of the feeder, but not the lab coat. Cognitive deficits were minimal in normal-appearing HI kits. Conclusion The weighted score system was amenable to statistical manipulation.

引言 在高等动物中,加强新生儿期认知功能的评估模型势在必行。在缺氧缺血(HI)的产前兔模型中,新生小鼠在出生后出现运动障碍,这是脑瘫的特征。在人类中,产前缺氧缺血会导致智力障碍和脑瘫。在一项检测新生兔认知功能的研究中,我们探讨了几个问题。条件试剂盒和非条件试剂盒之间有区别吗?幼兔能分辨人脸或白大褂吗?产前 HI 后出生的运动正常的幼兔是否会表现出认知障碍?方法 将条件反射方案随机分配给每窝的幼仔。在认知测试前的9天,由同一人类穿着白大褂喂养兔仔进行条件反射。选择6臂径向迷宫是因为它简单易用。新西兰白兔在子宫缺血79%或92%足月后出生的正常兔仔与天真兔仔进行了比较。在产后第 22/23 天或 29/30 天,6 臂迷宫有助于确定试剂盒是否能识别旁观者的原始喂养者(测试-1)或旁观者身上的白大褂(测试-2)。使用喂食者/旁观者的面具(测试-3)可评估混淆线索。针对进入迷宫臂、时间和重复试验学习的可变性设计了加权评分。结果 在条件试剂盒中,Naïve 和 HI 试剂盒均表现出对喂食者面部的明显偏好,但对白大褂的偏好不明显。在外观正常的 HI 试剂盒中,认知障碍极小。结论 加权评分系统可以进行统计处理。
{"title":"Development of A New Scoring System in Higher Animals for Testing Cognitive Function in the Newborn Period: Effect of Prenatal Hypoxia-Ischemia.","authors":"Zhongjie Shi, Nadiya Sharif, Kehuan Luo, Sidhartha Tan","doi":"10.1159/000538607","DOIUrl":"10.1159/000538607","url":null,"abstract":"<p><p>Introduction Enhanced models for assessing cognitive function in the neonatal period are imperative in higher animals. Postnatal motor deficits, characteristic of cerebral palsy, emerge in newborn kits within our prenatal-rabbit model of hypoxia-ischemia (HI). In humans, prenatal HI leads to intellectual disability and cerebral palsy. In a study examining cognitive function in newborn rabbits, we explored several questions. Is there a distinction between conditioned and unconditioned kits? Can the kits discern the human face or the lab coat? Do motorically-normal kits, born after prenatal HI, exhibit cognitive deficits? Methods The conditioning protocol was randomly assigned to kits from each litter. For conditioning, the same human, wearing a lab coat, fed the rabbit kits for 9 days before the cognitive test. The 6-arm radial maze was chosen for its simplicity and ease of use. Normally appearing kits, born after uterine ischemia at 79% or 92% term in New Zealand White rabbits, were compared to Naïve kits. On postpartum day 22/23 or 29/30, the 6-arm maze helped determine if the kits recognized the original feeder from bystander (Test-1) or the lab coat on bystander (Test-2). The use of masks of feeder/bystander (Test-3) assessed confounding cues. A weighted score was devised to address variability in entry to maze arms, time, and repeated-trial learning. Results In conditioned kits, both Naïve and HI kits exhibited a significant preference for the face of the feeder, but not the lab coat. Cognitive deficits were minimal in normal-appearing HI kits. Conclusion The weighted score system was amenable to statistical manipulation.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436483/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upstream stimulating factor 2 aggravates neuropathic pain induced in spinal nerve ligation-induced mice via regulating SNHG5/miR-181b-5p. 上游刺激因子2通过调节SNHG5/miR-181b-5p加重脊神经结扎诱导小鼠的神经病理性疼痛
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-03-12 DOI: 10.1159/000538178
Mi Chen, Yang Yang, Jiatian Cui, Li Qiu, Xiaohua Zou, Xianggang Zeng

Background: Upstream stimulating factor 2 (USF2) belongs to basic-Helix-Loop-Helix-Leucine Zipper transcription factor family, regulating expression of genes involved in immune response or energy metabolism network. Role of USF2 in neuropathic pain was evaluated.

