首页 > 最新文献

Developmental Neuroscience最新文献

英文 中文
Identification of differentially expressed miRNA in the rat hippocampus during adolescence through an epigenome-wide analysis. 通过全表观基因组分析鉴定青春期大鼠海马中不同表达的 miRNA。
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-03-04 DOI: 10.1159/000538168
Ana Vázquez-Ágredos, Paula Rovira, Blanca Gutiérrez, Fernando Gámiz, Milagros Gallo

Introduction: Epigenetic mechanisms involving microRNAs (miRNAs) play a fundamental role in many biological processes, particularly during prenatal and early postnatal development. Their role in adolescent brain development, however, has been poorly described. The present study aims to explore miRNA expression in the hippocampus during adolescence compared to adulthood in rats.

Method: The brains of female and male Wistar rats were extracted and the hippocampus was freshly dissected at postnatal day 41 (adolescence) and postnatal day 98 (adulthood). An epigenome-wide analysis was conducted to identify the miRNAs significantly expressed in adolescence compared to adulthood. Additionally, target genes of such miRNAs were considered to perform an exploratory gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis.

Results: We identified 16 differentially expressed miRNAs in adolescent male rats compared with adult male rats, and 4 differentially expressed miRNAs in adolescent females compared with adult females. Enrichment analysis reinforced that the target genes found are related to neurodevelopmental processes such as cell proliferation, cell migration and nervous system development.

Conclusion: Our findings suggest a complex pattern of miRNA expression during adolescence, which differs from that in adulthood. The differential expression of miRNA in the hippocampus during adolescence may be associated with the late developmental changes occurring in this brain region. Furthermore, the observed sex differences in miRNA expression patterns indicate potential sexual differentiation in hippocampal development. Further comprehensive investigations are needed to elucidate the roles of miRNA in normal brain development.

引言涉及微小核糖核酸(miRNA)的表观遗传机制在许多生物过程中,尤其是在产前和产后早期发育过程中发挥着重要作用。然而,它们在青少年大脑发育中的作用却鲜有描述。本研究旨在探讨与成年期相比,青春期大鼠海马中 miRNA 的表达情况:方法:提取雌性和雄性 Wistar 大鼠的大脑,并在出生后第 41 天(青春期)和出生后第 98 天(成年期)新鲜解剖海马。对整个表观基因组进行了分析,以确定与成年期相比,在青春期有显著表达的 miRNA。此外,还考虑了这些 miRNA 的靶基因,以进行探索性的基因本体(GO)和京都基因和基因组百科全书(KEGG)通路富集分析:结果:与成年雄性大鼠相比,我们在青春期雄性大鼠中发现了 16 个差异表达的 miRNA;与成年雌性大鼠相比,我们在青春期雌性大鼠中发现了 4 个差异表达的 miRNA。富集分析进一步证实,所发现的靶基因与神经发育过程有关,如细胞增殖、细胞迁移和神经系统发育:我们的研究结果表明,青春期的 miRNA 表达模式复杂,与成年期不同。青春期海马区 miRNA 的不同表达可能与该脑区的晚期发育变化有关。此外,观察到的 miRNA 表达模式的性别差异表明,海马发育过程中可能存在性别差异。要阐明 miRNA 在大脑正常发育中的作用,还需要进一步的全面研究。
{"title":"Identification of differentially expressed miRNA in the rat hippocampus during adolescence through an epigenome-wide analysis.","authors":"Ana Vázquez-Ágredos, Paula Rovira, Blanca Gutiérrez, Fernando Gámiz, Milagros Gallo","doi":"10.1159/000538168","DOIUrl":"https://doi.org/10.1159/000538168","url":null,"abstract":"<p><strong>Introduction: </strong>Epigenetic mechanisms involving microRNAs (miRNAs) play a fundamental role in many biological processes, particularly during prenatal and early postnatal development. Their role in adolescent brain development, however, has been poorly described. The present study aims to explore miRNA expression in the hippocampus during adolescence compared to adulthood in rats.</p><p><strong>Method: </strong>The brains of female and male Wistar rats were extracted and the hippocampus was freshly dissected at postnatal day 41 (adolescence) and postnatal day 98 (adulthood). An epigenome-wide analysis was conducted to identify the miRNAs significantly expressed in adolescence compared to adulthood. Additionally, target genes of such miRNAs were considered to perform an exploratory gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis.</p><p><strong>Results: </strong>We identified 16 differentially expressed miRNAs in adolescent male rats compared with adult male rats, and 4 differentially expressed miRNAs in adolescent females compared with adult females. Enrichment analysis reinforced that the target genes found are related to neurodevelopmental processes such as cell proliferation, cell migration and nervous system development.</p><p><strong>Conclusion: </strong>Our findings suggest a complex pattern of miRNA expression during adolescence, which differs from that in adulthood. The differential expression of miRNA in the hippocampus during adolescence may be associated with the late developmental changes occurring in this brain region. Furthermore, the observed sex differences in miRNA expression patterns indicate potential sexual differentiation in hippocampal development. Further comprehensive investigations are needed to elucidate the roles of miRNA in normal brain development.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140029498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Septotemporal variation of information processing in the hippocampus of Fmr1 KO rat. Fmr1 KO大鼠海马信息处理的节时变异
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-02-16 DOI: 10.1159/000537879
Leonidas J Leontiadis, Panagiotis Felemegkas, George Trompoukis, Giota Tsotsokou, Athina Miliou, Evangelia Karagianni, Pavlos Rigas, Costas Papatheodoropoulos

