Pub Date : 2023-01-01Epub Date: 2023-09-21DOI: 10.1159/000534185
Emily G Severance, Emese Prandovszky, Shuojia Yang, Flora Leister, Ashley Lea, Ching-Lien Wu, Ryad Tamouza, Marion Leboyer, Faith Dickerson, Robert H Yolken
Complex brain disorders like schizophrenia may have multifactorial origins related to mis-timed heritable and environmental factors interacting during neurodevelopment. Infections, inflammation, and autoimmune diseases are over-represented in schizophrenia leading to immune system-centered hypotheses. Complement component C4 is genetically and neurobiologically associated with schizophrenia, and its dual activity peripherally and in the brain makes it an exceptional target for biomarker development. Studies to evaluate the biomarker potential of plasma or serum C4 in schizophrenia do so to understand how peripheral C4 might reflect central nervous system-derived neuroinflammation, synapse pruning, and other mechanisms. This effort, however, has produced mostly conflicting results, with peripheral C4 sometimes elevated, reduced, or unchanged between comparison groups. We undertook a pilot biomarker development study to systematically identify sociodemographic, genetic, and immune-related variables (autoimmune, infection-related, gastrointestinal, inflammatory), which may be associated with plasma C4 levels in schizophrenia (SCH; n = 335) and/or in nonpsychiatric comparison subjects (NCs; n = 233). As with previously inconclusive studies, we detected no differences in plasma C4 levels between SCH and NCs. In contrast, levels of general inflammation, C-reactive protein (CRP), were significantly elevated in SCH compared to NCs (ANOVA, F = 20.74, p < 0.0001), suggestive that plasma C4 and CRP may reflect different sources or causes of inflammation. In multivariate regressions of C4 gene copy number variants, plasma C4 levels were correlated only for C4A (not C4B, C4L, C4S) and only in NCs (R Coeff = 0.39, CI = 0.01-0.77, R2 = 0.18, p < 0.01; not SCH). Other variables associated with plasma C4 levels only in NCs included sex, double-stranded DNA IgG, tissue-transglutaminase (TTG) IgG, and cytomegalovirus IgG. Toxoplasma gondii IgG was the only variable significantly correlated with plasma C4 in SCH but not in NCs. Many variables were associated with plasma C4 in both groups (body mass index, race, CRP, N-methyl-D-aspartate receptor (NMDAR) NR2 subunit IgG, TTG IgA, lipopolysaccharide-binding protein (LBP), and soluble CD14 (sCD14). While the direction of most C4 associations was positive, autoimmune markers tended to be inverse, and associated with reduced plasma C4 levels. When NMDAR-NR2 autoantibody-positive individuals were removed, plasma C4 was elevated in SCH versus NCs (ANOVA, F = 5.16, p < 0.02). Our study was exploratory and confirmation of the many variables associated with peripheral C4 requires replication. Our preliminary results point toward autoimmune factors and exposure to the pathogen, T. gondii, as possibly significant contributors to variability of total C4 protein levels in plasma of individuals with schizophrenia.
{"title":"Prospects and Pitfalls of Plasma Complement C4 in Schizophrenia: Building a Better Biomarker.","authors":"Emily G Severance, Emese Prandovszky, Shuojia Yang, Flora Leister, Ashley Lea, Ching-Lien Wu, Ryad Tamouza, Marion Leboyer, Faith Dickerson, Robert H Yolken","doi":"10.1159/000534185","DOIUrl":"10.1159/000534185","url":null,"abstract":"<p><p>Complex brain disorders like schizophrenia may have multifactorial origins related to mis-timed heritable and environmental factors interacting during neurodevelopment. Infections, inflammation, and autoimmune diseases are over-represented in schizophrenia leading to immune system-centered hypotheses. Complement component C4 is genetically and neurobiologically associated with schizophrenia, and its dual activity peripherally and in the brain makes it an exceptional target for biomarker development. Studies to evaluate the biomarker potential of plasma or serum C4 in schizophrenia do so to understand how peripheral C4 