Methods: Mice were intraspinally injected with adenovirus for knockdown of USF2 (Ad-shUSF2), and then subjected to spinal nerve ligation (SNL) to induce neuropathic pain. Distribution and expression of USF2 was detected by western blot and immunofluorescence. Mechanical and thermal pain sensitivity were examined by paw withdrawal thresholds (PWT) and paw withdrawal latency (PWL). Chromatin immunoprecipitation (ChIP) and luciferase activity assays were performed to detect binding ability between USF2 and SNHG5.

Results: The expression of USF2 was elevated and colocalized with astrocytes and microglia in L5 dorsal root ganglion (DRG) of SNL-induced mice. Injection of Ad-shUSF2 attenuated SNL-induced decrease of PWT and PWL in mice. Knockdown of USF2 increased level of IL-10, but decreased TNF-α, IL-1β, and IL-6 in SNL-induced mice. Silence of USF2 enhanced protein expression of CD206, while reduced expression of CD16 and CD32 in SNL-induced mice. USF2 bind to promoter of SNHG5, and weakened SNL-induced up-regulation of SNHG5. SNHG5 bind to miR-181b-5p, and miR-181b-5p to interact with CXCL5.

Conclusion: Silence of USF2 ameliorated neuropathic pain, suppressed activation of M1 microglia and inhibited inflammation in SNL-induced mice through regulation of SNHG5/miR-181b-5p/CXCL5 axis. Therefore, USF2/SNHG5/miR-181b-5p/CXCL5 might be a promising target for neuropathic pain. However, the effect of USF2/SNHG5/miR-181b-5p/CXCL5 on neuropathic pain should also be investigated in further research.

