Pub Date : 2025-06-25DOI: 10.1016/j.ceb.2025.102565
Theresia E.B. Stradal , Micaela Boiero Sanders , Peter Bieling
Arp2/3 complex is a central actin filament generator driving numerous motile processes in cells. It was originally isolated from Acanthamoeba approx. 30 years ago. It is highly conserved throughout eukaryotic life and composed of 7 subunits, two of which are actin related proteins, ARP2 and ARP3. Since then the modalities of its regulation were continuously unraveled, bringing about a large number of proteins that affect its activity. We here set out to briefly review our current knowledge and identify open questions that demand answers and add new twists, advancing our understanding to reflect physiological complexity.
{"title":"Arp2/3-complex regulation – Novel insights and open questions","authors":"Theresia E.B. Stradal , Micaela Boiero Sanders , Peter Bieling","doi":"10.1016/j.ceb.2025.102565","DOIUrl":"10.1016/j.ceb.2025.102565","url":null,"abstract":"<div><div>Arp2/3 complex is a central actin filament generator driving numerous motile processes in cells. It was originally isolated from Acanthamoeba approx. 30 years ago. It is highly conserved throughout eukaryotic life and composed of 7 subunits, two of which are actin related proteins, ARP2 and ARP3. Since then the modalities of its regulation were continuously unraveled, bringing about a large number of proteins that affect its activity. We here set out to briefly review our current knowledge and identify open questions that demand answers and add new twists, advancing our understanding to reflect physiological complexity.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"95 ","pages":"Article 102565"},"PeriodicalIF":6.0,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144480114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-21DOI: 10.1016/j.ceb.2025.102564
Nikoloz Tsikolia , Dinh Thach Lam Nguyen , Yee Han Tee
Establishment of left–right (LR) asymmetry relies on a multistep interplay of molecular signaling and physical processes. Initial LR symmetry breaking in several model vertebrates was shown to take place at the LR organizer (LRO) where chiral rotation of monocilia produces a leftward fluid flow. Subsequent bending of sensory cilia triggers Pkd2-channel–mediated calcium transients which in turn are required for induction of asymmetrical signaling upstream of morphological asymmetries, emphasizing the role of mechanosensation in flow detection. Crucially, unidirectional flow and its detection were suggested to require cellular-scale asymmetries including planar cell polarity–mediated posterior position and ultrastructural chirality of motile cilia as well as asymmetric Pkd2 localization within sensory cilia. Alternative mechanisms of LR symmetry breaking operate in models like the chick embryo, where asymmetry of gene expression is preceded by leftward primitive node rotation suggesting mechanisms based on cytoskeletal chirality known from invertebrate models including Caenorhabditis elegans and fruit fly. Investigation of chirality at the cellular level suggests that chirality of components of cytoskeleton, particularly actin filaments, is amplified by distinct modules based i.e. on formin-actin and myosin-actin interactions which drive intracellular swirling and cortical flow, providing a basis for LR asymmetry. Cellular chirality can organize LR asymmetry of multicellular behavior as observed in the chiral alignment of fibroblasts. The integration of molecular, cellular, and tissue-scale chirality highlights conserved and divergent mechanisms underpinning LR symmetry breaking across species. Unraveling these processes may illuminate pathways connecting cytoskeletal dynamics to organismal asymmetry, offering insights into development and evolution.