Introduction Fragile X messenger ribonucleoprotein (FMRP) is a protein involved in many neuronal processes in the nervous system including the modulation of synaptic transmission. Loss of FMRP produces the fragile X syndrome (FXS), a neurodevelopmental disorder affecting synaptic and neuronal function and producing cognitive impairments. However, the effects of FXS on short-term processing of synaptic inputs and neuronal outputs in the hippocampus have not yet been sufficiently clarified. Furthermore, it is not known whether dorsal and ventral hippocampus are affected similarly or not in FXS. Method We used a Fmr1 knock-out (KO) rat model of FXS and recordings of evoked field potentials from the CA1 field of transverse slices from both the dorsal and the ventral hippocampus of adult rats. Results Following application of a frequency stimulation protocol consisting of a ten-pulse train and recordings of fEPSP, we found that the dorsal but not ventral KO hippocampus shows altered short-term synaptic plasticity. Furthermore, applying the frequency stimulation protocol and recordings of population spikes, both segments of the KO hippocampus display altered short-term neuronal dynamics. Conclusions These data suggest that short-term processing of synaptic inputs is affected in the dorsal, not ventral FXS hippocampus, while short-term processing of neuronal output is affected in both segments of the FXS hippocampus in a similar way. These FXS-associated changes may have significant impact on the functions of the dorsal and ventral hippocampus in individuals with FXS.

导言脆性 X 信使核糖核蛋白(FMRP)是一种参与神经系统中许多神经元过程(包括突触传递调节)的蛋白质。脆性 X 综合征(FXS)是一种影响突触和神经元功能并导致认知障碍的神经发育疾病。然而,FXS 对海马突触输入和神经元输出的短期处理的影响尚未得到充分阐明。此外,FXS患者的海马背侧和腹侧是否受到类似的影响也不得而知。方法 我们使用了 Fmr1 基因敲除(KO)的 FXS 大鼠模型,并记录了成年大鼠海马背侧和腹侧横向切片 CA1 场的诱发电位。结果 在应用由十个脉冲串组成的频率刺激方案和记录 fEPSP 之后,我们发现 KO 海马背侧而非腹侧的短期突触可塑性发生了改变。此外,应用频率刺激方案和群体尖峰记录,KO 海马的两个区段都显示出短期神经元动态的改变。结论 这些数据表明,突触输入的短期处理在 FXS 海马的背侧而非腹侧受到影响,而神经元输出的短期处理在 FXS 海马的两个区段受到类似的影响。这些与 FXS 相关的变化可能会对 FXS 患者海马背侧和腹侧的功能产生重大影响。
{"title":"Septotemporal variation of information processing in the hippocampus of Fmr1 KO rat.","authors":"Leonidas J Leontiadis, Panagiotis Felemegkas, George Trompoukis, Giota Tsotsokou, Athina Miliou, Evangelia Karagianni, Pavlos Rigas, Costas Papatheodoropoulos","doi":"10.1159/000537879","DOIUrl":"https://doi.org/10.1159/000537879","url":null,"abstract":"<p><p>Introduction Fragile X messenger ribonucleoprotein (FMRP) is a protein involved in many neuronal processes in the nervous system including the modulation of synaptic transmission. Loss of FMRP produces the fragile X syndrome (FXS), a neurodevelopmental disorder affecting synaptic and neuronal function and producing cognitive impairments. However, the effects of FXS on short-term processing of synaptic inputs and neuronal outputs in the hippocampus have not yet been sufficiently clarified. Furthermore, it is not known whether dorsal and ventral hippocampus are affected similarly or not in FXS. Method We used a Fmr1 knock-out (KO) rat model of FXS and recordings of evoked field potentials from the CA1 field of transverse slices from both the dorsal and the ventral hippocampus of adult rats. Results Following application of a frequency stimulation protocol consisting of a ten-pulse train and recordings of fEPSP, we found that the dorsal but not ventral KO hippocampus shows altered short-term synaptic plasticity. Furthermore, applying the frequency stimulation protocol and recordings of population spikes, both segments of the KO hippocampus display altered short-term neuronal dynamics. Conclusions These data suggest that short-term processing of synaptic inputs is affected in the dorsal, not ventral FXS hippocampus, while short-term processing of neuronal output is affected in both segments of the FXS hippocampus in a similar way. These FXS-associated changes may have significant impact on the functions of the dorsal and ventral hippocampus in individuals with FXS.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex-specific behavioural deficits in adulthood following acute activation of the GABAA receptor in the neonatal mouse. 新生小鼠 GABAA 受体急性激活后成年期行为缺陷的性别特异性
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-02-07 DOI: 10.1159/000536641
Ane Goikolea-Vives, Cathy Fernandes, Michael S C Thomas, Claire Thornton, Helen B Stolp

Introduction: Sex differences exist in the prevalence of neurodevelopmental disorders (NDDs). Part of the aetiology of NDDs has been proposed to be alterations in the balance between excitatory and inhibitory neurotransmission, leading to the question of whether males and females respond differently to altered neurotransmitter balance. We investigated whether pharmacological alteration of GABAA signalling in early development results in sex-dependent changes in adult behaviours associated with NDDs.

Methods: Male and female C57BL/6J mice received intraperitoneal injections of 0.5mg/kg muscimol or saline on postnatal days (P) 3-5 and were subjected to behavioural testing, specifically open field, light dark box, marble burying, sucralose preference, social interaction and olfactory habituation/dishabituation tests between P60-90.

Results: Early postnatal administration of muscimol resulted in reduced anxiety in the light dark box test in both male and female adult mice. Muscimol reduced sucralose preference in males, but not females, whereas female mice showed reduced social behaviours. Regional alterations in cortical thickness were observed in the weeks following GABAA receptor activation, pointing to an evolving structural difference in the brain underlying adult behaviour.

