Coloured rice has pigments deposited in the grain pericarp; red rice is the most common type of coloured rice. Red rice is rich in essential nutrients and has been grown and consumed in China for a long time. In this study, we report the genetic characterisation and preliminary molecular mapping of a mutant gene encoding red pericarp in rice (Oryza sativa L.). To analyse the genetic basis of the red pericarp mutant, a reciprocal cross between GER-3 (red pericarp, indica cv.) and 898 (white pericarp, indica cv.) was made. The genetic analysis results confirmed that there was only one dominant gene, temporarily designated Rp (Red pericarp) controlling the segregation of the red pericarp in the F2 population. For the molecular mapping of Rp, an F2 population derived from an inter-subspecific cross between Gene Engineering Rice-3 (GER-3) and C418 (japonica cv., white pericarp) was constructed. The genotype of the pericarp colour of the F2 individuals in the mapping population was validated by progeny testing of the F2:3 families. Simple sequence repeat (SSR) markers and the bulked segregation analysis (BSA) method were used; Rp was mapped to the short arm of chromosome 7 between the SSR markers RM21182 and RM21268, with a genetic distance of 3.5 and 12.0 cM, respectively. In this paper, the potential origin of the red pericarp mutant gene Rp was also discussed.
{"title":"Genetic analysis and molecular mapping of Rp, a mutant gene encoding red pericarp in rice (Oryza sativa L.)","authors":"Jiping Tong, Zhengshu Han, A. Han","doi":"10.17221/70/2020-CJGPB","DOIUrl":"https://doi.org/10.17221/70/2020-CJGPB","url":null,"abstract":"Coloured rice has pigments deposited in the grain pericarp; red rice is the most common type of coloured rice. Red rice is rich in essential nutrients and has been grown and consumed in China for a long time. In this study, we report the genetic characterisation and preliminary molecular mapping of a mutant gene encoding red pericarp in rice (Oryza sativa L.). To analyse the genetic basis of the red pericarp mutant, a reciprocal cross between GER-3 (red pericarp, indica cv.) and 898 (white pericarp, indica cv.) was made. The genetic analysis results confirmed that there was only one dominant gene, temporarily designated Rp (Red pericarp) controlling the segregation of the red pericarp in the F2 population. For the molecular mapping of Rp, an F2 population derived from an inter-subspecific cross between Gene Engineering Rice-3 (GER-3) and C418 (japonica cv., white pericarp) was constructed. The genotype of the pericarp colour of the F2 individuals in the mapping population was validated by progeny testing of the F2:3 families. Simple sequence repeat (SSR) markers and the bulked segregation analysis (BSA) method were used; Rp was mapped to the short arm of chromosome 7 between the SSR markers RM21182 and RM21268, with a genetic distance of 3.5 and 12.0 cM, respectively. In this paper, the potential origin of the red pericarp mutant gene Rp was also discussed.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44779276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We used two chloroplast gene regions (matK and rbcL) as a tool for the identification of 33 local conifer species. All 136 sequences, 101 newly generated (14 species for gene matK; 16 species for gene rbcL) and 35 retrieved from the GenBank, were used in the analysis. The highest genetic distance (matK region) was recorded between the species in Cupressaceae with an average of 5% (0.1–8.5), Podocarpaceae with an average of 6% (0–8.5), Taxaceae with an average of 5% (0.2–0.5) and Pinaceae with an average of 20.4% (0.8–54.1). The rbcL region showed a low genetic distance between the species in Cupressaceae 2% (0–3.3), Podocarpaceae 3% (0.6–3.4), Taxaceae 1% (0–2.1) and Pinaceae 1.2% (0–5.82). The phylogenetic analyses using the Maximum likelihood (ML) and Bayesian inference (BI) bootstrap values obtained at the branching nodes of each species ranged from 62 to 100% (Maximum likelihood bootstrap – MLBS and Bayesian posterior probabilities – BPP) for the matK gene; from 66 to 100% (MLBS) and 60 to 100% (BPP) for the rbcL region. The rbcL region was not identified between the species of Taxaceae and Cephalotaxaceae. The matK gene region was very clear in the different species among the families (Cupressaceae, Podocarpaceae, and Cephalotaxaceae) and unsuitable for identifying closely related species in Amentotaxus (Taxaceae) and Pinus (Pinaceae). The gene (matK) is a useful tool as a barcode in the identification of conifer species of Cupressaceae, Podocarpaceae, and Cephalotaxaceae in Vietnam.