背景:上游刺激因子2(USF2)属于碱性-髓质-环状-髓质-亮氨酸拉链转录因子家族,调节参与免疫反应或能量代谢网络的基因表达。本研究评估了 USF2 在神经病理性疼痛中的作用:方法:给小鼠鞘内注射腺病毒以敲除 USF2(Ad-shUSF2),然后进行脊神经结扎(SNL)以诱导神经病理性疼痛。通过Western印迹和免疫荧光检测USF2的分布和表达。通过爪退缩阈值(PWT)和爪退缩潜伏期(PWL)检测机械痛和热痛的敏感性。进行了染色质免疫沉淀(ChIP)和荧光素酶活性测定,以检测USF2和SNHG5之间的结合能力:结果:在SNL诱导的小鼠L5背根神经节(DRG)中,USF2的表达升高,并与星形胶质细胞和小胶质细胞共定位。注射 Ad-shUSF2 可减轻 SNL 诱导的小鼠脉搏波速度和脉搏波速度的下降。在SNL诱导的小鼠中,敲除USF2会增加IL-10的水平,但会降低TNF-α、IL-1β和IL-6的水平。在SNL诱导的小鼠中,沉默USF2可提高CD206的蛋白表达,同时降低CD16和CD32的表达。USF2 与 SNHG5 启动子结合,削弱了 SNL 诱导的 SNHG5 上调。SNHG5与miR-181b-5p结合,miR-181b-5p与CXCL5相互作用:结论:通过调节 SNHG5/miR-181b-5p/CXCL5 轴,沉默 USF2 可改善 SNL 诱导小鼠的神经病理性疼痛、抑制 M1 小胶质细胞的活化并抑制炎症。因此,USF2/SNHG5/miR-181b-5p/CXCL5可能是治疗神经病理性疼痛的一个有前景的靶点。不过,USF2/SNHG5/miR-181b-5p/CXCL5 对神经病理性疼痛的影响还需要进一步研究。
{"title":"Upstream stimulating factor 2 aggravates neuropathic pain induced in spinal nerve ligation-induced mice via regulating SNHG5/miR-181b-5p.","authors":"Mi Chen, Yang Yang, Jiatian Cui, Li Qiu, Xiaohua Zou, Xianggang Zeng","doi":"10.1159/000538178","DOIUrl":"https://doi.org/10.1159/000538178","url":null,"abstract":"<p><strong>Background: </strong>Upstream stimulating factor 2 (USF2) belongs to basic-Helix-Loop-Helix-Leucine Zipper transcription factor family, regulating expression of genes involved in immune response or energy metabolism network. Role of USF2 in neuropathic pain was evaluated.</p><p><strong>Methods: </strong>Mice were intraspinally injected with adenovirus for knockdown of USF2 (Ad-shUSF2), and then subjected to spinal nerve ligation (SNL) to induce neuropathic pain. Distribution and expression of USF2 was detected by western blot and immunofluorescence. Mechanical and thermal pain sensitivity were examined by paw withdrawal thresholds (PWT) and paw withdrawal latency (PWL). Chromatin immunoprecipitation (ChIP) and luciferase activity assays were performed to detect binding ability between USF2 and SNHG5.</p><p><strong>Results: </strong>The expression of USF2 was elevated and colocalized with astrocytes and microglia in L5 dorsal root ganglion (DRG) of SNL-induced mice. Injection of Ad-shUSF2 attenuated SNL-induced decrease of PWT and PWL in mice. Knockdown of USF2 increased level of IL-10, but decreased TNF-α, IL-1β, and IL-6 in SNL-induced mice. Silence of USF2 enhanced protein expression of CD206, while reduced expression of CD16 and CD32 in SNL-induced mice. USF2 bind to promoter of SNHG5, and weakened SNL-induced up-regulation of SNHG5. SNHG5 bind to miR-181b-5p, and miR-181b-5p to interact with CXCL5.</p><p><strong>Conclusion: </strong>Silence of USF2 ameliorated neuropathic pain, suppressed activation of M1 microglia and inhibited inflammation in SNL-induced mice through regulation of SNHG5/miR-181b-5p/CXCL5 axis. Therefore, USF2/SNHG5/miR-181b-5p/CXCL5 might be a promising target for neuropathic pain. However, the effect of USF2/SNHG5/miR-181b-5p/CXCL5 on neuropathic pain should also be investigated in further research.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140112098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early Gray Matter Structural Covariance Predicts Longitudinal Gain in Arithmetic Ability in Children. 早期灰质结构协方差可预测儿童算术能力的纵向提高
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-06-06 DOI: 10.1159/000531419
Tian Ren, Zheng Li, Chunjie Wang, Bao-Ming Li

Previous neuroimaging studies on arithmetic development have mainly focused on functional activation or functional connectivity between brain regions. It remains largely unknown how brain structures support arithmetic development. The present study investigated whether early gray matter structural covariance contributes to later gain in arithmetic ability in children. We used a public longitudinal sample comprising 63 typically developing children. The participants received structural magnetic resonance imaging scanning when they were 11 years old and were tested with a multiplication task at 11 years old (time 1) and 13 years old (time 2), respectively. Mean gray matter volumes were extracted from eight brain regions of interest to anchor salience network (SN), frontal-parietal network (FPN), motor network (MN), and default mode network (DMN) at time 1. We found that longitudinal gain in arithmetic ability was associated with stronger structural covariance of the SN seed with frontal and parietal regions and stronger structural covariance of the FPN seed with insula, but weaker structural covariance of the FPN seed with motor and temporal regions, weaker structural covariance of the MN seed with frontal and motor regions, and weaker structural covariance of the DMN seed with temporal region. However, we did not detect correlation between longitudinal gain in arithmetic ability and behavioral measure or regional gray matter volume at time 1. Our study provides novel evidence for a specific contribution of gray matter structural covariance to longitudinal gain in arithmetic ability in childhood.