Conclusions: We conclude that activation of the GABAA receptor in the first week of life resulted in long-lasting changes in a range of behaviours in adulthood following altered neurodevelopment. Sex of the individual affected the nature and severity of these abnormalities, explaining part of the varied pathophysiology and neurodevelopmental diagnosis that derive from excitatory/inhibitory imbalance.

导言:神经发育障碍(NDDs)的发病率存在性别差异。神经发育障碍的部分病因被认为是兴奋性和抑制性神经递质之间的平衡发生了改变,从而引发了男性和女性是否会对神经递质平衡的改变做出不同反应的问题。我们研究了药物改变早期发育中的 GABAA 信号是否会导致与 NDDs 相关的成年行为发生性别依赖性变化:雄性和雌性C57BL/6J小鼠在出生后第3-5天腹腔注射0.5mg/kg麝香草酚或生理盐水,并在出生后第60-90天接受行为测试,特别是开阔地、光暗箱、大理石埋藏、蔗糖偏好、社会互动和嗅觉习惯化/减弱测试:结果:出生后早期服用麝香草酚可减少雄性和雌性成年小鼠在光暗箱测试中的焦虑。麝香草酚能降低雄性小鼠对蔗糖素(三氯蔗糖)的偏好,但不能降低雌性小鼠对蔗糖素(三氯蔗糖)的偏好。在 GABAA 受体激活后的几周内,观察到大脑皮层厚度发生了区域性变化,这表明成年小鼠行为背后的大脑结构差异在不断发展:我们得出的结论是,在小鼠出生后第一周激活 GABAA 受体会导致其成年后神经发育发生改变,从而引起一系列行为的长期变化。个体的性别会影响这些异常的性质和严重程度,从而部分解释了兴奋/抑制失衡导致的不同病理生理学和神经发育诊断。
{"title":"Sex-specific behavioural deficits in adulthood following acute activation of the GABAA receptor in the neonatal mouse.","authors":"Ane Goikolea-Vives, Cathy Fernandes, Michael S C Thomas, Claire Thornton, Helen B Stolp","doi":"10.1159/000536641","DOIUrl":"10.1159/000536641","url":null,"abstract":"<p><strong>Introduction: </strong>Sex differences exist in the prevalence of neurodevelopmental disorders (NDDs). Part of the aetiology of NDDs has been proposed to be alterations in the balance between excitatory and inhibitory neurotransmission, leading to the question of whether males and females respond differently to altered neurotransmitter balance. We investigated whether pharmacological alteration of GABAA signalling in early development results in sex-dependent changes in adult behaviours associated with NDDs.</p><p><strong>Methods: </strong>Male and female C57BL/6J mice received intraperitoneal injections of 0.5mg/kg muscimol or saline on postnatal days (P) 3-5 and were subjected to behavioural testing, specifically open field, light dark box, marble burying, sucralose preference, social interaction and olfactory habituation/dishabituation tests between P60-90.</p><p><strong>Results: </strong>Early postnatal administration of muscimol resulted in reduced anxiety in the light dark box test in both male and female adult mice. Muscimol reduced sucralose preference in males, but not females, whereas female mice showed reduced social behaviours. Regional alterations in cortical thickness were observed in the weeks following GABAA receptor activation, pointing to an evolving structural difference in the brain underlying adult behaviour.</p><p><strong>Conclusions: </strong>We conclude that activation of the GABAA receptor in the first week of life resulted in long-lasting changes in a range of behaviours in adulthood following altered neurodevelopment. Sex of the individual affected the nature and severity of these abnormalities, explaining part of the varied pathophysiology and neurodevelopmental diagnosis that derive from excitatory/inhibitory imbalance.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Central Autonomic Network and heart rate variability in premature neonates. 早产新生儿的中枢自主神经网络和心率变异性。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-02-06 DOI: 10.1159/000536513
Kelsey Christoffel, Josepheen De Asis-Cruz, Rathinaswamy B Govindan, Jung Hoon Kim, Kevin Michael Cook, Kushal Kapse, Nickie Andescavage, Sudeepta Basu, Emma Spoehr, Catherine Limperopoulos, Adre Du Plessis

Introduction: The Central Autonomic Network (CAN) is a hierarchy of brain structures that collectively influence cardiac autonomic input, mediating the majority of brain-heart interactions, but has never been studied in premature neonates. In this study, we use heart rate variability (HRV), which has been described as the "primary output" of the CAN, and resting state functional MRI to characterize brain-heart relationships in premature neonates.

Methods: We studied premature neonates who underwent resting state functional MRI (rsfMRI) at term, (37-weeks postmenstrual age [PMA] or above) and had HRV data recorded during the same week of their MRI. HRV was derived from continuous electrocardiogram data during the week of the rsfMRI scan. For rsfMRI, a seed-based approach was used to define regions of interest (ROI) pertinent to the CAN, and blood oxygen level-dependent signal was correlated between each ROI as a measure of functional connectivity. HRV was correlated with CAN connectivity (CANconn) for each region, and sub-group analysis was performed based on sex and clinical comorbidities.

Results: Forty-seven premature neonates were included in this study, with a mean gestational age at birth of 28.1 +/- 2.6 weeks. Term CANconn was found to be significantly correlated with HRV in approximately one-fifth of CAN connections. Two distinct patterns emerged among these HRV-CANconn relationships. In the first, increased HRV was associated with stronger CANconn of limbic regions. In the second pattern, stronger CANconn at the precuneus was associated with impaired HRV maturation. These patterns were especially pronounced in male premature neonates.