{"title":"Phylogenetics of native conifer species in Vietnam based on two chloroplast gene regions rbcL and matK","authors":"M. Pham, V. Tran, D. Vu, Q. K. Nguyen, S. M. Shah","doi":"10.17221/88/2020-CJGPB","DOIUrl":"https://doi.org/10.17221/88/2020-CJGPB","url":null,"abstract":"We used two chloroplast gene regions (matK and rbcL) as a tool for the identification of 33 local conifer species. All 136 sequences, 101 newly generated (14 species for gene matK; 16 species for gene rbcL) and 35 retrieved from the GenBank, were used in the analysis. The highest genetic distance (matK region) was recorded between the species in Cupressaceae with an average of 5% (0.1–8.5), Podocarpaceae with an average of 6% (0–8.5), Taxaceae with an average of 5% (0.2–0.5) and Pinaceae with an average of 20.4% (0.8–54.1). The rbcL region showed a low genetic distance between the species in Cupressaceae 2% (0–3.3), Podocarpaceae 3% (0.6–3.4), Taxaceae 1% (0–2.1) and Pinaceae 1.2% (0–5.82). The phylogenetic analyses using the Maximum likelihood (ML) and Bayesian inference (BI) bootstrap values obtained at the branching nodes of each species ranged from 62 to 100% (Maximum likelihood bootstrap – MLBS and Bayesian posterior probabilities – BPP) for the matK gene; from 66 to 100% (MLBS) and 60 to 100% (BPP) for the rbcL region. The rbcL region was not identified between the species of Taxaceae and Cephalotaxaceae. The matK gene region was very clear in the different species among the families (Cupressaceae, Podocarpaceae, and Cephalotaxaceae) and unsuitable for identifying closely related species in Amentotaxus (Taxaceae) and Pinus (Pinaceae). The gene (matK) is a useful tool as a barcode in the identification of conifer species of Cupressaceae, Podocarpaceae, and Cephalotaxaceae in Vietnam.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43602882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Baránková, A. Nebish, J. Tříska, J. Raddová, M. Baránek
Grapevine is a worldwide crop and it is also subject to global trade in wine, berries and grape vine plants. Various countries, including the countries of the European Union, emphasize the role of product origin designation and suitable methods are sought, able to capture distinct origins. One of the biological matrices that can theoretically be driven by individual vineyards’ conditions represents DNA methylation. Despite this interesting hypothesis, there is a lack of respective information. The aim of this work is to examine whether DNA methylation can be used to relate a sample to a given vineyard and to access a relationship between a DNA methylation pattern and different geographical origin of analysed samples. For this purpose, DNA methylation landscapes of samples from completely different climatic conditions presented by the Czech Republic (Central Europe) and Armenia (Southern Caucasus) were compared. Results of the Methylation Sensitive Amplified Polymorphism method confirm uniqueness of DNA methylation landscape for individual vineyards. Factually, DNA methylation diversity within vineyards of Merlot and Pinot Noir cultivars represent only 16% and 14% of the overall diversity registered for individual cultivars. On the contrary, different geographical location of the Czech and Armenian vineyards was identified as the strongest factor affecting diversity in DNA methylation landscapes (79.9% and 70.7% for Merlot and Pinot Noir plants, respectively).