{"title":"Mechanisms of left–right symmetry breaking across scales","authors":"Nikoloz Tsikolia , Dinh Thach Lam Nguyen , Yee Han Tee","doi":"10.1016/j.ceb.2025.102564","DOIUrl":"10.1016/j.ceb.2025.102564","url":null,"abstract":"<div><div>Establishment of left–right (LR) asymmetry relies on a multistep interplay of molecular signaling and physical processes. Initial LR symmetry breaking in several model vertebrates was shown to take place at the LR organizer (LRO) where chiral rotation of monocilia produces a leftward fluid flow. Subsequent bending of sensory cilia triggers Pkd2-channel–mediated calcium transients which in turn are required for induction of asymmetrical signaling upstream of morphological asymmetries, emphasizing the role of mechanosensation in flow detection. Crucially, unidirectional flow and its detection were suggested to require cellular-scale asymmetries including planar cell polarity–mediated posterior position and ultrastructural chirality of motile cilia as well as asymmetric Pkd2 localization within sensory cilia. Alternative mechanisms of LR symmetry breaking operate in models like the chick embryo, where asymmetry of gene expression is preceded by leftward primitive node rotation suggesting mechanisms based on cytoskeletal chirality known from invertebrate models including <em>Caenorhabditis elegans</em> and fruit fly. Investigation of chirality at the cellular level suggests that chirality of components of cytoskeleton, particularly actin filaments, is amplified by distinct modules based i.e. on formin-actin and myosin-actin interactions which drive intracellular swirling and cortical flow, providing a basis for LR asymmetry. Cellular chirality can organize LR asymmetry of multicellular behavior as observed in the chiral alignment of fibroblasts. The integration of molecular, cellular, and tissue-scale chirality highlights conserved and divergent mechanisms underpinning LR symmetry breaking across species. Unraveling these processes may illuminate pathways connecting cytoskeletal dynamics to organismal asymmetry, offering insights into development and evolution.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"95 ","pages":"Article 102564"},"PeriodicalIF":6.0,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144330468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-17DOI: 10.1016/j.ceb.2025.102563
Hui Tu , Haibin Wang , Huaqing Cai
Macropinocytosis is a conserved pathway for non-selective bulk uptake of extracellular fluid. It plays important roles in various cellular processes, including nutrient acquisition in Dictyostelium and cancer cells and antigen sampling by immune cells. This process is initiated by localized actin polymerization, which drives the formation of membrane protrusions that close to generate macropinosomes. Once formed, macropinosomes undergo maturation and traffic through the endolysosomal system for cargo degradation, whereas non-degradable material is exocytosed. Recent studies have uncovered conserved regulatory networks controlling macropinosome formation and maturation. This review provides an overview of these pathways, highlighting key molecular regulators and their coordinated responses to environmental signals. We also examine the interplay between macropinocytosis and cell migration, discussing potential mechanisms that balance these processes to optimize cellular function.
{"title":"Macropinocytosis: Molecular mechanisms and regulation","authors":"Hui Tu , Haibin Wang , Huaqing Cai","doi":"10.1016/j.ceb.2025.102563","DOIUrl":"10.1016/j.ceb.2025.102563","url":null,"abstract":"<div><div>Macropinocytosis is a conserved pathway for non-selective bulk uptake of extracellular fluid. It plays important roles in various cellular processes, including nutrient acquisition in <em>Dictyostelium</em> and cancer cells and antigen sampling by immune cells. This process is initiated by localized actin polymerization, which drives the formation of membrane protrusions that close to generate macropinosomes. Once formed, macropinosomes undergo maturation and traffic through the endolysosomal system for cargo degradation, whereas non-degradable material is exocytosed. Recent studies have uncovered conserved regulatory networks controlling macropinosome formation and maturation. This review provides an overview of these pathways, highlighting key molecular regulators and their coordinated responses to environmental signals. We also examine the interplay between macropinocytosis and cell migration, discussing potential mechanisms that balance these processes to optimize cellular function.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"95 ","pages":"Article 102563"},"PeriodicalIF":6.0,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144298873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-14DOI: 10.1016/j.ceb.2025.102561
Tae Yeon Yoo , Bernardo Gouveia , Daniel Needleman
A great deal is known about biochemical aspects of transcription, but we still lack an understanding of how transcription is causally regulated in space and time. A major unanswered question is the extent to which transcription at different locations in the nucleus are independent from each other or, instead, are spatially coordinated. We propose two classes of models of coordination: 1) the shared environment model, in which neighboring loci exhibit coordinated transcriptional dynamics due to sharing the same local biochemical environment; 2) the mechanical crosstalk model, in which forces propagate from one actively transcribing locus to affect transcription of another. Determining the prevalence of the spatial coordination of transcription, and the underlying mechanisms when it occurs, is an exciting challenge in nuclear biophysics.