以往有关算术能力发展的神经影像学研究主要集中于大脑区域之间的功能激活或功能连接。大脑结构如何支持算术能力的发展在很大程度上仍是未知数。本研究探讨了早期灰质结构协方差是否有助于儿童日后算术能力的提高。我们使用了一个由 63 名发育典型儿童组成的公共纵向样本。参与者在 11 岁时接受了结构磁共振成像扫描,并分别在 11 岁(时间 1)和 13 岁(时间 2)时接受了乘法任务测试。我们从八个感兴趣的脑区提取了平均灰质体积,以锚定第一时间的显著性网络(SN)、额叶-顶叶网络(FPN)、运动网络(MN)和默认模式网络(DMN)。我们发现,算术能力的纵向提高与SN种子与额叶和顶叶区域较强的结构协方差以及FPN种子与岛叶较强的结构协方差有关,但FPN种子与运动和颞叶区域的结构协方差较弱,MN种子与额叶和运动区域的结构协方差较弱,DMN种子与颞叶区域的结构协方差较弱。然而,我们并未发现算术能力的纵向提高与行为测量或第一时间的区域灰质体积之间存在相关性。我们的研究为灰质结构协方差对儿童期算术能力纵向提高的特定贡献提供了新的证据。
{"title":"Early Gray Matter Structural Covariance Predicts Longitudinal Gain in Arithmetic Ability in Children.","authors":"Tian Ren, Zheng Li, Chunjie Wang, Bao-Ming Li","doi":"10.1159/000531419","DOIUrl":"10.1159/000531419","url":null,"abstract":"<p><p>Previous neuroimaging studies on arithmetic development have mainly focused on functional activation or functional connectivity between brain regions. It remains largely unknown how brain structures support arithmetic development. The present study investigated whether early gray matter structural covariance contributes to later gain in arithmetic ability in children. We used a public longitudinal sample comprising 63 typically developing children. The participants received structural magnetic resonance imaging scanning when they were 11 years old and were tested with a multiplication task at 11 years old (time 1) and 13 years old (time 2), respectively. Mean gray matter volumes were extracted from eight brain regions of interest to anchor salience network (SN), frontal-parietal network (FPN), motor network (MN), and default mode network (DMN) at time 1. We found that longitudinal gain in arithmetic ability was associated with stronger structural covariance of the SN seed with frontal and parietal regions and stronger structural covariance of the FPN seed with insula, but weaker structural covariance of the FPN seed with motor and temporal regions, weaker structural covariance of the MN seed with frontal and motor regions, and weaker structural covariance of the DMN seed with temporal region. However, we did not detect correlation between longitudinal gain in arithmetic ability and behavioral measure or regional gray matter volume at time 1. Our study provides novel evidence for a specific contribution of gray matter structural covariance to longitudinal gain in arithmetic ability in childhood.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"119-135"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9583143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MYC Promotes Aggressive Growth and Metastasis of a WNT-Medulloblastoma Mouse Model. MYC 促进 WNT-成纤维细胞瘤小鼠模型的侵袭性生长和转移
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-08-05 DOI: 10.1159/000533270
Rachel Hartley, Timothy N Phoenix

Medulloblastoma (MB), the most common malignant pediatric brain tumor, comprises four molecularly and clinically distinct subgroups (termed WNT, SHH, group 3, and group 4). Prognosis varies based on genetic and pathological features associated with each molecular subgroup. WNT-MB, considered low-risk, is rarely metastatic and contains activating mutations in CTNNB1; group 3-MB (GRP3-MB), commonly classified as high-risk, is frequently metastatic and can contain genomic alterations, resulting in elevated MYC expression. Here, we compare model systems of low-risk WNT-MB and high-risk GRP3-MB to identify tumor and microenvironment interactions that could contribute to features associated with prognosis. Compared to GRP3-MB, we find that WNT-MB is enriched in gene sets related to extracellular matrix (ECM) regulation and cellular adhesion. Exogenous expression of MycT58A in a murine WNT-MB model significantly accelerates growth and results in metastatic disease. In addition to decreased ECM regulation and cell adhesion pathways, we also identified immune system interactions among the top downregulated signaling pathways following MycT58A expression. Taken together, our data provide evidence that increased Myc signaling can promote the growth and metastasis in a murine model of WNT-MB.