might reflect central nervous system-derived neuroinflammation, synapse pruning, and other mechanisms. This effort, however, has produced mostly conflicting results, with peripheral C4 sometimes elevated, reduced, or unchanged between comparison groups. We undertook a pilot biomarker development study to systematically identify sociodemographic, genetic, and immune-related variables (autoimmune, infection-related, gastrointestinal, inflammatory), which may be associated with plasma C4 levels in schizophrenia (SCH; n = 335) and/or in nonpsychiatric comparison subjects (NCs; n = 233). As with previously inconclusive studies, we detected no differences in plasma C4 levels between SCH and NCs. In contrast, levels of general inflammation, C-reactive protein (CRP), were significantly elevated in SCH compared to NCs (ANOVA, F = 20.74, p < 0.0001), suggestive that plasma C4 and CRP may reflect different sources or causes of inflammation. In multivariate regressions of C4 gene copy number variants, plasma C4 levels were correlated only for C4A (not C4B, C4L, C4S) and only in NCs (R Coeff = 0.39, CI = 0.01-0.77, R2 = 0.18, p < 0.01; not SCH). Other variables associated with plasma C4 levels only in NCs included sex, double-stranded DNA IgG, tissue-transglutaminase (TTG) IgG, and cytomegalovirus IgG. Toxoplasma gondii IgG was the only variable significantly correlated with plasma C4 in SCH but not in NCs. Many variables were associated with plasma C4 in both groups (body mass index, race, CRP, N-methyl-D-aspartate receptor (NMDAR) NR2 subunit IgG, TTG IgA, lipopolysaccharide-binding protein (LBP), and soluble CD14 (sCD14). While the direction of most C4 associations was positive, autoimmune markers tended to be inverse, and associated with reduced plasma C4 levels. When NMDAR-NR2 autoantibody-positive individuals were removed, plasma C4 was elevated in SCH versus NCs (ANOVA, F = 5.16, p < 0.02). Our study was exploratory and confirmation of the many variables associated with peripheral C4 requires replication. Our preliminary results point toward autoimmune factors and exposure to the pathogen, T. gondii, as possibly significant contributors to variability of total C4 protein levels in plasma of individuals with schizophrenia.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"349-360"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41174481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-11-09DOI: 10.1159/000535103
Sandeep Vaishnavi
Background: Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique that may potentially be helpful for neuropsychiatric symptoms of developmental disorders with inflammatory aspects. TMS utilizes a varying magnetic field to induce electrical changes in the brain. Repetitive use of TMS modulates plasticity at multiple levels, particularly at the synapse and network level.
Summary: As inflammation can affect synaptic plasticity negatively, TMS may theoretically be a tool to address this inflammation-induced dysfunction. There are also data to suggest that TMS can directly downregulate inflammation. Neuropsychiatric consequences of multiple disorders with inflammatory aspects, particularly neurodevelopmental disorders like autism, Tourette syndrome, and obsessive-compulsive disorder (OCD), maybe treated effectively with TMS. Treatment of OCD, treatment-resistant major depression, and nicotine cessation (all in adults) are currently FDA-cleared indications, while migraine is cleared for ages 12 and above.
Key messages: TMS will likely continue to grow in terms of indications as research continues to assess what brain networks are dysfunctional in various disorders and it becomes clearer how to modulate these networks. TMS may thus be best understood as a technology platform that can be utilized to modulate different brain networks affected in neuropsychiatric disorders. TMS is likely to become an increasingly important tool in targeting brain networks that could become dysfunctional in part due to inflammation in the developing brain and addressing consequent neuropsychiatric symptoms.