{"title":"Comparison of DNA methylation landscape between Czech and Armenian vineyards show their unique character and increased diversity","authors":"K. Baránková, A. Nebish, J. Tříska, J. Raddová, M. Baránek","doi":"10.17221/90/2020-CJGPB","DOIUrl":"https://doi.org/10.17221/90/2020-CJGPB","url":null,"abstract":"Grapevine is a worldwide crop and it is also subject to global trade in wine, berries and grape vine plants. Various countries, including the countries of the European Union, emphasize the role of product origin designation and suitable methods are sought, able to capture distinct origins. One of the biological matrices that can theoretically be driven by individual vineyards’ conditions represents DNA methylation. Despite this interesting hypothesis, there is a lack of respective information. The aim of this work is to examine whether DNA methylation can be used to relate a sample to a given vineyard and to access a relationship between a DNA methylation pattern and different geographical origin of analysed samples. For this purpose, DNA methylation landscapes of samples from completely different climatic conditions presented by the Czech Republic (Central Europe) and Armenia (Southern Caucasus) were compared. Results of the Methylation Sensitive Amplified Polymorphism method confirm uniqueness of DNA methylation landscape for individual vineyards. Factually, DNA methylation diversity within vineyards of Merlot and Pinot Noir cultivars represent only 16% and 14% of the overall diversity registered for individual cultivars. On the contrary, different geographical location of the Czech and Armenian vineyards was identified as the strongest factor affecting diversity in DNA methylation landscapes (79.9% and 70.7% for Merlot and Pinot Noir plants, respectively).","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41684583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The heading date and growth habit are key factors that regulate the transition from the vegetative to the reproductive stage in barley. In this study, we used PCR based markers to identify the allelic variations in the Vrn-H1 (HvMB5) and Vrn-H2 (HvSNF2) genes and to predict the heading date and growth habit of a collection of Tunisian barley assessed under a semi-arid climate. The allelic variation at HvBM5 revealed two PCR fragments at 830 and 344 bp. Primer sets used to amplify the HvSNF2 gene have resulted in different alleles size of 543, 623, and 700 bp. Different allelic combinations of HVBM5 and HvSNF2 were associated with the heading date and growth habit. The spring and early heading accessions were only characterised by the amplification of the HvSNF2 fragment at 700 bp. All the winter accessions yielded the PCR product HvBM5 at 830 bp, but the variation in the heading date was determined by the HvSNF2 alleles. These DNA markers will be a powerful tool to predict the heading date and growth habit and can be used as markers for the assisted selection to speed up the national breeding programme.
{"title":"Allelic variations at the HvSNF2 and HvBM5 loci are associated with the heading date and growth habit of barley (Hordeum vulgare L.) under a semi-arid climate","authors":"Salem Marzougui","doi":"10.17221/62/2020-CJGPB","DOIUrl":"https://doi.org/10.17221/62/2020-CJGPB","url":null,"abstract":"The heading date and growth habit are key factors that regulate the transition from the vegetative to the reproductive stage in barley. In this study, we used PCR based markers to identify the allelic variations in the Vrn-H1 (HvMB5) and Vrn-H2 (HvSNF2) genes and to predict the heading date and growth habit of a collection of Tunisian barley assessed under a semi-arid climate. The allelic variation at HvBM5 revealed two PCR fragments at 830 and 344 bp. Primer sets used to amplify the HvSNF2 gene have resulted in different alleles size of 543, 623, and 700 bp. Different allelic combinations of HVBM5 and HvSNF2 were associated with the heading date and growth habit. The spring and early heading accessions were only characterised by the amplification of the HvSNF2 fragment at 700 bp. All the winter accessions yielded the PCR product HvBM5 at 830 bp, but the variation in the heading date was determined by the HvSNF2 alleles. These DNA markers will be a powerful tool to predict the heading date and growth habit and can be used as markers for the assisted selection to speed up the national breeding programme.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45452891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Dhaliwal, S. K. Dhillon, B. Gill, A. Sirari, A. Rani, Roopan Dhillon
For the wide adoption of soybean varieties, it is desirable, that they are Kunitz trypsin inhibitor (Kti) free and resistant to yellow mosaic disease (YMD). The soybean variety SL525 with YMD resistance was crossed with the YMD susceptible variety NRC101 with a null kti allele. The F5 progeny derived from the cross was screened with two simple sequence repeat (SSR) markers (satt409 and satt322) linked with the null kti allele and the YMD resistance, respectively, and one null kti allele-specific marker. The presence of both desirable traits was further confirmed with the phenotypic data which showed good correlation with the genotypic data. The yield potential of fourteen such identified genotypes having both desirable traits was either at par or superior to SL525, hence, represent improved versions of SL 525.
