Ternary Cu/ZnO/Al2O3 and Cu/ZnO/CeO2 catalysts were prepared by polyol method and tested for gas-phase low-temperature methanol synthesis from hydrogenation of CO2. The catalysts were characterized by N2 physisorption, SEM–EDX, XRD, H2-TPR and XPS. The activity of the catalysts was evaluated in a fixed-bed micro-reactor at atmospheric pressure and 40 bar at different reaction temperatures, and H2/CO2 ratio of 3:1. The results showed that the nature of the promoter influenced the physicochemical properties of the catalysts as well as the catalytic activity and product selectivity. Compared with ternary Cu/ZnO/Al2O3 catalyst, Cu/ZnO/CeO2 catalyst indicated that modifcation of CuO/ZnO catalyst with CeO2 promoted the CuO dispersion, reduced the CuO crystallite size, decreased the reduction temperature of highly dispersed CuO, decreased the activation energy and improved the catalytic activity of the Cu/ZnO/CeO2 catalyst.