髓母细胞瘤(MB)是最常见的小儿恶性脑肿瘤,由四个在分子和临床上截然不同的亚组(称为 WNT、SHH、第 3 组和第 4 组)组成。根据每个分子亚组相关的遗传和病理特征,预后也有所不同。WNT-MB被认为是低风险,很少发生转移,并含有CTNNB1的激活突变;第3组-MB(GRP3-MB)通常被归类为高风险,经常发生转移,并可能含有基因组改变,导致MYC表达升高。在此,我们比较了低风险WNT-MB和高风险GRP3-MB的模型系统,以确定肿瘤和微环境之间的相互作用可能导致与预后相关的特征。与 GRP3-MB 相比,我们发现 WNT-MB 富含与细胞外基质(ECM)调节和细胞粘附相关的基因集。在小鼠 WNT-MB 模型中,MycT58A 的外源表达会显著加速生长并导致转移性疾病。除了ECM调控和细胞粘附途径的减少,我们还在MycT58A表达后下调幅度最大的信号途径中发现了免疫系统的相互作用。总之,我们的数据提供了证据,证明在WNT-MB小鼠模型中,Myc信号的增加可促进生长和转移。
{"title":"MYC Promotes Aggressive Growth and Metastasis of a WNT-Medulloblastoma Mouse Model.","authors":"Rachel Hartley, Timothy N Phoenix","doi":"10.1159/000533270","DOIUrl":"10.1159/000533270","url":null,"abstract":"<p><p>Medulloblastoma (MB), the most common malignant pediatric brain tumor, comprises four molecularly and clinically distinct subgroups (termed WNT, SHH, group 3, and group 4). Prognosis varies based on genetic and pathological features associated with each molecular subgroup. WNT-MB, considered low-risk, is rarely metastatic and contains activating mutations in CTNNB1; group 3-MB (GRP3-MB), commonly classified as high-risk, is frequently metastatic and can contain genomic alterations, resulting in elevated MYC expression. Here, we compare model systems of low-risk WNT-MB and high-risk GRP3-MB to identify tumor and microenvironment interactions that could contribute to features associated with prognosis. Compared to GRP3-MB, we find that WNT-MB is enriched in gene sets related to extracellular matrix (ECM) regulation and cellular adhesion. Exogenous expression of MycT58A in a murine WNT-MB model significantly accelerates growth and results in metastatic disease. In addition to decreased ECM regulation and cell adhesion pathways, we also identified immune system interactions among the top downregulated signaling pathways following MycT58A expression. Taken together, our data provide evidence that increased Myc signaling can promote the growth and metastasis in a murine model of WNT-MB.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"167-178"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9949091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression Analyses of C-Terminal-Binding Protein 1 (CtBP1) during Mouse Brain Development. 小鼠脑发育过程中C末端结合蛋白1(CtBP1)的表达分析。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-10-31 DOI: 10.1159/000534886
Nanako Hamada, Tohru Matsuki, Ikuko Iwamoto, Takuma Nishijo, Mariko Noda, Hidenori Tabata, Atsuo Nakayama, Koh-Ichi Nagata

Introduction: C-terminal-binding protein 1 (CtBP1) is a multi-functional protein with well-established roles as a transcriptional co-repressor in the nucleus and a regulator of membrane fission in the cytoplasm. Although CtBP1 gene abnormalities have been reported to cause neurodevelopmental disorders, the physiological role and expression profile of CtBP1 remains to be elucidated.

Methods: In this study, we used biochemical, immunohistochemical, and immunofluorescence methods to analyze the expression of CtBP1 during mouse brain development.

Results: Western blotting analyses revealed that CtBP1 appeared to be expressed mainly in the central nervous system throughout the developmental process. In immunohistochemical analyses, region-specific nuclear as well as weak cytoplasmic distribution of CtBP1 was observed in telencephalon at embryonic day (E)15 and E17. It is of note that CtBP1 was barely detected in axons but observed in the nucleus of oligodendrocytes in the white matter at E17. As to the cerebellum at postnatal day 30, CtBP1 appeared to be expressed in the nucleus and cytoplasm of Purkinje cells, the nucleus of granule cells and cells in the molecular layer (ML), and the ML per se, where granule cell axons and Purkinje cell dendrites are enriched. In addition, CtBP1 was detected in the cerebellar nuclei.

Conclusion: The obtained results suggest involvement of CtBP1 in brain function.