{"title":"Transcranial Magnetic Stimulation for Developmental Neuropsychiatric Disorders with Inflammation.","authors":"Sandeep Vaishnavi","doi":"10.1159/000535103","DOIUrl":"10.1159/000535103","url":null,"abstract":"<p><strong>Background: </strong>Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique that may potentially be helpful for neuropsychiatric symptoms of developmental disorders with inflammatory aspects. TMS utilizes a varying magnetic field to induce electrical changes in the brain. Repetitive use of TMS modulates plasticity at multiple levels, particularly at the synapse and network level.</p><p><strong>Summary: </strong>As inflammation can affect synaptic plasticity negatively, TMS may theoretically be a tool to address this inflammation-induced dysfunction. There are also data to suggest that TMS can directly downregulate inflammation. Neuropsychiatric consequences of multiple disorders with inflammatory aspects, particularly neurodevelopmental disorders like autism, Tourette syndrome, and obsessive-compulsive disorder (OCD), maybe treated effectively with TMS. Treatment of OCD, treatment-resistant major depression, and nicotine cessation (all in adults) are currently FDA-cleared indications, while migraine is cleared for ages 12 and above.</p><p><strong>Key messages: </strong>TMS will likely continue to grow in terms of indications as research continues to assess what brain networks are dysfunctional in various disorders and it becomes clearer how to modulate these networks. TMS may thus be best understood as a technology platform that can be utilized to modulate different brain networks affected in neuropsychiatric disorders. TMS is likely to become an increasingly important tool in targeting brain networks that could become dysfunctional in part due to inflammation in the developing brain and addressing consequent neuropsychiatric symptoms.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"45 6","pages":"342-348"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664335/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72016042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sophia M Loewen, Adriano M Chavesa, Colin J Murray, Marianela E Traetta, Sophia E Burns, Keelin H Pekarik, Marie-Ève Tremblay
Maternal immune activation (MIA) can result from a variety of maternal inflammatory factors, including metabolic disorders, nutritional deficits, infections, and psychosocial stress. MIA has been consistently recognized as a major risk factor for neurodevelopmental disorders, and this association seems to be especially important for viral infections as viral exposure during pregnancy was associated with a higher risk of developing neurodevelopmental disorders, such as schizophrenia. In MIA, the gestational parent's inflammatory response to an immune stimulus alters or interrupts fetal development, triggering neurodevelopmental consequences. As MIA can occur in any pregnancy, it is important to understand the many factors at play that contribute to altered brain development in the offspring, especially considering recent global events such as the COVID-19 pandemic. The underlying mechanisms by which MIA results in deleterious outcomes are not yet clear, but due to the inflammatory response it initiates, it is becoming apparent that microglia are critically involved. Through investigation of MIA animal models, the role of microglia in this field is becoming more evident. Compelling evidence from animal models indicates that MIA can disrupt synaptic pruning, neuronal progenitor cell proliferation/differentiation, oligodendrogenesis, and more. Microglia appear as an active player, assisting these neural-related functions during healthy development but also mediating MIA-induced disturbances in these critical processes when neurodevelopment is challenged. The present review illustrates this complex web by reviewing recent literature, focusing on the outcomes of MIA resulting from viral mimetic polyinosinic-polycytidylic acid in rodents, to provide a clear description of how MIA impacts microglial functions and what this means for the offspring's neurodevelopment. Moreover, we discuss the possible implications of the COVID-19 pandemic on the neurodevelopment of the current and next generations in the frame of MIA models and propose some putative pharmacological and non-pharmacological approaches to prevent or attenuate MIA consequences.