{"title":"Nuclear biophysics: Spatial coordination of transcriptional dynamics?","authors":"Tae Yeon Yoo , Bernardo Gouveia , Daniel Needleman","doi":"10.1016/j.ceb.2025.102561","DOIUrl":"10.1016/j.ceb.2025.102561","url":null,"abstract":"<div><div>A great deal is known about biochemical aspects of transcription, but we still lack an understanding of how transcription is causally regulated in space and time. A major unanswered question is the extent to which transcription at different locations in the nucleus are independent from each other or, instead, are spatially coordinated. We propose two classes of models of coordination: 1) the shared environment model, in which neighboring loci exhibit coordinated transcriptional dynamics due to sharing the same local biochemical environment; 2) the mechanical crosstalk model, in which forces propagate from one actively transcribing locus to affect transcription of another. Determining the prevalence of the spatial coordination of transcription, and the underlying mechanisms when it occurs, is an exciting challenge in nuclear biophysics.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"95 ","pages":"Article 102561"},"PeriodicalIF":6.0,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144280463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-14DOI: 10.1016/j.ceb.2025.102548
Mohammed Inayatullah , Anuj Kumar Dwivedi , Vijay K. Tiwari
Recent advancements in single-cell RNA sequencing, spatial transcriptomics, and multi-omics integration have enabled researchers to dissect complex tissues and identify distinct cell populations with unique functional states. This review discusses the application of single-cell omics in diverse fields, including cancer research and developmental biology, showcasing how they reveal insights into cellular interactions, disease mechanisms, and therapeutic responses. Notable studies illustrate the potential of single-cell approaches to uncover novel biomarkers and therapeutic targets, particularly in heterogeneous diseases such as cancer and neurodevelopmental disorders. Furthermore, the review emphasizes the importance of integrating single-cell data with computational models to enhance our understanding of cellular dynamics and microenvironmental influences. Overall, this review underscores the critical role of single-cell omics in advancing our knowledge of biology and its applications in clinical settings, paving the way for personalized medicine.
{"title":"Advances in single-cell omics: Transformative applications in basic and clinical research","authors":"Mohammed Inayatullah , Anuj Kumar Dwivedi , Vijay K. Tiwari","doi":"10.1016/j.ceb.2025.102548","DOIUrl":"10.1016/j.ceb.2025.102548","url":null,"abstract":"<div><div>Recent advancements in single-cell RNA sequencing, spatial transcriptomics, and multi-omics integration have enabled researchers to dissect complex tissues and identify distinct cell populations with unique functional states. This review discusses the application of single-cell omics in diverse fields, including cancer research and developmental biology, showcasing how they reveal insights into cellular interactions, disease mechanisms, and therapeutic responses. Notable studies illustrate the potential of single-cell approaches to uncover novel biomarkers and therapeutic targets, particularly in heterogeneous diseases such as cancer and neurodevelopmental disorders. Furthermore, the review emphasizes the importance of integrating single-cell data with computational models to enhance our understanding of cellular dynamics and microenvironmental influences. Overall, this review underscores the critical role of single-cell omics in advancing our knowledge of biology and its applications in clinical settings, paving the way for personalized medicine.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"95 ","pages":"Article 102548"},"PeriodicalIF":6.0,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144289029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-13DOI: 10.1016/j.ceb.2025.102560
Qian Dong , Louise Y. Cheng
Cellular responses to their environment are shaped not only by genetic composition but also by interactions with neighbouring cells. Beyond local interactions, inter-organ crosstalk has emerged as a crucial mechanism coordinating tissue growth and function. In this review, we discuss recent findings, mainly using Drosophila as a model system to investigate how organs compete for resources under metabolic stress. This mechanism ensures the prioritized growth of essential organs during development and the growth of tumours at the expense of other tissues and host fitness. Together, these studies offered valuable insights into how inter-organ communications via secreted factors and host resource reallocation are important in affecting tissue fitness and driving disease progression.