引言:CtBP1(C末端结合蛋白1)是一种多功能蛋白,在细胞核中具有公认的转录共阻遏物和细胞质中膜分裂的调节因子作用。尽管CtBP1基因异常已被报道会导致神经发育障碍,但CtBPl的生理作用和表达谱仍有待阐明。方法:采用生物化学、免疫组织化学和免疫荧光方法,分析CtBP1在小鼠脑发育过程中的表达。结果:蛋白质印迹分析显示CtBP1在整个发育过程中主要在中枢神经系统中表达。在免疫组织化学分析中,在胚胎第15天(E)和第17天,在端脑中观察到CtBP1的区域特异性细胞核和弱细胞质分布。值得注意的是,CtBP1在轴突中几乎没有检测到,但在E17白质中的少突胶质细胞核中观察到。对于出生后第30天的小脑,CtBP1似乎在浦肯野细胞的细胞核和细胞质、颗粒细胞的核和分子层中的细胞(ML)以及颗粒细胞轴突和浦肯野树突富集的ML本身中表达。此外,在小脑细胞核中检测到CtBP1。结论:CtBP1参与脑功能。
{"title":"Expression Analyses of C-Terminal-Binding Protein 1 (CtBP1) during Mouse Brain Development.","authors":"Nanako Hamada, Tohru Matsuki, Ikuko Iwamoto, Takuma Nishijo, Mariko Noda, Hidenori Tabata, Atsuo Nakayama, Koh-Ichi Nagata","doi":"10.1159/000534886","DOIUrl":"10.1159/000534886","url":null,"abstract":"<p><strong>Introduction: </strong>C-terminal-binding protein 1 (CtBP1) is a multi-functional protein with well-established roles as a transcriptional co-repressor in the nucleus and a regulator of membrane fission in the cytoplasm. Although CtBP1 gene abnormalities have been reported to cause neurodevelopmental disorders, the physiological role and expression profile of CtBP1 remains to be elucidated.</p><p><strong>Methods: </strong>In this study, we used biochemical, immunohistochemical, and immunofluorescence methods to analyze the expression of CtBP1 during mouse brain development.</p><p><strong>Results: </strong>Western blotting analyses revealed that CtBP1 appeared to be expressed mainly in the central nervous system throughout the developmental process. In immunohistochemical analyses, region-specific nuclear as well as weak cytoplasmic distribution of CtBP1 was observed in telencephalon at embryonic day (E)15 and E17. It is of note that CtBP1 was barely detected in axons but observed in the nucleus of oligodendrocytes in the white matter at E17. As to the cerebellum at postnatal day 30, CtBP1 appeared to be expressed in the nucleus and cytoplasm of Purkinje cells, the nucleus of granule cells and cells in the molecular layer (ML), and the ML per se, where granule cell axons and Purkinje cell dendrites are enriched. In addition, CtBP1 was detected in the cerebellar nuclei.</p><p><strong>Conclusion: </strong>The obtained results suggest involvement of CtBP1 in brain function.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"262-272"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71428703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Intersection of Epigenetic Alterations and Developmental State in Pediatric Ependymomas. 小儿脑上皮瘤表观遗传学改变与发育状态的交集
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-03-25 DOI: 10.1159/000537694
Alisha Simone Kardian, Stephen Mack

Background: Ependymomas are the third most common brain cancer in children and have no targeted therapies. They are divided into at least 9 major subtypes based on molecular characteristics and major drivers and have few genetic mutations compared to the adult form of this disease, leading to investigation of other mechanisms.

Summary: Epigenetic alterations such as transcriptional programs activated by oncofusion proteins and alterations in histone modifications play an important role in development of this disease. Evidence suggests these alterations interact with the developmental epigenetic programs in the cell of origin to initiate neoplastic transformation and later disease progression, perhaps by keeping a portion of tumor cells in a developmental, proliferative state.

Key messages: To better understand this disease, research on its developmental origins and associated epigenetic states needs to be further pursued. This could lead to better treatments, which are currently lacking due to the difficult-to-drug nature of known drivers such as fusion proteins. Epigenetic and developmental states characteristic of these tumors may not just be potential therapeutic targets but used as a tool to find new avenues of treatment.