Conclusion: We report for the first time evidence of brain-heart relationships in premature neonates and an emerging CAN, most striking in male neonates, suggesting that the brain-heart axis may be more vulnerable in male premature neonates. Signatures in the heart rate may eventually become an important non-invasive tool to identify premature males at highest risk for neurodevelopmental impairment.

引言中央自主神经网络(CAN)是大脑结构的一个层次,它共同影响心脏的自主神经输入,介导了大部分的脑-心相互作用,但从未在早产新生儿中进行过研究。在这项研究中,我们利用心率变异性(HRV)和静息状态功能磁共振成像来描述早产新生儿的脑心关系:我们研究了在足月(月经后 37 周或以上)接受静息状态功能磁共振成像(rsfMRI)并在磁共振成像的同一周记录心率变异数据的早产新生儿。心率变异是从 rsfMRI 扫描当周的连续心电图数据中得出的。对于 rsfMRI,采用基于种子的方法来定义与 CAN 相关的感兴趣区 (ROI),并在每个感兴趣区之间关联血氧水平相关信号,作为功能连通性的衡量标准。心率变异与每个区域的CAN连通性(CANconn)相关,并根据性别和临床合并症进行分组分析:本研究共纳入 47 名早产新生儿,出生时的平均胎龄为 28.1 +/- 2.6 周。研究发现,在大约五分之一的 CAN 连接中,CANconn 术语与心率变异显著相关。在这些心率变异与 CANconn 的关系中出现了两种不同的模式。第一种模式是,心率变异的增加与边缘区域更强的 CANconn 相关。在第二种模式中,楔前区较强的 CAN 连接与心率变异成熟受损有关。这些模式在男性早产新生儿中尤为明显:我们首次报告了早产新生儿脑-心关系的证据,以及在男性早产新生儿中最显著的新兴 CAN,这表明男性早产新生儿的脑-心轴可能更脆弱。心率特征最终可能成为一种重要的非侵入性工具,用于识别神经发育障碍风险最高的早产男性。
{"title":"Central Autonomic Network and heart rate variability in premature neonates.","authors":"Kelsey Christoffel, Josepheen De Asis-Cruz, Rathinaswamy B Govindan, Jung Hoon Kim, Kevin Michael Cook, Kushal Kapse, Nickie Andescavage, Sudeepta Basu, Emma Spoehr, Catherine Limperopoulos, Adre Du Plessis","doi":"10.1159/000536513","DOIUrl":"10.1159/000536513","url":null,"abstract":"<p><strong>Introduction: </strong>The Central Autonomic Network (CAN) is a hierarchy of brain structures that collectively influence cardiac autonomic input, mediating the majority of brain-heart interactions, but has never been studied in premature neonates. In this study, we use heart rate variability (HRV), which has been described as the \"primary output\" of the CAN, and resting state functional MRI to characterize brain-heart relationships in premature neonates.</p><p><strong>Methods: </strong>We studied premature neonates who underwent resting state functional MRI (rsfMRI) at term, (37-weeks postmenstrual age [PMA] or above) and had HRV data recorded during the same week of their MRI. HRV was derived from continuous electrocardiogram data during the week of the rsfMRI scan. For rsfMRI, a seed-based approach was used to define regions of interest (ROI) pertinent to the CAN, and blood oxygen level-dependent signal was correlated between each ROI as a measure of functional connectivity. HRV was correlated with CAN connectivity (CANconn) for each region, and sub-group analysis was performed based on sex and clinical comorbidities.</p><p><strong>Results: </strong>Forty-seven premature neonates were included in this study, with a mean gestational age at birth of 28.1 +/- 2.6 weeks. Term CANconn was found to be significantly correlated with HRV in approximately one-fifth of CAN connections. Two distinct patterns emerged among these HRV-CANconn relationships. In the first, increased HRV was associated with stronger CANconn of limbic regions. In the second pattern, stronger CANconn at the precuneus was associated with impaired HRV maturation. These patterns were especially pronounced in male premature neonates.</p><p><strong>Conclusion: </strong>We report for the first time evidence of brain-heart relationships in premature neonates and an emerging CAN, most striking in male neonates, suggesting that the brain-heart axis may be more vulnerable in male premature neonates. Signatures in the heart rate may eventually become an important non-invasive tool to identify premature males at highest risk for neurodevelopmental impairment.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139698817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early Gray Matter Structural Covariance Predicts Longitudinal Gain in Arithmetic Ability in Children. 早期灰质结构协方差可预测儿童算术能力的纵向提高
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-06-06 DOI: 10.1159/000531419
Tian Ren, Zheng Li, Chunjie Wang, Bao-Ming Li

Previous neuroimaging studies on arithmetic development have mainly focused on functional activation or functional connectivity between brain regions. It remains largely unknown how brain structures support arithmetic development. The present study investigated whether early gray matter structural covariance contributes to later gain in arithmetic ability in children. We used a public longitudinal sample comprising 63 typically developing children. The participants received structural magnetic resonance imaging scanning when they were 11 years old and were tested with a multiplication task at 11 years old (time 1) and 13 years old (time 2), respectively. Mean gray matter volumes were extracted from eight brain regions of interest to anchor salience network (SN), frontal-parietal network (FPN), motor network (MN), and default mode network (DMN) at time 1. We found that longitudinal gain in arithmetic ability was associated with stronger structural covariance of the SN seed with frontal and parietal regions and stronger structural covariance of the FPN seed with insula, but weaker structural covariance of the FPN seed with motor and temporal regions, weaker structural covariance of the MN seed with frontal and motor regions, and weaker structural covariance of the DMN seed with temporal region. However, we did not detect correlation between longitudinal gain in arithmetic ability and behavioral measure or regional gray matter volume at time 1. Our study provides novel evidence for a specific contribution of gray matter structural covariance to longitudinal gain in arithmetic ability in childhood.