{"title":"Combining the null Kunitz trypsin inhibitor and yellow mosaic disease resistance in soybean (Glycine max (L.) Merrill)","authors":"S. Dhaliwal, S. K. Dhillon, B. Gill, A. Sirari, A. Rani, Roopan Dhillon","doi":"10.17221/47/2020-CJGPB","DOIUrl":"https://doi.org/10.17221/47/2020-CJGPB","url":null,"abstract":"For the wide adoption of soybean varieties, it is desirable, that they are Kunitz trypsin inhibitor (Kti) free and resistant to yellow mosaic disease (YMD). The soybean variety SL525 with YMD resistance was crossed with the YMD susceptible variety NRC101 with a null kti allele. The F5 progeny derived from the cross was screened with two simple sequence repeat (SSR) markers (satt409 and satt322) linked with the null kti allele and the YMD resistance, respectively, and one null kti allele-specific marker. The presence of both desirable traits was further confirmed with the phenotypic data which showed good correlation with the genotypic data. The yield potential of fourteen such identified genotypes having both desirable traits was either at par or superior to SL525, hence, represent improved versions of SL 525.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41795394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agronomic traits are usually determined by multiple quantitative trait loci (QTLs) that can have pleiotropic effects. A multiparent advanced generation intercross (MAGIC) population is well suited for genetically analysing the effects of multiple QTLs on the traits of interest because it contains more QTL alleles than a biparental population and can overcome the problem of confounding the population structure of the natural germplasm population. We previously developed the B. juncea MAGIC population, derived from eight B. juncea lines with great diversity in agronomic and quality traits. In this study, we show that the B. juncea MAGIC population is also effective for the evaluation of multiple QTLs for complex agronomic traits in B. juncea. A total of twenty-two QTLs for nine seed-related traits were identified, including one QTL for each oil content, seed number per silique and thousand-seed weight; two QTLs for each acid detergent lignin and neutral detergent fibre; three QTLs for each acid detergent fibre and protein content; four QTLs for the seed maturity time; and five QTLs for the white index. Some of these QTLs overlapped. These results should be helpful for further fine mapping, gene cloning, plant breeding and marker-assisted selection (MAS) in B. juncea.
{"title":"QTL identification for nine seed-related traits in Brassica juncea using a multiparent advanced generation intercross (MAGIC) population","authors":"Haifei Zhao, Wei Yan, Kunjiang Yu, Tianya Wang, Aimal Nawaz Khattak, E. Tian","doi":"10.17221/73/2020-cjgpb","DOIUrl":"https://doi.org/10.17221/73/2020-cjgpb","url":null,"abstract":"Agronomic traits are usually determined by multiple quantitative trait loci (QTLs) that can have pleiotropic effects. A multiparent advanced generation intercross (MAGIC) population is well suited for genetically analysing the effects of multiple QTLs on the traits of interest because it contains more QTL alleles than a biparental population and can overcome the problem of confounding the population structure of the natural germplasm population. We previously developed the B. juncea MAGIC population, derived from eight B. juncea lines with great diversity in agronomic and quality traits. In this study, we show that the B. juncea MAGIC population is also effective for the evaluation of multiple QTLs for complex agronomic traits in B. juncea. A total of twenty-two QTLs for nine seed-related traits were identified, including one QTL for each oil content, seed number per silique and thousand-seed weight; two QTLs for each acid detergent lignin and neutral detergent fibre; three QTLs for each acid detergent fibre and protein content; four QTLs for the seed maturity time; and five QTLs for the white index. Some of these QTLs overlapped. These results should be helpful for further fine mapping, gene cloning, plant breeding and marker-assisted selection (MAS) in B. juncea.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43525185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wheat stripe rust, caused by Puccinia striiformis Westend. f.sp. tritici Eriks (Pst), is one of the most important diseases of bread wheat worldwide. Breeding resistant wheat cultivars is the most economical, effective and environmentally friendly way for controlling wheat stripe rust in China. The Romanian wheat line Fundulea 900 showed good resistance to wheat stripe rust at the adult stage. The present study aimed to map the quantitative trait loci (QTLs) for stripe rust resistance in 176 F2:6 recombinant inbred lines (RIL) derived from the cross of Fundulea 900 × Thatcher. The RIL population was phenotyped for stripe rust (YR) severity at Mianyang in the Sichuan province and Baoding in the Hebei province in the 2016/2017 and 2017/2018 cropping seasons. SSR markers combined with a preferred screened group (PSG) analysis were used to identify the QTLs for stripe rust in the population. Three QTLs for stripe rust resistance were mapped on chromosomes 1AL, 7BL and 7DS, respectively. All three QTLs originated from Fundulea 900 and were detected in all the environments. The QTL on 7DS was provided by the known resistance gene Yr18/Lr34. The two QTLs on chromosomes 1AL and 7BL were explained by 9.2 to 21.5% and 5.1 to 10.1% of the phenotypic variance, respectively and might be new QTLs. The QTLs identified in the study and their closely linked markers can be used for marker-assisted selection (MAS) in wheat breeding programmes.