{"title":"The Outcomes of Maternal Immune Activation Induced with the Viral Mimetic Poly I:C on Microglia in Exposed Rodent Offspring.","authors":"Sophia M Loewen, Adriano M Chavesa, Colin J Murray, Marianela E Traetta, Sophia E Burns, Keelin H Pekarik, Marie-Ève Tremblay","doi":"10.1159/000530185","DOIUrl":"https://doi.org/10.1159/000530185","url":null,"abstract":"<p><p>Maternal immune activation (MIA) can result from a variety of maternal inflammatory factors, including metabolic disorders, nutritional deficits, infections, and psychosocial stress. MIA has been consistently recognized as a major risk factor for neurodevelopmental disorders, and this association seems to be especially important for viral infections as viral exposure during pregnancy was associated with a higher risk of developing neurodevelopmental disorders, such as schizophrenia. In MIA, the gestational parent's inflammatory response to an immune stimulus alters or interrupts fetal development, triggering neurodevelopmental consequences. As MIA can occur in any pregnancy, it is important to understand the many factors at play that contribute to altered brain development in the offspring, especially considering recent global events such as the COVID-19 pandemic. The underlying mechanisms by which MIA results in deleterious outcomes are not yet clear, but due to the inflammatory response it initiates, it is becoming apparent that microglia are critically involved. Through investigation of MIA animal models, the role of microglia in this field is becoming more evident. Compelling evidence from animal models indicates that MIA can disrupt synaptic pruning, neuronal progenitor cell proliferation/differentiation, oligodendrogenesis, and more. Microglia appear as an active player, assisting these neural-related functions during healthy development but also mediating MIA-induced disturbances in these critical processes when neurodevelopment is challenged. The present review illustrates this complex web by reviewing recent literature, focusing on the outcomes of MIA resulting from viral mimetic polyinosinic-polycytidylic acid in rodents, to provide a clear description of how MIA impacts microglial functions and what this means for the offspring's neurodevelopment. Moreover, we discuss the possible implications of the COVID-19 pandemic on the neurodevelopment of the current and next generations in the frame of MIA models and propose some putative pharmacological and non-pharmacological approaches to prevent or attenuate MIA consequences.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"45 4","pages":"191-209"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10010313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2022-12-20DOI: 10.1159/000528757
Lana Vasung, Junshen Xu, Esra Abaci-Turk, Cindy Zhou, Elizabeth Holland, William H Barth, Carol Barnewolt, Susan Connolly, Judy Estroff, Polina Golland, Henry A Feldman, Elfar Adalsteinsson, P Ellen Grant
Early variations of fetal movements are the hallmark of a healthy developing central nervous system. However, there are no automatic methods to quantify the complex 3D motion of the developing fetus in utero. The aim of this prospective study was to use machine learning (ML) on in utero MRI to perform quantitative kinematic analysis of fetal limb movement, assessing the impact of maternal, placental, and fetal factors. In this cross-sectional, observational study, we used 76 sets of fetal (24-40 gestational weeks [GW]) blood oxygenation level-dependent (BOLD) MRI scans of 52 women (18-45 years old) during typical pregnancies. Pregnant women were scanned for 5-10 min while breathing room air (21% O2) and for 5-10 min while breathing 100% FiO2 in supine and/or lateral position. BOLD acquisition time was 20 min in total with effective temporal resolution approximately 3 s. To quantify upper and lower limb kinematics, we used a 3D convolutional neural network previously trained to track fetal key points (wrists, elbows, shoulders, ankles, knees, hips) on similar BOLD time series. Tracking was visually assessed, errors were manually corrected, and the absolute movement time (AMT) for each joint was calculated. To identify variables that had a significant association with AMT, we constructed a mixed-model ANOVA with interaction terms. Fetuses showed significantly longer duration of limb movements during maternal hyperoxia. We also found a significant centrifugal increase of AMT across limbs and significantly longer AMT of upper extremities <31 GW and longer AMT of lower extremities >35 GW. In conclusion, using ML we successfully quantified complex 3D fetal limb motion in utero and across gestation, showing maternal factors (hyperoxia) and fetal factors (gestational age, joint) that impact movement. Quantification of fetal motion on MRI is a potential new biomarker of fetal health and neuromuscular development.