以往有关算术能力发展的神经影像学研究主要集中于大脑区域之间的功能激活或功能连接。大脑结构如何支持算术能力的发展在很大程度上仍是未知数。本研究探讨了早期灰质结构协方差是否有助于儿童日后算术能力的提高。我们使用了一个由 63 名发育典型儿童组成的公共纵向样本。参与者在 11 岁时接受了结构磁共振成像扫描,并分别在 11 岁(时间 1)和 13 岁(时间 2)时接受了乘法任务测试。我们从八个感兴趣的脑区提取了平均灰质体积,以锚定第一时间的显著性网络(SN)、额叶-顶叶网络(FPN)、运动网络(MN)和默认模式网络(DMN)。我们发现,算术能力的纵向提高与SN种子与额叶和顶叶区域较强的结构协方差以及FPN种子与岛叶较强的结构协方差有关,但FPN种子与运动和颞叶区域的结构协方差较弱,MN种子与额叶和运动区域的结构协方差较弱,DMN种子与颞叶区域的结构协方差较弱。然而,我们并未发现算术能力的纵向提高与行为测量或第一时间的区域灰质体积之间存在相关性。我们的研究为灰质结构协方差对儿童期算术能力纵向提高的特定贡献提供了新的证据。
{"title":"Early Gray Matter Structural Covariance Predicts Longitudinal Gain in Arithmetic Ability in Children.","authors":"Tian Ren, Zheng Li, Chunjie Wang, Bao-Ming Li","doi":"10.1159/000531419","DOIUrl":"10.1159/000531419","url":null,"abstract":"<p><p>Previous neuroimaging studies on arithmetic development have mainly focused on functional activation or functional connectivity between brain regions. It remains largely unknown how brain structures support arithmetic development. The present study investigated whether early gray matter structural covariance contributes to later gain in arithmetic ability in children. We used a public longitudinal sample comprising 63 typically developing children. The participants received structural magnetic resonance imaging scanning when they were 11 years old and were tested with a multiplication task at 11 years old (time 1) and 13 years old (time 2), respectively. Mean gray matter volumes were extracted from eight brain regions of interest to anchor salience network (SN), frontal-parietal network (FPN), motor network (MN), and default mode network (DMN) at time 1. We found that longitudinal gain in arithmetic ability was associated with stronger structural covariance of the SN seed with frontal and parietal regions and stronger structural covariance of the FPN seed with insula, but weaker structural covariance of the FPN seed with motor and temporal regions, weaker structural covariance of the MN seed with frontal and motor regions, and weaker structural covariance of the DMN seed with temporal region. However, we did not detect correlation between longitudinal gain in arithmetic ability and behavioral measure or regional gray matter volume at time 1. Our study provides novel evidence for a specific contribution of gray matter structural covariance to longitudinal gain in arithmetic ability in childhood.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"119-135"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9583143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MYC Promotes Aggressive Growth and Metastasis of a WNT-Medulloblastoma Mouse Model. MYC 促进 WNT-成纤维细胞瘤小鼠模型的侵袭性生长和转移
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-08-05 DOI: 10.1159/000533270
Rachel Hartley, Timothy N Phoenix

Medulloblastoma (MB), the most common malignant pediatric brain tumor, comprises four molecularly and clinically distinct subgroups (termed WNT, SHH, group 3, and group 4). Prognosis varies based on genetic and pathological features associated with each molecular subgroup. WNT-MB, considered low-risk, is rarely metastatic and contains activating mutations in CTNNB1; group 3-MB (GRP3-MB), commonly classified as high-risk, is frequently metastatic and can contain genomic alterations, resulting in elevated MYC expression. Here, we compare model systems of low-risk WNT-MB and high-risk GRP3-MB to identify tumor and microenvironment interactions that could contribute to features associated with prognosis. Compared to GRP3-MB, we find that WNT-MB is enriched in gene sets related to extracellular matrix (ECM) regulation and cellular adhesion. Exogenous expression of MycT58A in a murine WNT-MB model significantly accelerates growth and results in metastatic disease. In addition to decreased ECM regulation and cell adhesion pathways, we also identified immune system interactions among the top downregulated signaling pathways following MycT58A expression. Taken together, our data provide evidence that increased Myc signaling can promote the growth and metastasis in a murine model of WNT-MB.