{"title":"QTL mapping of adult plant resistance to stripe rust in the Fundulea 900 × Thatcher RIL population","authors":"Xiaocui Yan, Huimin Zheng, Pei-pei Zhang, Gebrewahid Takele Weldu, Zaifeng Li, Daqun Liu","doi":"10.17221/71/2020-cjgpb","DOIUrl":"https://doi.org/10.17221/71/2020-cjgpb","url":null,"abstract":"Wheat stripe rust, caused by Puccinia striiformis Westend. f.sp. tritici Eriks (Pst), is one of the most important diseases of bread wheat worldwide. Breeding resistant wheat cultivars is the most economical, effective and environmentally friendly way for controlling wheat stripe rust in China. The Romanian wheat line Fundulea 900 showed good resistance to wheat stripe rust at the adult stage. The present study aimed to map the quantitative trait loci (QTLs) for stripe rust resistance in 176 F2:6 recombinant inbred lines (RIL) derived from the cross of Fundulea 900 × Thatcher. The RIL population was phenotyped for stripe rust (YR) severity at Mianyang in the Sichuan province and Baoding in the Hebei province in the 2016/2017 and 2017/2018 cropping seasons. SSR markers combined with a preferred screened group (PSG) analysis were used to identify the QTLs for stripe rust in the population. Three QTLs for stripe rust resistance were mapped on chromosomes 1AL, 7BL and 7DS, respectively. All three QTLs originated from Fundulea 900 and were detected in all the environments. The QTL on 7DS was provided by the known resistance gene Yr18/Lr34. The two QTLs on chromosomes 1AL and 7BL were explained by 9.2 to 21.5% and 5.1 to 10.1% of the phenotypic variance, respectively and might be new QTLs. The QTLs identified in the study and their closely linked markers can be used for marker-assisted selection (MAS) in wheat breeding programmes.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48871137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The farnesyltransferase α-subunit (FTA) may be involved in the regulation of defence responses against pathogens in plants. In this study, this gene was amplified from Catharanthus roseus (CrFTA gene). The cDNA was found to be 1 403 bp long, and encodes a putative protein of 331 amino acids that contains a conserved PPTA motif. The phylogenetic analysis showed that the sequence of CrFTA is the most similar to that from Coffea canephora. The qRT-PCR assays indicated that CrFTA is expressed in the leaves, stems, and roots. During a Candidatus Liberibacter asiaticus (Ca. L. asiaticus) infection, the CrFTA expression levels significantly increased and reached 18-fold that measured in the control group, after which its expression decreased gradually from 22 days after top-grafting (DAT) to the end of the experiment. Spray application of Manumycin A (ManuA), a specific inhibitor of farnesyltransferase, on the leaves of C. roseus plants caused a significant decrease in the CrFTA expression and a significant increase in the Ca. L. asiaticus positivity percentage after top-grafting with the Ca. L. asiaticus-infected shoots compared with the groups not treated with ManuA. Furthermore, ABA had no significant effect on the relative expression of CrFTA and the number of Ca. L. asiaticus-positive plants. These results suggest that CrFTA most likely plays a role in mediating the tolerance to a Ca. L. asiaticus infection in C. roseus.