胎动的早期变化是中枢神经系统健康发育的标志。然而,目前还没有自动方法来量化宫内发育中胎儿复杂的三维运动。这项前瞻性研究的目的是在宫内核磁共振成像上使用机器学习(ML)对胎儿肢体运动进行定量运动学分析,评估母体、胎盘和胎儿因素的影响。在这项横断面观察性研究中,我们使用了 52 名典型孕妇(18-45 岁)的 76 组胎儿(24-40 孕周 [GW])血氧饱和度依赖性(BOLD)磁共振成像扫描。孕妇在仰卧和/或侧卧位时,呼吸室内空气(21% O2)5-10 分钟,呼吸 100% FiO2 5-10 分钟。为了量化上肢和下肢的运动学特征,我们使用了之前训练过的三维卷积神经网络,在类似的 BOLD 时间序列上追踪胎儿的关键点(手腕、肘部、肩部、脚踝、膝盖、臀部)。对跟踪进行目测评估,对误差进行人工校正,并计算每个关节的绝对运动时间(AMT)。为了确定与绝对运动时间有显著关联的变量,我们构建了一个带有交互项的混合模式方差分析。在母体高氧状态下,胎儿的肢体运动时间明显更长。我们还发现肢体间的 AMT 有明显的离心增加,上肢的 AMT 明显更长 35 GW。总之,我们利用 ML 成功地量化了胎儿在宫内和整个孕期的复杂三维肢体运动,显示了影响运动的母体因素(高氧)和胎儿因素(胎龄、关节)。核磁共振成像上的胎儿运动量化是胎儿健康和神经肌肉发育的潜在新生物标志物。
{"title":"Cross-Sectional Observational Study of Typical in utero Fetal Movements Using Machine Learning.","authors":"Lana Vasung, Junshen Xu, Esra Abaci-Turk, Cindy Zhou, Elizabeth Holland, William H Barth, Carol Barnewolt, Susan Connolly, Judy Estroff, Polina Golland, Henry A Feldman, Elfar Adalsteinsson, P Ellen Grant","doi":"10.1159/000528757","DOIUrl":"10.1159/000528757","url":null,"abstract":"<p><p>Early variations of fetal movements are the hallmark of a healthy developing central nervous system. However, there are no automatic methods to quantify the complex 3D motion of the developing fetus in utero. The aim of this prospective study was to use machine learning (ML) on in utero MRI to perform quantitative kinematic analysis of fetal limb movement, assessing the impact of maternal, placental, and fetal factors. In this cross-sectional, observational study, we used 76 sets of fetal (24-40 gestational weeks [GW]) blood oxygenation level-dependent (BOLD) MRI scans of 52 women (18-45 years old) during typical pregnancies. Pregnant women were scanned for 5-10 min while breathing room air (21% O2) and for 5-10 min while breathing 100% FiO2 in supine and/or lateral position. BOLD acquisition time was 20 min in total with effective temporal resolution approximately 3 s. To quantify upper and lower limb kinematics, we used a 3D convolutional neural network previously trained to track fetal key points (wrists, elbows, shoulders, ankles, knees, hips) on similar BOLD time series. Tracking was visually assessed, errors were manually corrected, and the absolute movement time (AMT) for each joint was calculated. To identify variables that had a significant association with AMT, we constructed a mixed-model ANOVA with interaction terms. Fetuses showed significantly longer duration of limb movements during maternal hyperoxia. We also found a significant centrifugal increase of AMT across limbs and significantly longer AMT of upper extremities <31 GW and longer AMT of lower extremities >35 GW. In conclusion, using ML we successfully quantified complex 3D fetal limb motion in utero and across gestation, showing maternal factors (hyperoxia) and fetal factors (gestational age, joint) that impact movement. Quantification of fetal motion on MRI is a potential new biomarker of fetal health and neuromuscular development.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"45 3","pages":"105-114"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233700/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10030387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-09-12DOI: 10.1159/000534061
Lakshmi Shree Kulumani Mahadevan, Melissa Murphy, Marina Selenica, Elizabeth Latimer, Brent T Harris
Pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections (PANDAS) is an acute onset or exacerbation of neuropsychiatric symptoms following a group A streptococcus infection. It is believed to be a result of autoimmune response to streptococcal infection, but there is insufficient evidence to fully support this theory. Although this disease is primarily thought to be a disease of childhood, it is reported to occur also in adults. PANDAS is a well-defined clinical entity, but the neuropathology of this condition has not been established yet. We describe the clinical course of a 26-year-old female diagnosed with PANDAS. She committed suicide and her brain was biobanked for further studies. We examined the banked tissue and performed special stains, immunohistochemical, and immunofluorescence analyses to characterize the neuropathology of this condition. Histology of the temporal lobes, hippocampus, and basal ganglia shows mild gliosis and Alzheimer's type II astrocytes. Acute hypoxic ischemic changes were noted in hippocampus CA1 and CA2 areas. Immunostaining shows increased parenchymal/perivascular GFAP staining and many vessels with mild increases in CD3-, CD4-, and CD25-stained lymphocytes in the basal ganglia. The findings suggest that CD4- and CD25-positive T cells might have an important role in understanding the neuroinflammation and pathogenesis of this condition. The case represents the first neuropathological evaluation report for PANDAS.