髓母细胞瘤(MB)是最常见的小儿恶性脑肿瘤,由四个在分子和临床上截然不同的亚组(称为 WNT、SHH、第 3 组和第 4 组)组成。根据每个分子亚组相关的遗传和病理特征,预后也有所不同。WNT-MB被认为是低风险,很少发生转移,并含有CTNNB1的激活突变;第3组-MB(GRP3-MB)通常被归类为高风险,经常发生转移,并可能含有基因组改变,导致MYC表达升高。在此,我们比较了低风险WNT-MB和高风险GRP3-MB的模型系统,以确定肿瘤和微环境之间的相互作用可能导致与预后相关的特征。与 GRP3-MB 相比,我们发现 WNT-MB 富含与细胞外基质(ECM)调节和细胞粘附相关的基因集。在小鼠 WNT-MB 模型中,MycT58A 的外源表达会显著加速生长并导致转移性疾病。除了ECM调控和细胞粘附途径的减少,我们还在MycT58A表达后下调幅度最大的信号途径中发现了免疫系统的相互作用。总之,我们的数据提供了证据,证明在WNT-MB小鼠模型中,Myc信号的增加可促进生长和转移。
{"title":"MYC Promotes Aggressive Growth and Metastasis of a WNT-Medulloblastoma Mouse Model.","authors":"Rachel Hartley, Timothy N Phoenix","doi":"10.1159/000533270","DOIUrl":"10.1159/000533270","url":null,"abstract":"<p><p>Medulloblastoma (MB), the most common malignant pediatric brain tumor, comprises four molecularly and clinically distinct subgroups (termed WNT, SHH, group 3, and group 4). Prognosis varies based on genetic and pathological features associated with each molecular subgroup. WNT-MB, considered low-risk, is rarely metastatic and contains activating mutations in CTNNB1; group 3-MB (GRP3-MB), commonly classified as high-risk, is frequently metastatic and can contain genomic alterations, resulting in elevated MYC expression. Here, we compare model systems of low-risk WNT-MB and high-risk GRP3-MB to identify tumor and microenvironment interactions that could contribute to features associated with prognosis. Compared to GRP3-MB, we find that WNT-MB is enriched in gene sets related to extracellular matrix (ECM) regulation and cellular adhesion. Exogenous expression of MycT58A in a murine WNT-MB model significantly accelerates growth and results in metastatic disease. In addition to decreased ECM regulation and cell adhesion pathways, we also identified immune system interactions among the top downregulated signaling pathways following MycT58A expression. Taken together, our data provide evidence that increased Myc signaling can promote the growth and metastasis in a murine model of WNT-MB.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"167-178"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9949091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression Analyses of C-Terminal-Binding Protein 1 (CtBP1) during Mouse Brain Development. 小鼠脑发育过程中C末端结合蛋白1(CtBP1)的表达分析。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-10-31 DOI: 10.1159/000534886
Nanako Hamada, Tohru Matsuki, Ikuko Iwamoto, Takuma Nishijo, Mariko Noda, Hidenori Tabata, Atsuo Nakayama, Koh-Ichi Nagata

Introduction: C-terminal-binding protein 1 (CtBP1) is a multi-functional protein with well-established roles as a transcriptional co-repressor in the nucleus and a regulator of membrane fission in the cytoplasm. Although CtBP1 gene abnormalities have been reported to cause neurodevelopmental disorders, the physiological role and expression profile of CtBP1 remains to be elucidated.

Methods: In this study, we used biochemical, immunohistochemical, and immunofluorescence methods to analyze the expression of CtBP1 during mouse brain development.

Results: Western blotting analyses revealed that CtBP1 appeared to be expressed mainly in the central nervous system throughout the developmental process. In immunohistochemical analyses, region-specific nuclear as well as weak cytoplasmic distribution of CtBP1 was observed in telencephalon at embryonic day (E)15 and E17. It is of note that CtBP1 was barely detected in axons but observed in the nucleus of oligodendrocytes in the white matter at E17. As to the cerebellum at postnatal day 30, CtBP1 appeared to be expressed in the nucleus and cytoplasm of Purkinje cells, the nucleus of granule cells and cells in the molecular layer (ML), and the ML per se, where granule cell axons and Purkinje cell dendrites are enriched. In addition, CtBP1 was detected in the cerebellar nuclei.

Conclusion: The obtained results suggest involvement of CtBP1 in brain function.

引言:CtBP1(C末端结合蛋白1)是一种多功能蛋白,在细胞核中具有公认的转录共阻遏物和细胞质中膜分裂的调节因子作用。尽管CtBP1基因异常已被报道会导致神经发育障碍,但CtBPl的生理作用和表达谱仍有待阐明。方法:采用生物化学、免疫组织化学和免疫荧光方法,分析CtBP1在小鼠脑发育过程中的表达。结果:蛋白质印迹分析显示CtBP1在整个发育过程中主要在中枢神经系统中表达。在免疫组织化学分析中,在胚胎第15天(E)和第17天,在端脑中观察到CtBP1的区域特异性细胞核和弱细胞质分布。值得注意的是,CtBP1在轴突中几乎没有检测到,但在E17白质中的少突胶质细胞核中观察到。对于出生后第30天的小脑,CtBP1似乎在浦肯野细胞的细胞核和细胞质、颗粒细胞的核和分子层中的细胞(ML)以及颗粒细胞轴突和浦肯野树突富集的ML本身中表达。此外,在小脑细胞核中检测到CtBP1。结论:CtBP1参与脑功能。
{"title":"Expression Analyses of C-Terminal-Binding Protein 1 (CtBP1) during Mouse Brain Development.","authors":"Nanako Hamada, Tohru Matsuki, Ikuko Iwamoto, Takuma Nishijo, Mariko Noda, Hidenori Tabata, Atsuo Nakayama, Koh-Ichi Nagata","doi":"10.1159/000534886","DOIUrl":"10.1159/000534886","url":null,"abstract":"<p><strong>Introduction: </strong>C-terminal-binding protein 1 (CtBP1) is a multi-functional protein with well-established roles as a transcriptional co-repressor in the nucleus and a regulator of membrane fission in the cytoplasm. Although CtBP1 gene abnormalities have been reported to cause neurodevelopmental disorders, the physiological role and expression profile of CtBP1 remains to be elucidated.</p><p><strong>Methods: </strong>In this study, we used biochemical, immunohistochemical, and immunofluorescence methods to analyze the expression of CtBP1 during mouse brain development.</p><p><strong>Results: </strong>Western blotting analyses revealed that CtBP1 appeared to be expressed mainly in the central nervous system throughout the developmental process. In immunohistochemical analyses, region-specific nuclear as well as weak cytoplasmic distribution of CtBP1 was observed in telencephalon at embryonic day (E)15 and E17. It is of note that CtBP1 was barely detected in axons but observed in the nucleus of oligodendrocytes in the white matter at E17. As to the cerebellum at postnatal day 30, CtBP1 appeared to be expressed in the nucleus and cytoplasm of Purkinje cells, the nucleus of granule cells and cells in the molecular layer (ML), and the ML per se, where granule cell axons and Purkinje cell dendrites are enriched. In addition, CtBP1 was detected in the cerebellar nuclei.</p><p><strong>Conclusion: </strong>The obtained results suggest involvement of CtBP1 in brain function.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"262-272"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71428703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
My Life with Verne. 我与凡尔纳的生活
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-07-03 DOI: 10.1159/000531759
Richard S Nowakowski
{"title":"My Life with Verne.","authors":"Richard S Nowakowski","doi":"10.1159/000531759","DOIUrl":"10.1159/000531759","url":null,"abstract":"","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"153-157"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9748025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fetal Origins of Health Disparities: Transgenerational Consequences of Racism. 健康差异的胎儿起源:种族主义的跨代后果。
IF 2.9 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-06-08 DOI: 10.1159/000531462
Nana Matoba, James W Collins, Maria L V Dizon