{"title":"From brain-sparing to prioritised tumour growth: Insights into tumour-host interactions","authors":"Qian Dong , Louise Y. Cheng","doi":"10.1016/j.ceb.2025.102560","DOIUrl":"10.1016/j.ceb.2025.102560","url":null,"abstract":"<div><div>Cellular responses to their environment are shaped not only by genetic composition but also by interactions with neighbouring cells. Beyond local interactions, inter-organ crosstalk has emerged as a crucial mechanism coordinating tissue growth and function. In this review, we discuss recent findings, mainly using <em>Drosophila</em> as a model system to investigate how organs compete for resources under metabolic stress. This mechanism ensures the prioritized growth of essential organs during development and the growth of tumours at the expense of other tissues and host fitness. Together, these studies offered valuable insights into how inter-organ communications via secreted factors and host resource reallocation are important in affecting tissue fitness and driving disease progression.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"95 ","pages":"Article 102560"},"PeriodicalIF":6.0,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144280464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-12DOI: 10.1016/j.ceb.2025.102557
Hannah J. Brown, Vinaya D. Shinde, Leonardo Bosi, Iain G. Duggin
Recent research in archaeal cell biology has revealed a remarkable diversity of cytoskeletal proteins related to those found in bacteria and eukaryotes, such as the tubulin, actin, and ESCRT protein superfamilies, and archaea-specific proteins that self-assemble and have been implicated in cytoskeletal roles. Here, we outline an emerging view that the archaeal cytoskeleton has several conceptual ties to the sophisticated eukaryotic cytoskeleton. We highlight that duplication and specialisation of protein function is common among archaeal cytoskeletal systems, and that some paralogues show coordinated, opposing functions in the regulation of cell morphogenesis and structural homeostasis. Furthermore, the presence of homologues of eukaryotic cytoskeletal regulators in Asgard archaea, the closest known relatives of eukaryotes, underscores further linkages between eukaryotic and increasingly sophisticated archaeal cytoskeletal systems.
{"title":"Evolution of the cytoskeleton: Emerging clues from the diversification and specialisation of archaeal cytoskeletal proteins","authors":"Hannah J. Brown, Vinaya D. Shinde, Leonardo Bosi, Iain G. Duggin","doi":"10.1016/j.ceb.2025.102557","DOIUrl":"10.1016/j.ceb.2025.102557","url":null,"abstract":"<div><div>Recent research in archaeal cell biology has revealed a remarkable diversity of cytoskeletal proteins related to those found in bacteria and eukaryotes, such as the tubulin, actin, and ESCRT protein superfamilies, and archaea-specific proteins that self-assemble and have been implicated in cytoskeletal roles. Here, we outline an emerging view that the archaeal cytoskeleton has several conceptual ties to the sophisticated eukaryotic cytoskeleton. We highlight that duplication and specialisation of protein function is common among archaeal cytoskeletal systems, and that some paralogues show coordinated, opposing functions in the regulation of cell morphogenesis and structural homeostasis. Furthermore, the presence of homologues of eukaryotic cytoskeletal regulators in Asgard archaea, the closest known relatives of eukaryotes, underscores further linkages between eukaryotic and increasingly sophisticated archaeal cytoskeletal systems.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"95 ","pages":"Article 102557"},"PeriodicalIF":6.0,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144263251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-12DOI: 10.1016/j.ceb.2025.102562
Samara N. Ranie , Melanie D. White
Apical constriction is a key morphogenetic process driving tissue remodelling throughout life, including early developmental events. Once thought to occur through uniform actomyosin ring contraction, it is now recognized as a dynamic process with diverse actomyosin architectures across species, tissues, and cell types. Regulation of apical constriction involves multiple scales, from tissue mechanics to junctional remodelling and protein trafficking. New studies are revealing how this process is controlled through actomyosin cortex organization, cytoskeletal–junctional interactions, and junctional protein levels. Considering how variable actomyosin structures are integrated with emerging regulatory pathways across different models will be crucial. Advances in in vivo live imaging promise deeper insights into the regulatory networks coordinating actomyosin dynamics and apical constriction, shedding light on its role in shaping tissues during development.