与链球菌感染相关的小儿自身免疫性神经精神障碍(PANDAS)是指 A 组链球菌感染后神经精神症状的急性发作或加重。有人认为这是链球菌感染引起自身免疫反应的结果,但目前还没有足够的证据完全支持这一理论。虽然这种疾病主要被认为是一种儿童疾病,但有报道称它也会发生在成年人身上。PANDAS 是一种定义明确的临床实体,但其神经病理学尚未确定。我们描述了一名被诊断为 PANDAS 的 26 岁女性的临床病程。她自杀身亡,其大脑被制成生物样本用于进一步研究。我们检查了库中的组织,并进行了特殊染色、免疫组化和免疫荧光分析,以确定这种疾病的神经病理学特征。颞叶、海马和基底节的组织学表现为轻度胶质增生和阿尔茨海默氏症 II 型星形胶质细胞。海马 CA1 和 CA2 区出现急性缺氧缺血性改变。免疫染色显示,基底节实质/血管周围 GFAP 染色增加,许多血管中 CD3-、CD4- 和 CD25 染色的淋巴细胞轻度增加。研究结果表明,CD4 和 CD25 阳性的 T 细胞可能在了解神经炎症和这种疾病的发病机制方面起着重要作用。该病例是首例 PANDAS 神经病理学评估报告。
{"title":"Clinicopathologic Characteristics of PANDAS in a Young Adult: A Case Report.","authors":"Lakshmi Shree Kulumani Mahadevan, Melissa Murphy, Marina Selenica, Elizabeth Latimer, Brent T Harris","doi":"10.1159/000534061","DOIUrl":"10.1159/000534061","url":null,"abstract":"<p><p>Pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections (PANDAS) is an acute onset or exacerbation of neuropsychiatric symptoms following a group A streptococcus infection. It is believed to be a result of autoimmune response to streptococcal infection, but there is insufficient evidence to fully support this theory. Although this disease is primarily thought to be a disease of childhood, it is reported to occur also in adults. PANDAS is a well-defined clinical entity, but the neuropathology of this condition has not been established yet. We describe the clinical course of a 26-year-old female diagnosed with PANDAS. She committed suicide and her brain was biobanked for further studies. We examined the banked tissue and performed special stains, immunohistochemical, and immunofluorescence analyses to characterize the neuropathology of this condition. Histology of the temporal lobes, hippocampus, and basal ganglia shows mild gliosis and Alzheimer's type II astrocytes. Acute hypoxic ischemic changes were noted in hippocampus CA1 and CA2 areas. Immunostaining shows increased parenchymal/perivascular GFAP staining and many vessels with mild increases in CD3-, CD4-, and CD25-stained lymphocytes in the basal ganglia. The findings suggest that CD4- and CD25-positive T cells might have an important role in understanding the neuroinflammation and pathogenesis of this condition. The case represents the first neuropathological evaluation report for PANDAS.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"335-341"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753865/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10224138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xing Jin, Wei Zheng, Songyuan Chi, Taihao Cui, Wei He
Neuroinflammation results in neuropathic pain (NP) following brachial plexus avulsion (BPA). This research was designed for investigating the function of miR-506-3p in BPA-induced NP. A total brachial plexus root avulsion model was produced in adult rats as well as IL-1β-treated motoneuron-like NSC-34 cells and the LPS-treated microglia cell line BV2 for in vivo and in vitro experiments, respectively. RT-PCR and Western blot were performed to detect the profiles of miR-506-3p, CCL2 and CCR2, NF-κB, FOXO3a, TNF-α, IL-1β, and IL-6 in cells or the spinal cord close to the tBPI lesion. Neuronal apoptosis was evaluated by immunohistochemistry in vivo. CCK8, TUNEL staining, and the lactic dehydrogenase kit were adopted for the evaluation of neuronal viability or damage in vitro. RNA immunoprecipitation and dual luciferase reporter gene assays analyzed the targeted association between miR-506-3p and CCL2. As shown by the data, miR-506-3p was vigorously less expressed, while CCL2-CCR2, NF-κB TNF-α, IL-1β, and IL-6 were upregulated in the spinal cord with tBPI. Overexpression of miR-506-3p attenuated neuronal apoptosis and microglial inflammation. Mechanistically, CCL2 was a downstream target of miR-506-3p. Upregulating miR-506-3p dampened CCL2-CCR2 and NF-κB activation in the spinal cord and microglia. miR-506-3p had neuroprotective and inflammation-fighting functions in the tBPI rat model via CCL2/CCR2/NF-κB axis.