Despite advances in perinatal medicine, racial disparity in birth outcomes remains a public health problem in the USA. The underlying mechanisms for this long-standing racial disparity are incompletely understood. This review presents transgenerational risk factors for racial disparities in preterm birth, exploring the impact of interpersonal and structural racism, theoretical models of stress, and biological markers of racial disparities.

尽管围产医学取得了进步,但出生结果中的种族差异仍然是美国的一个公共卫生问题。人们对这一长期存在的种族差异的深层机制尚不完全了解。这篇综述介绍了早产儿种族差异的跨代风险因素,探讨了人际和结构性种族主义、压力理论模型以及种族差异生物标志物的影响。
{"title":"Fetal Origins of Health Disparities: Transgenerational Consequences of Racism.","authors":"Nana Matoba, James W Collins, Maria L V Dizon","doi":"10.1159/000531462","DOIUrl":"10.1159/000531462","url":null,"abstract":"<p><p>Despite advances in perinatal medicine, racial disparity in birth outcomes remains a public health problem in the USA. The underlying mechanisms for this long-standing racial disparity are incompletely understood. This review presents transgenerational risk factors for racial disparities in preterm birth, exploring the impact of interpersonal and structural racism, theoretical models of stress, and biological markers of racial disparities.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"112-118"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9598918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developmental Regulation of Matrix Metalloproteinases in Response to Multifactorial, Severe Traumatic Brain Injuries during Immaturity. 基质金属蛋白酶在未成熟时期对多因素严重创伤性脑损伤反应的发育调控。
IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-01-08 DOI: 10.1159/000536054
Alexandra Hochstetler, George Price, Amy Baohan, Melissa Li, Frances Rodriguez Lara, Josephine Lok, Beth Costine-Bartell
<p><strong>Introduction: </strong>A striking pattern in young children after severe TBI is when the entire cortical ribbon displays tissue damage: hemispheric hypodensity (HH). HH is often a result of abusive head trauma (AHT). We previously reported a model of HH in a gyrencephalic species where a combination of injuries consisting of (1) cortical impact, (2) midline shift, (3) subdural hematoma/subarachnoid hemorrhage, (4) traumatic seizures, and (5) brief apnea and hypoventilation resulted in extensive, hypoxic-ischemic-type injury. Importantly, this mechanism closely resembles that seen in children, with relative sparing of the contralateral cortex, thus ruling out a pure asphyxia mechanism. In this model, piglets of similar developmental stage to human toddlers (postnatal day 30, PND30) have extensive hypoxic-ischemic damage to the cortical ribbon with sparing of the contralateral hemisphere and deep gray matter areas. However, piglets of similar developmental stage to human infants (postnatal day 7, PND7) have less hypoxic-ischemic damage that is notably bilateral and patchy. We therefore sought to discover whether the extensive tissue damage observed in PND30 was due to a greater upregulation of matrix metalloproteinases (MMPs).</p><p><strong>Materials and methods: </strong>In PND7 or PND30 piglets receiving AHT injuries (cortical impact, midline shift, subdural hematoma/subarachnoid hemorrhage, traumatic seizures, and brief apnea and hypoventilation) or a sham injury, the pattern of albumin extravasation and MMP-9 upregulation throughout the brain was determined via immunohistochemistry, brain tissue adjacent to the cortical impact where the tissue damage spreads was collected for Western blots, and the gelatinase activity was determined over time in peripheral plasma. EEG was recorded, and piglets survived up to 24 h after injury administration.</p><p><strong>Results: </strong>The pattern of albumin extravasation, indicating vasogenic edema, as well as increase in MMP-9, were both present at the same areas of hypoxic-ischemic tissue damage. Evidence from immunohistochemistry, Western blot, and zymogens demonstrate that MMP-2, -3, or -9 are constitutively expressed during immaturity and are not different between developmental stages; however, active forms are upregulated in PND30 but not PND7 after in response to AHT model injuries. Furthermore, peripheral active MMP-9 was downregulated after model injuries in PND7.</p><p><strong>Conclusions: </strong>This differential response to AHT model injuries might confer protection to the PND7 brain. Additionally, we find that immature gyrencephalic species have a greater baseline and array of MMPs than previously demonstrated in rodent species. Treatment with an oral or intravenous broad-spectrum matrix metalloproteinase inhibitor might reduce the extensive spread of injury in PND30, but the exposure to metalloproteinase inhibitors must be acute as to not interfere with the homeostatic role of ma