法尼基转移酶α-亚基(FTA)可能参与调控植物对病原体的防御反应。本研究从玫瑰Catharanthus roseus (CrFTA基因)中扩增出该基因。该cDNA全长1 403 bp,编码一个含有保守PPTA基序的331个氨基酸的蛋白。系统发育分析表明,CrFTA序列与咖啡canephora最相似。qRT-PCR分析表明,CrFTA在叶、茎和根中均有表达。在亚洲自由Candidatus Liberibacter asiaticus (Ca. L. asiaticus)感染期间,CrFTA表达量显著升高,达到对照组的18倍,之后从顶部嫁接(DAT)后22天至实验结束,其表达量逐渐下降。喷施法尼基转移酶特异性抑制剂马奴霉素A (Manumycin A, ManuA)后,与未喷施ManuA的处理组相比,嫁接后的亚洲Ca. L. asiaticus的CrFTA表达量显著降低,阳性百分率显著提高。此外,ABA对亚洲Ca. L. asiaticus阳性植株数量和CrFTA的相对表达量没有显著影响。这些结果表明,CrFTA很可能介导了玫瑰玫瑰对亚洲镰刀菌感染的耐受性。
{"title":"Changes in the expression of CrFTA, the Catharanthus roseus farnesyltransferase α-subunit gene, in response to a Candidatus Liberibacter asiaticus infection","authors":"Ya Li, Qinhan Yu","doi":"10.17221/13/2020-cjgpb","DOIUrl":"https://doi.org/10.17221/13/2020-cjgpb","url":null,"abstract":"The farnesyltransferase α-subunit (FTA) may be involved in the regulation of defence responses against pathogens in plants. In this study, this gene was amplified from Catharanthus roseus (CrFTA gene). The cDNA was found to be 1 403 bp long, and encodes a putative protein of 331 amino acids that contains a conserved PPTA motif. The phylogenetic analysis showed that the sequence of CrFTA is the most similar to that from Coffea canephora. The qRT-PCR assays indicated that CrFTA is expressed in the leaves, stems, and roots. During a Candidatus Liberibacter asiaticus (Ca. L. asiaticus) infection, the CrFTA expression levels significantly increased and reached 18-fold that measured in the control group, after which its expression decreased gradually from 22 days after top-grafting (DAT) to the end of the experiment. Spray application of Manumycin A (ManuA), a specific inhibitor of farnesyltransferase, on the leaves of C. roseus plants caused a significant decrease in the CrFTA expression and a significant increase in the Ca. L. asiaticus positivity percentage after top-grafting with the Ca. L. asiaticus-infected shoots compared with the groups not treated with ManuA. Furthermore, ABA had no significant effect on the relative expression of CrFTA and the number of Ca. L. asiaticus-positive plants. These results suggest that CrFTA most likely plays a role in mediating the tolerance to a Ca. L. asiaticus infection in C. roseus.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48495980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osama Zuhair Kanbar, C. Lantos, P. Chege, E. Kiss, J. Pauk
We investigated the anther culture (AC) efficiency of thirteen F4 combinations of winter wheat (Triticum aestivum L.). The genotype dependency was assessed during the induction of the androgenic entities, i.e. embryo-like structures (ELS), regenerated-, green-, albino-, and transplanted plantlets. The number of green plantlets per 100 anthers (GP/100A) varied from 0.36 to 24.74 GP/100A with a mean of 8.31 GP/100A. Albino plantlets (AP) occurred in each combination, ranging from 0.20 to 22.80 AP/100A with an average value of 5.59 AP/100A. Between 25–87.76 doubled haploid (DH) plants per 100 acclimatised plantlets (DH/100ADP), depending on the combination, with a mean of 59.74% were recovered. We have found the highest DH production in the combinations Béres/Midas, Kalász/Tacitus, Béres/Pamier, and Premio/5009. This improves remarkably the choice of basic genetic material in subsequent crossing programmes. These observations emphasise the usability and efficiency of in vitro AC in producing a large number of DH lines for breeding and the applied researches of winter wheat. Although albinism was found in each combination, it was mitigated by the in vitro AC application.
{"title":"Generation of doubled haploid lines from winter wheat (Triticum aestivum L.) breeding material using in vitro anther culture","authors":"Osama Zuhair Kanbar, C. Lantos, P. Chege, E. Kiss, J. Pauk","doi":"10.17221/113/2019-cjgpb","DOIUrl":"https://doi.org/10.17221/113/2019-cjgpb","url":null,"abstract":"We investigated the anther culture (AC) efficiency of thirteen F4 combinations of winter wheat (Triticum aestivum L.). The genotype dependency was assessed during the induction of the androgenic entities, i.e. embryo-like structures (ELS), regenerated-, green-, albino-, and transplanted plantlets. The number of green plantlets per 100 anthers (GP/100A) varied from 0.36 to 24.74 GP/100A with a mean of 8.31 GP/100A. Albino plantlets (AP) occurred in each combination, ranging from 0.20 to 22.80 AP/100A with an average value of 5.59 AP/100A. Between 25–87.76 doubled haploid (DH) plants per 100 acclimatised plantlets (DH/100ADP), depending on the combination, with a mean of 59.74% were recovered. We have found the highest DH production in the combinations Béres/Midas, Kalász/Tacitus, Béres/Pamier, and Premio/5009. This improves remarkably the choice of basic genetic material in subsequent crossing programmes. These observations emphasise the usability and efficiency of in vitro AC in producing a large number of DH lines for breeding and the applied researches of winter wheat. Although albinism was found in each combination, it was mitigated by the in vitro AC application.","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17221/113/2019-cjgpb","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45072919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}