{"title":"miR-506-3p Relieves Neuropathic Pain following Brachial Plexus Avulsion via Mitigating Microglial Activation through Targeting the CCL2-CCR2 Axis.","authors":"Xing Jin, Wei Zheng, Songyuan Chi, Taihao Cui, Wei He","doi":"10.1159/000528450","DOIUrl":"https://doi.org/10.1159/000528450","url":null,"abstract":"<p><p>Neuroinflammation results in neuropathic pain (NP) following brachial plexus avulsion (BPA). This research was designed for investigating the function of miR-506-3p in BPA-induced NP. A total brachial plexus root avulsion model was produced in adult rats as well as IL-1β-treated motoneuron-like NSC-34 cells and the LPS-treated microglia cell line BV2 for in vivo and in vitro experiments, respectively. RT-PCR and Western blot were performed to detect the profiles of miR-506-3p, CCL2 and CCR2, NF-κB, FOXO3a, TNF-α, IL-1β, and IL-6 in cells or the spinal cord close to the tBPI lesion. Neuronal apoptosis was evaluated by immunohistochemistry in vivo. CCK8, TUNEL staining, and the lactic dehydrogenase kit were adopted for the evaluation of neuronal viability or damage in vitro. RNA immunoprecipitation and dual luciferase reporter gene assays analyzed the targeted association between miR-506-3p and CCL2. As shown by the data, miR-506-3p was vigorously less expressed, while CCL2-CCR2, NF-κB TNF-α, IL-1β, and IL-6 were upregulated in the spinal cord with tBPI. Overexpression of miR-506-3p attenuated neuronal apoptosis and microglial inflammation. Mechanistically, CCL2 was a downstream target of miR-506-3p. Upregulating miR-506-3p dampened CCL2-CCR2 and NF-κB activation in the spinal cord and microglia. miR-506-3p had neuroprotective and inflammation-fighting functions in the tBPI rat model via CCL2/CCR2/NF-κB axis.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"45 1","pages":"37-52"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10129035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9672341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
While the majority of studies on the importance of parental caregiving on offspring behavioral and brain development focus on the role of the mother, the paternal contribution is still an understudied topic. We investigated if growing up without paternal care affects dendritic and synaptic development in the nucleus accumbens of male and female offspring and if replacement of the father by a female caregiver "compensates" the impact of paternal deprivation. We compared (a) biparental rearing by father and mother, (b) monoparental care by a single mother, and (c) biparental rearing by two female caregivers. Quantitative analysis of medium-sized neurons in the nucleus accumbens revealed that growing up without father resulted in reduced spine number in both male and female offspring in the core region, whereas spine frequency was only reduced in females. In the shell region, reduced spine frequency was only found in males growing up in a monoparental environment. Replacement of the father by a female caregiver did not "protect" against the effects of paternal deprivation, indicating a critical impact of paternal care behavior on the development and maturation of neuronal networks in the nucleus accumbens.
{"title":"Paternal Deprivation and Female Biparental Family Rearing Induce Dendritic and Synaptic Changes in Octodon degus: II. Nucleus Accumbens.","authors":"Tony de Schultz, Katharina Braun, Joerg Bock","doi":"10.1159/000530050","DOIUrl":"https://doi.org/10.1159/000530050","url":null,"abstract":"<p><p>While the majority of studies on the importance of parental caregiving on offspring behavioral and brain development focus on the role of the mother, the paternal contribution is still an understudied topic. We investigated if growing up without paternal care affects dendritic and synaptic development in the nucleus accumbens of male and female offspring and if replacement of the father by a female caregiver \"compensates\" the impact of paternal deprivation. We compared (a) biparental rearing by father and mother, (b) monoparental care by a single mother, and (c) biparental rearing by two female caregivers. Quantitative analysis of medium-sized neurons in the nucleus accumbens revealed that growing up without father resulted in reduced spine number in both male and female offspring in the core region, whereas spine frequency was only reduced in females. In the shell region, reduced spine frequency was only found in males growing up in a monoparental environment. Replacement of the father by a female caregiver did not \"protect\" against the effects of paternal deprivation, indicating a critical impact of paternal care behavior on the development and maturation of neuronal networks in the nucleus accumbens.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"45 3","pages":"147-160"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9675235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-09-22DOI: 10.1159/000534261
Allison Vreeland, Denise Calaprice, Noga Or-Geva, Richard E Frye, Dritan Agalliu, Herbert M Lachman, Christopher Pittenger, Stefano Pallanti, Kyle Williams, Meiqian Ma, Margo Thienemann, Antonella Gagliano, Elizabeth Mellins, Jennifer Frankovich
Postinfectious neuroinflammation has been implicated in multiple models of acute-onset obsessive-compulsive disorder including Sydenham chorea (SC), pediatric acute-onset neuropsychiatric syndrome (PANS), and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS). These conditions are associated with a range of autoantibodies which are thought to be triggered by infections, most notably group A streptococci (GAS). Based on animal models using huma sera, these autoantibodies are thought to cross-react with neural antigens in the basal ganglia and modulate neuronal activity and behavior. As is true for many childhood neuroinflammatory diseases and rheumatological diseases, SC, PANS, and PANDAS lack clinically available, rigorous diagnostic biomarkers and randomized clinical trials. In this review article, we outline the accumulating evidence supporting the role neuroinflammation plays in these disorders. We describe work with animal models including patient-derived anti-neuronal autoantibodies, and we outline imaging studies that show alterations in the basal ganglia. In addition, we present research on metabolites, which are helpful in deciphering functional phenotypes, and on the implication of sleep in these disorders. Finally, we encourage future researchers to collaborate across medical specialties (e.g., pediatrics, psychiatry, rheumatology, immunology, and infectious disease) in order to further research on clinical syndromes presenting with neuropsychiatric manifestations.