导言:严重创伤后幼儿的一个显著特征是整个皮质带出现组织损伤:半球低密度(HH)。半球低密度通常是虐待性头部创伤(AHT)的结果。我们以前曾报道过一个在颅脑物种中的 HH 模型,该模型由以下损伤组合而成:1)皮质撞击;2)中线移位;3)硬膜下血肿/蛛网膜下腔出血;4)外伤性癫痫发作;5)短暂呼吸暂停和通气不足,导致广泛的缺氧缺血性损伤。重要的是,这种机制与在儿童身上看到的机制非常相似,对侧大脑皮层的损伤相对较轻,因此排除了纯粹的窒息机制。在该模型中,发育阶段与人类幼儿相似(出生后第 30 天,PND30)的仔猪皮质带广泛缺氧缺血性损伤,而对侧半球和深灰质区域则不受影响。然而,与人类婴儿发育阶段相似的仔猪(出生后第7天,PND7)的缺氧缺血性损伤较轻,而且明显是双侧和斑块性的。因此,我们试图发现在 PND30 中观察到的广泛组织损伤是否是由于基质金属蛋白酶(MMPs)上调较多所致:在接受 AHT 损伤(皮层撞击、中线移位、硬膜下血肿/蛛网膜下腔出血、外伤性癫痫发作、短暂呼吸暂停和通气不足)或假损伤的 PND 7 或 PND 30 仔猪中,通过免疫组化确定整个大脑的白蛋白外渗和 MMP-9 上调模式,收集邻近组织损伤扩散的皮层撞击的脑组织进行 Western 印迹,并确定外周血浆中明胶酶活性的时间变化。记录脑电图,仔猪在受伤后存活达 24 小时:结果:在缺氧缺血性组织损伤的相同区域,白蛋白外渗的模式(表明血管源性水肿)和 MMP-9 的增加都存在。免疫组化、Western 印迹和酶原的证据表明,MMP- 2、- 3 或 -9 在未成熟期是组成型表达的,在不同发育阶段没有差异;但在 AHT 模型损伤后,活性形式在 PND30 中上调,而在 PND7 中没有上调。此外,外周活性 MMP-9 在 PND7 模型损伤后下调:结论:这种对 AHT 模型损伤的不同反应可能会对 PND7 大脑产生保护作用。此外,我们还发现,与之前在啮齿类动物中证实的情况相比,未成熟的颅脑物种具有更大的 MMP 基线和阵列。口服或静脉注射广谱基质金属蛋白酶抑制剂可能会减少 PND30 损伤的广泛扩散,但金属蛋白酶抑制剂的暴露必须是急性的,以免干扰基质金属蛋白酶在正常的产后大脑发育和可塑性以及损伤后突触生成和组织修复中的平衡作用。
{"title":"Developmental Regulation of Matrix Metalloproteinases in Response to Multifactorial, Severe Traumatic Brain Injuries during Immaturity.","authors":"Alexandra Hochstetler, George Price, Amy Baohan, Melissa Li, Frances Rodriguez Lara, Josephine Lok, Beth Costine-Bartell","doi":"10.1159/000536054","DOIUrl":"10.1159/000536054","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Introduction: &lt;/strong&gt;A striking pattern in young children after severe TBI is when the entire cortical ribbon displays tissue damage: hemispheric hypodensity (HH). HH is often a result of abusive head trauma (AHT). We previously reported a model of HH in a gyrencephalic species where a combination of injuries consisting of (1) cortical impact, (2) midline shift, (3) subdural hematoma/subarachnoid hemorrhage, (4) traumatic seizures, and (5) brief apnea and hypoventilation resulted in extensive, hypoxic-ischemic-type injury. Importantly, this mechanism closely resembles that seen in children, with relative sparing of the contralateral cortex, thus ruling out a pure asphyxia mechanism. In this model, piglets of similar developmental stage to human toddlers (postnatal day 30, PND30) have extensive hypoxic-ischemic damage to the cortical ribbon with sparing of the contralateral hemisphere and deep gray matter areas. However, piglets of similar developmental stage to human infants (postnatal day 7, PND7) have less hypoxic-ischemic damage that is notably bilateral and patchy. We therefore sought to discover whether the extensive tissue damage observed in PND30 was due to a greater upregulation of matrix metalloproteinases (MMPs).&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Materials and methods: &lt;/strong&gt;In PND7 or PND30 piglets receiving AHT injuries (cortical impact, midline shift, subdural hematoma/subarachnoid hemorrhage, traumatic seizures, and brief apnea and hypoventilation) or a sham injury, the pattern of albumin extravasation and MMP-9 upregulation throughout the brain was determined via immunohistochemistry, brain tissue adjacent to the cortical impact where the tissue damage spreads was collected for Western blots, and the gelatinase activity was determined over time in peripheral plasma. EEG was recorded, and piglets survived up to 24 h after injury administration.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;The pattern of albumin extravasation, indicating vasogenic edema, as well as increase in MMP-9, were both present at the same areas of hypoxic-ischemic tissue damage. Evidence from immunohistochemistry, Western blot, and zymogens demonstrate that MMP-2, -3, or -9 are constitutively expressed during immaturity and are not different between developmental stages; however, active forms are upregulated in PND30 but not PND7 after in response to AHT model injuries. Furthermore, peripheral active MMP-9 was downregulated after model injuries in PND7.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusions: &lt;/strong&gt;This differential response to AHT model injuries might confer protection to the PND7 brain. Additionally, we find that immature gyrencephalic species have a greater baseline and array of MMPs than previously demonstrated in rodent species. Treatment with an oral or intravenous broad-spectrum matrix metalloproteinase inhibitor might reduce the extensive spread of injury in PND30, but the exposure to metalloproteinase inhibitors must be acute as to not interfere with the homeostatic role of ma","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"319-332"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139405092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Developmental Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1