{"title":"Apical constriction in morphogenesis: From actomyosin architecture to regulatory networks","authors":"Samara N. Ranie , Melanie D. White","doi":"10.1016/j.ceb.2025.102562","DOIUrl":"10.1016/j.ceb.2025.102562","url":null,"abstract":"<div><div>Apical constriction is a key morphogenetic process driving tissue remodelling throughout life, including early developmental events. Once thought to occur through uniform actomyosin ring contraction, it is now recognized as a dynamic process with diverse actomyosin architectures across species, tissues, and cell types. Regulation of apical constriction involves multiple scales, from tissue mechanics to junctional remodelling and protein trafficking. New studies are revealing how this process is controlled through actomyosin cortex organization, cytoskeletal–junctional interactions, and junctional protein levels. Considering how variable actomyosin structures are integrated with emerging regulatory pathways across different models will be crucial. Advances in <em>in vivo</em> live imaging promise deeper insights into the regulatory networks coordinating actomyosin dynamics and apical constriction, shedding light on its role in shaping tissues during development.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"95 ","pages":"Article 102562"},"PeriodicalIF":6.0,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144263252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-12DOI: 10.1016/j.ceb.2025.102559
Rachel J. Kehrberg, Kris A. DeMali
Upon engagement of E-cadherin or when mechanical force is applied, E-cadherin recruits cytoskeletal proteins and triggers various signal transduction cascades including PI3K, Src, Rho family GTPases, kinases, YAP/TAZ, AMPK, and other metabolic enzymes. These cascades modulate E-cadherin's stability, viscosity, and its connection to the actin cytoskeleton, thereby reinforcing cell–cell adhesion.
{"title":"E-Cadherin: A conductor of cellular signaling","authors":"Rachel J. Kehrberg, Kris A. DeMali","doi":"10.1016/j.ceb.2025.102559","DOIUrl":"10.1016/j.ceb.2025.102559","url":null,"abstract":"<div><div>Upon engagement of E-cadherin or when mechanical force is applied, E-cadherin recruits cytoskeletal proteins and triggers various signal transduction cascades including PI3K, Src, Rho family GTPases, kinases, YAP/TAZ, AMPK, and other metabolic enzymes. These cascades modulate E-cadherin's stability, viscosity, and its connection to the actin cytoskeleton, thereby reinforcing cell–cell adhesion.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"95 ","pages":"Article 102559"},"PeriodicalIF":6.0,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144263253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oocytes are female gametes specialized in storing maternal RNAs, proteins, lipids, and metabolites essential for embryonic development after fertilization, sometimes for decades in humans. To support this extended lifespan, oocytes have evolved mechanisms to organize specialized organelles. This review highlights recent discoveries on how oocytes regulate mRNA and protein accumulation, storage, and degradation over time. Additionally, we explore advances in understanding cytoplasmic activity and remodeling, particularly the role of cortex mechanical properties in fine-tuning organelle distribution and function to ensure proper oocyte development.
{"title":"Impact of organelle architecture on oocyte developmental potential","authors":"Elvira Nikalayevich, Noemi Zollo, Marie-Hélène Verlhac","doi":"10.1016/j.ceb.2025.102556","DOIUrl":"10.1016/j.ceb.2025.102556","url":null,"abstract":"<div><div>Oocytes are female gametes specialized in storing maternal RNAs, proteins, lipids, and metabolites essential for embryonic development after fertilization, sometimes for decades in humans. To support this extended lifespan, oocytes have evolved mechanisms to organize specialized organelles. This review highlights recent discoveries on how oocytes regulate mRNA and protein accumulation, storage, and degradation over time. Additionally, we explore advances in understanding cytoplasmic activity and remodeling, particularly the role of cortex mechanical properties in fine-tuning organelle distribution and function to ensure proper oocyte development.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"95 ","pages":"Article 102556"},"PeriodicalIF":6.0,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144254364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}