背景:外胚叶肿瘤是儿童第三大常见脑癌,目前尚无靶向疗法。摘要:表观遗传学改变(如由融合蛋白激活的转录程序和组蛋白修饰的改变)在这种疾病的发展中起着重要作用。有证据表明,这些改变与原发细胞中的发育表观遗传学程序相互作用,启动了肿瘤转化和随后的疾病进展,或许是通过使部分肿瘤细胞处于发育、增殖状态:为了更好地了解这种疾病,需要进一步研究其发育起源和相关的表观遗传状态。这可能会带来更好的治疗方法,而目前由于融合蛋白等已知驱动因素的难治性,还缺乏更好的治疗方法。这些肿瘤所特有的表观遗传和发育状态可能不仅仅是潜在的治疗靶点,还可以作为一种工具来寻找新的治疗途径。
{"title":"The Intersection of Epigenetic Alterations and Developmental State in Pediatric Ependymomas.","authors":"Alisha Simone Kardian, Stephen Mack","doi":"10.1159/000537694","DOIUrl":"10.1159/000537694","url":null,"abstract":"<p><strong>Background: </strong>Ependymomas are the third most common brain cancer in children and have no targeted therapies. They are divided into at least 9 major subtypes based on molecular characteristics and major drivers and have few genetic mutations compared to the adult form of this disease, leading to investigation of other mechanisms.</p><p><strong>Summary: </strong>Epigenetic alterations such as transcriptional programs activated by oncofusion proteins and alterations in histone modifications play an important role in development of this disease. Evidence suggests these alterations interact with the developmental epigenetic programs in the cell of origin to initiate neoplastic transformation and later disease progression, perhaps by keeping a portion of tumor cells in a developmental, proliferative state.</p><p><strong>Key messages: </strong>To better understand this disease, research on its developmental origins and associated epigenetic states needs to be further pursued. This could lead to better treatments, which are currently lacking due to the difficult-to-drug nature of known drivers such as fusion proteins. Epigenetic and developmental states characteristic of these tumors may not just be potential therapeutic targets but used as a tool to find new avenues of treatment.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"365-372"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140289465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
My Life with Verne. 我与凡尔纳的生活
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-07-03 DOI: 10.1159/000531759
Richard S Nowakowski
{"title":"My Life with Verne.","authors":"Richard S Nowakowski","doi":"10.1159/000531759","DOIUrl":"10.1159/000531759","url":null,"abstract":"","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"153-157"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9748025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fetal Origins of Health Disparities: Transgenerational Consequences of Racism. 健康差异的胎儿起源:种族主义的跨代后果。
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-06-08 DOI: 10.1159/000531462
Nana Matoba, James W Collins, Maria L V Dizon

Despite advances in perinatal medicine, racial disparity in birth outcomes remains a public health problem in the USA. The underlying mechanisms for this long-standing racial disparity are incompletely understood. This review presents transgenerational risk factors for racial disparities in preterm birth, exploring the impact of interpersonal and structural racism, theoretical models of stress, and biological markers of racial disparities.

尽管围产医学取得了进步,但出生结果中的种族差异仍然是美国的一个公共卫生问题。人们对这一长期存在的种族差异的深层机制尚不完全了解。这篇综述介绍了早产儿种族差异的跨代风险因素,探讨了人际和结构性种族主义、压力理论模型以及种族差异生物标志物的影响。
{"title":"Fetal Origins of Health Disparities: Transgenerational Consequences of Racism.","authors":"Nana Matoba, James W Collins, Maria L V Dizon","doi":"10.1159/000531462","DOIUrl":"10.1159/000531462","url":null,"abstract":"<p><p>Despite advances in perinatal medicine, racial disparity in birth outcomes remains a public health problem in the USA. The underlying mechanisms for this long-standing racial disparity are incompletely understood. This review presents transgenerational risk factors for racial disparities in preterm birth, exploring the impact of interpersonal and structural racism, theoretical models of stress, and biological markers of racial disparities.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"112-118"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9598918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Developmental Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1