{"title":"Postinfectious Inflammation, Autoimmunity, and Obsessive-Compulsive Disorder: Sydenham Chorea, Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal Infection, and Pediatric Acute-Onset Neuropsychiatric Disorder.","authors":"Allison Vreeland, Denise Calaprice, Noga Or-Geva, Richard E Frye, Dritan Agalliu, Herbert M Lachman, Christopher Pittenger, Stefano Pallanti, Kyle Williams, Meiqian Ma, Margo Thienemann, Antonella Gagliano, Elizabeth Mellins, Jennifer Frankovich","doi":"10.1159/000534261","DOIUrl":"10.1159/000534261","url":null,"abstract":"<p><p>Postinfectious neuroinflammation has been implicated in multiple models of acute-onset obsessive-compulsive disorder including Sydenham chorea (SC), pediatric acute-onset neuropsychiatric syndrome (PANS), and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS). These conditions are associated with a range of autoantibodies which are thought to be triggered by infections, most notably group A streptococci (GAS). Based on animal models using huma sera, these autoantibodies are thought to cross-react with neural antigens in the basal ganglia and modulate neuronal activity and behavior. As is true for many childhood neuroinflammatory diseases and rheumatological diseases, SC, PANS, and PANDAS lack clinically available, rigorous diagnostic biomarkers and randomized clinical trials. In this review article, we outline the accumulating evidence supporting the role neuroinflammation plays in these disorders. We describe work with animal models including patient-derived anti-neuronal autoantibodies, and we outline imaging studies that show alterations in the basal ganglia. In addition, we present research on metabolites, which are helpful in deciphering functional phenotypes, and on the implication of sleep in these disorders. Finally, we encourage future researchers to collaborate across medical specialties (e.g., pediatrics, psychiatry, rheumatology, immunology, and infectious disease) in order to further research on clinical syndromes presenting with neuropsychiatric manifestations.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"361-374"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41145233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-01-13DOI: 10.1159/000529125
Anna Arjun Kaji, Masaaki Torii, Seiji Ishii
Throughout our lives, we are exposed to a variety of hazards, such as environmental pollutants and chemical substances that affect our health, and viruses and bacteria that cause infectious diseases. These external factors that are undesirable to an organism are called environmental stress. During the perinatal period, when neural networks are drastically reorganized and refined, the tolerance of the developing brain to various environmental stresses is lower than in adulthood. Thus, exposure to environmental stress during this vulnerable period is strongly associated with cognitive and behavioral deficits in later life. Recent studies have uncovered various mechanisms underlying the adverse impacts of environmental stress during the perinatal period on brain development. In this mini-review, we will present the findings from these studies, focusing on caspase-mediated apoptotic and nonapoptotic effects of environmental stress, and discuss several compounds that mitigate these caspase-mediated effects as examples of potential therapeutic approaches.
{"title":"Caspase-3 Inhibition toward Perinatal Protection of the Developing Brain from Environmental Stress.","authors":"Anna Arjun Kaji, Masaaki Torii, Seiji Ishii","doi":"10.1159/000529125","DOIUrl":"10.1159/000529125","url":null,"abstract":"<p><p>Throughout our lives, we are exposed to a variety of hazards, such as environmental pollutants and chemical substances that affect our health, and viruses and bacteria that cause infectious diseases. These external factors that are undesirable to an organism are called environmental stress. During the perinatal period, when neural networks are drastically reorganized and refined, the tolerance of the developing brain to various environmental stresses is lower than in adulthood. Thus, exposure to environmental stress during this vulnerable period is strongly associated with cognitive and behavioral deficits in later life. Recent studies have uncovered various mechanisms underlying the adverse impacts of environmental stress during the perinatal period on brain development. In this mini-review, we will present the findings from these studies, focusing on caspase-mediated apoptotic and nonapoptotic effects of environmental stress, and discuss several compounds that mitigate these caspase-mediated effects as examples of potential therapeutic approaches.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"45 2","pages":"66-75"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521911/pdf/nihms-1929477.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10471380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}